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Elastic Energy Driven Polymerization

Andrew Wang and Giovanni Zocchi*
Department of Physics & Astronomy, University of California, Los Angeles, California

ABSTRACT We present a molecular system where polymerization is controlled externally by tuning the elastic energy of the
monomers. The elastic energy, provided by a DNA molecular spring, destabilizes the monomer state through a process analogous
to domain swapping. This energy can be large (of ~10 kT) and thus drive polymerization at relatively low monomer concentrations.
The monomer-dimer equilibrium provides a measurement of the elastic energy of the monomer, which in this construction appears
limited by kink formation in the DNA molecular spring, in accord with previous theoretical and experimental investigations of the
elasticity of sharply bent DNA.
INTRODUCTION

Self-assembly of smaller molecular units into larger ordered

molecular structures is ubiquitous in molecular biology (1),

from the folding of a polypeptide chain into the native struc-

ture of the protein, to the assembly of the replication

machinery on the DNA, to the polymerization of tubulin

monomers to form the microtubule. In the case of the poly-

merization of identical units, a globular protein, for example,

one can ask what destabilizes the monomers; this is generally

hydrophobic interaction with the water (including hydrogen

bonding), or the electric field due to surface charges. Poly-

merization then excludes the water from the surface of

contact between monomers, or removes the electric field

from space by pairing positive and negative charges, respec-

tively. A further possibility is that monomers are destabilized

by an elastic energy if that energy is released upon polymer-

ization. There are indeed polymerization processes in the cell

driven by this mechanism. Rousseau et al. has demonstrated

experimentally that dimerization by domain swapping in the

case of the cell cycle regulatory protein p13suc1 is driven by

the elastic energy associated with the presence of two proline

residues in the hinge loop of the monomer state (2). Protein

aggregation related to amyloid diseases may also be related

to such mechanisms, for example, Yang et al. propose

a domain-swapped trimer, stabilized partially by relaxation

of elastic energy, as a candidate structure for the ‘‘minimal

prion infectious unit’’ (3).

In general, domain swapping, first described by Bennett

et al. in the case of the dimerization of diphtheria toxin (4),

provides a mechanism for elastic energy-driven polymeriza-

tion, since all atomic contacts can, in principle, be identical

in the monomer and the dimer, with the energy difference

between the two states coming mostly from elastic stresses

in the monomer.

Other elastic energy-driven mechanisms are also possible,

such as has been proposed theoretically for the case of the
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dynamic instability of the microtubule (5). Indeed, it is

possible that elastic energy-driven polymerization is not

uncommon both in the healthy cell and in disease.

Here we introduce an artificial molecular system where we

have external control of the elastic energy of the monomers,

and use this elastic energy to drive the formation of dimers

and higher order polymers. Exhibiting this process allows

us to measure the elastic energy of the monomers.

Our system is a protein-DNA chimera slightly different

from the ones we introduced previously (6) for the purpose

of controlling protein conformation through the DNA molec-

ular spring. The difference is that in the present construction

we attach two different DNA oligomers to specific (Cys-

mutated) sites on the surface of the protein, so that when

we add a complementary DNA strand to build up tension

in the molecular spring (as explained below), the double-

stranded (ds) part of the spring has a nick (Fig. 1). The

nick, as it turns out, does not completely relax the elastic

energy of the spring, but it does introduce the possibility

of alternative conformations (dimers, trimers, etc.; see

Fig. 1) where the elastic energy is essentially zero. Thus,

as the elastic energy of the monomer is increased by hybrid-

izing longer complementary DNA strands to the molecular

spring, we observe the appearance of dimers, trimers, and

higher order polymers in the system at equilibrium.

There are previous examples of using the elastic energy of

bent dsDNA to control molecular processes. In the work by

Saghatelian et al. (7), a DNA detector was engineered by

conjugating an enzyme molecule with a single-stranded

(ss) DNA oligomer which, at its other end, is attached to

an inhibitor of the enzyme. In this state, the inhibitor inacti-

vates the enzyme by blocking the catalytic site. In the pres-

ence of the complementary DNA, the enzyme is activated

due to the removal of the inhibitor from the active site. In

this situation, the large elastic energy of the dsDNA in the

inhibitor-bound state overwhelmingly biases the equilibrium

toward the low-elastic-energy, inhibitor-unbound state (7).

Our own work with three different proteins (8–10) showed

how the elastic energy of the DNA molecular spring can be
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used, in principle, to bias the conformation of any protein,

and thus, control the protein’s activity.

Similarly, the large hybridization free energy of dsDNA

has been utilized by Miduturu and Silverman (11) and Zelin

and Silverman (12) to control the folding of a ribozyme. In

their work, two short pieces of complementary ssDNA

(10–15-mers, corresponding to ~20 kT of hybridization

free energy) are specifically attached to distant sites of

a folded RNA molecule. In the hybridized state, the dsDNA

constraint forces unfolding of the RNA molecule by destabi-

lizing the intramolecular hydrogen bonds of the RNA

(11,12). The equilibrium between the folded and unfolded

states of the ribozyme thus depends on the difference

between the hybridization free energy of the dsDNA duplex

and the free energy change of disrupting the secondary struc-

ture of the RNA.

In our system, we use the DNA molecular spring as the

source of the elastic energy that drives the polymerization

a

b

FIGURE 1 Cartoon of the elastic-energy-destabilized two-arms chimera.

(a) Two different 30-base-long ssDNA oligomers are covalently and specif-

ically attached to mutated Cys residues on the surface of the protein (Gua-

nylate kinase or GK, light yellow) through heterobifunctional crosslinkers

(green). One DNA oligomer (or DNA arm) is attached by the 50 end and

the other by the 30 end. Hybridization with a complementary 60-mer DNA

(red) forms a 60-bp DNA molecular spring (with a nick in the middle).

The geometric end-to-end distance of the DNA, from the protein structure

(assumed rigid) and including the crosslinkers, is 10 nm. The contour length

of the dsDNA 60-mer is 20 nm. Thus, the molecular spring introduces

a substantial elastic energy in the system. The cartoon was constructed using

several structure components from the Protein Data Bank spatially arranged

together with the Molecular Graphics Visualization Tool RasTop 2.0 (http://

www.inrp.fr/Acces/biotic/rastop/help/default.htm); protein, DNA, and

crosslinker are approximately to scale. The GK structure is 1ZNW and the

DNA is from the nucleosome structure 1KX5. (b) Cartoon of the dimeriza-

tion process; same color code as in panel a. Due to the nick in the molecular

spring, monomers can release elastic energy by forming dimers through the

hybridization of the complementary DNA with the DNA arms from two

different chimeras. Because the number of paired DNA bases is the same

in both states, the equilibrium of dimerization only depends on the balance

of the elastic free energy and the entropic free energy in the system. This

process is analogous to domain swapping.
process. The process is analogous to domain swapping, but

here the swapping is between DNA strands. The relatively

high elastic energy of the DNA molecular spring allows us

to drive the polymerization process at relatively low (mM)

monomer concentrations. Because the equilibrium constant

of dimerization depends exponentially on the free energy

difference between the monomer and dimer state, it ulti-

mately represents a sensitive measurement of the elastic

energy of the monomer. This is, of course, the elastic energy

of the entire system: DNA spring plus protein. In future

experiments, the protein can be replaced by a stiff molecule

or a polymer of known elastic properties, such as ssDNA. In

this way, the elastic energy of the DNA spring alone could be

measured. Then we can go back and extract the elastic

energy of the protein under stress. Thus, there are several

motivations to examine quantitatively the process of Fig. 1 b.

MATERIALS AND METHODS

Mutagenesis and protein purification

Guanylate kinase (GK) from Mycobacterium tuberculosis (gene Rv1389c)

was modified by site-directed mutagenesis (Stratagene, La Jolla, CA) to

remove the native cysteins from the wild-type and add two Cysteins at

sequence sites 75 and 171 for later DNA conjugation. The mutant gene

was cloned and expressed according to the method in Choi and Zocchi (9).

Protein-DNA complex synthesis

Two 30-mer DNA arms with different sequences,

Strand A: 50-GAGTGTGGAGCCTAGACCGTGAGTTGCTGG-30,
Strand B: 50-CAGTGGTGCGACCGACGTGGAGCCTCCCTC-30,

were purchased amino-modified at the 50 and 30 ends, respectively (Operon,

Huntsville, AL). The sequence is randomly generated with the requirement

of 60% GC content to ensure high pairing specificity and binding affinity

between the DNA arms and the complementary strands. The sequence is

also selected to minimize the amount of self-complementarity for elimi-

nating unwanted secondary structure.

One-hundred nmoles of each DNA arm were incubated with 5 mmoles of

the hetero-bifunctional crosslinker NHS-PEO2-Maleimide (Pierce, Rock-

ford, IL), in the conjugation buffer (100 mM sodium phosphate, 150 mM

NaCl, and 1 mM EDTA at pH 7.5 (Sigma, St. Louis, MO)) for 1 h at

room temperature. The amino group of the DNA arm reacts with the

NHS-ester end of the crosslinker. The DNA-crosslinker construct was

then passed through a Uno Q1 ion-exchange column (Bio-Rad, Hercules,

CA) in HPLC to remove excess uncoupled crosslinkers and the desired

DNA-crosslinker conjugate was eluted by a salt gradient. Corresponding

fractions were collected and concentrated by an Amicron spin column

(Millipore, Billerica, MA) to ~50 mM. The buffer used in this HPLC purifi-

cation and the following purification was the same as the conjugation buffer,

but at pH 7.0. One-hundred nmoles of protein were reduced in 5 mM TCEP

(Pierce) for 30 min at room temperature to regenerate free sulfhydryl groups

and then passed through a Bio-Sil size-exclusion column (Bio-Rad) in

HPLC to remove TCEP from the reduced protein. The protein fractions

were collected and concentrated to ~50 mM.

To sequentially couple the two different DNA arms with the protein, the

crosslinker-DNA conjugate (strand A) was first incubated with the reduced

protein for 2 h. The mixture was then passed through the Q1 ion-exchange

column with a slow salt gradient to separate the one-arm Protein-DNA

chimera from uncoupled proteins and two-arms chimeras (Fig. 2 a). Usually

the yield of one-arm chimera was ~20% (20 nmol for this synthesis scale).
Biophysical Journal 96(6) 2344–2352
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c FIGURE 2 (a) Ion exchange HPLC profile representing

the purification of one-arm chimera. The essential step for

the synthesis of a hetero-two-arms chimera is to isolate the

one-arm chimera from the unwanted constructs after the first

coupling step. Ion-exchange chromatography is used, which

separates molecules primarily by charge. At pH ~7, the GK

molecule is slightly positively charged (pI ~7.5) and eluted

in the initial part of the time series (not shown). Therefore, in

an increasing gradient of counterions (Cl�), the one-arm

chimera elutes earlier than the uncoupled arm DNA, which

is more negatively charged. The two-arms chimera elutes

last because of its high DNA content. The signal is the ultra-

violet absorbance at 260 nm (the absorbance maximum of

DNA) and the slanting line is the salt gradient. The eight

shaded areas under the curve are the collected fractions

further analyzed in the corresponding lanes of the protein

gel in panel b, to help assign the HPLC peaks. (b) Dena-

turing protein gel (10% SDS-PAGE) of the eight chroma-

tography fractions indicated in panel a. The gel is stained

for protein with Coomassie blue. The one-arm chimera

has a molecular mass of ~35 kDa, which corresponds to the strong band in lane 3. The large peak in panel a spanning lanes 5–7 shows very low protein content

and is confirmed to be uncoupled arm DNA by a native TBE gel with DNA staining (data not shown). The weak band in lane 8 with 45 kDa molecular mass is the

homo-two-arms chimera. In the synthesis, the ratio of protein/arm DNA was 1.5:2. (c) Diagnostics of hetero-two-arms chimera synthesis by SDS-PAGE

(visualized by Coomassie staining). Lane A shows the sample after conjugation of the first DNA arm but before HPLC purification of the one-arm chimera

(i.e., before the chromatography step of a). Lane B shows the sample after conjugation of the second DNA arm. The two strong bands in lane A are GK (~25

kDa) and one-arm chimera (~35 kDa). Some homo-two-arms chimera (~45 kDa) can also be seen. The single strong band in lane B is the successful two arm

chimera (~45 kDa) and the thin band at ~35 kDa is the residual one-arm chimera. No visible uncoupled GK is left in lane B. The yield of correctly constructed

chimera, judging from the band intensity, is >85%. A molecular mass marker is shown on the left.
The purified one-arm chimera was then incubated with the second DNA-

crosslinker conjugate (strand B) to form the desired two-arms chimera.

The final synthesized two-arms chimera was purified by Ni-NTA chroma-

tography (Qiagen, Valencia, CA) through the His-tag on the protein and

verified by the corresponding molecular mass on a denaturing SDS-PAGE

(10% Tris-HCl Ready gel, Bio-Rad) with Coomassie blue staining of the

protein (Fig. 2 b). The product concentration was quantified by Bradford’s

assay (Bio-Rad) and the final yield of two-arms chimera was ~5% of the

initial amount of protein used.

Hybridization protocol and polymerization
measurements

The purified two-arms chimera was mixed with complementary DNAs of

varying length ‘ (18, 24, 30, 39, to 60 bp in 3-bp steps, from Operon). These

complementary DNAs hybridize to the central portion of the molecular

spring; e.g., for ‘¼ 18, nine bases are complementary to the 30 end of strand

A and the other nine are complementary to the 50 end of strand B. As a

no-tension negative control of the fully hybridized molecular spring (‘ ¼
60), an eight-nucleotide poly-(T) stretch was introduced in the middle of

the sequence of the 60-mer complementary DNA; the resulting ss gap in

the molecular spring would release the stress by providing a flexible hinge.

The final concentrations of the two-arms chimera and complementary DNA

were adjusted to 1 mM in hybridization buffer (100 mM phosphate, 100 mM

NaCl, and 1 mM EDTA, pH 7.0); samples were incubated at room temper-

ature overnight to achieve chemical equilibrium.

Because the standard annealing procedure for hybridization could not be

used, the question arises whether overnight incubation does, in fact, produce

the equilibrium state. Because of the nick in the molecular spring, what has

to hybridize correctly are DNA sequences 30 bases long (in the most unfa-

vorable ‘ ¼ 60 case). For our sequences, the longest nonnative duplex

(giving rise to a hairpin structure) is six basepairs long, which has a half-

life of ~102 s (13). Other equilibration processes are faster; for example,

two molecules of complementary DNA could bind each to one of the two

DNA arms. Displacement of one of the two complementary strands by the

unpaired ss part of the other has an estimated time constant of 10�3 s
Biophysical Journal 96(6) 2344–2352
(14). Thus, the timescales for getting out of these metastable states are short

compared to our 12 h incubation time. As an experimental control, we

measured the thermal melting profiles for our longest sequences, after

hybridization by thermal annealing and after hybridization by 12 h incuba-

tion at room temperature, and found them indistinguishable. We conclude

that the samples are in (or close to) equilibrium.

Native TBE PAGE with a 4–20% gradient gel (Bio-Rad) at 120 V for

80 min in TBE buffer (89 mM Tris borate, 2 mM EDTA, pH ~8.3) was

used to separate monomers, dimers, and higher-order polymers in the

samples. The gel was stained with SYBR Gold DNA dye (Invitrogen, Carls-

bad, CA) for at least 30 min and imaged over an ultraviolet transilluminator.

The gel image was analyzed with the software ImageJ (15) to determine the

band intensities. The same gel staining and documentation procedures were

used in the following parts.

Delayed gel loading assay for monitoring
monomer-dimer exchange during electrophoresis

To examine whether there is any evolution of the apparent equilibrium

between monomers, dimers, and other polymers in the course of electropho-

retic separation, a low-percentage homogeneous polyacrylamide gel (5%

TBE PAGE, Bio-Rad) at 100 V in TBE buffer was used. The hybridized

sample with ‘ ¼ 60 was consecutively loaded into the wells every 5 min

for eight times. The total running time was 55 min.

Determination of the equilibrium constant
of dimerization for ‘ ¼ 60

The equilibrium constant between monomers and dimers at different

chimera concentrations (0.4–3.2 mM) was evaluated. A 1.25-fold molar

excess of 60-mer complementary DNA was used in this experiment to

ensure all chimera molecules were hybridized. The concentration of mono-

mers and dimers was derived from the band intensities using a calibration

curve constituted of 60-mer ssDNA samples with known quantities (from

0.3 to 10 pmol).



Elastic Energy-Driven Polymerization 2347
RESULTS

Our experimental system is the two-arms protein-DNA

chimera shown in Fig. 1. The protein is the enzyme

Guanylate kinase (GK) from Mycobacterium tuberculosis,

modified by site-directed mutagenesis to remove the two

internal Cysteins (Cys40 / Ser, Cys193 / Ser; these two

Cys form a disulfide bridge in the oxidized form of the

wild-type protein) and add two Cys at positions 75 and

171 (Thr75 / Cys, Arg171 / Cys). The enzymatic activity

of this mutant is comparable to that of the wild-type,

although this is not important for our present purposes. To

the two Cysteins we covalently attach (by the hetero-bifunc-

tional crosslinker NHS-PEO2-Maleimide) two different

30-bases-long DNA oligomers, which are modified with

primary amino groups on short spacer arms at the 50 and

30 ends, respectively, to react with the crosslinker. The

details of this sequential two-steps synthesis process, which

results in the two-arms chimera of Fig. 1 a, are given in

Materials and Methods. Fig. 2 displays the sequential conju-

gation of the two DNA arms to the protein. The denaturing

FIGURE 3 Elastic energy-driven polymerization visualized by gel elec-

trophoresis. The medium is a native 4–20% gradient polyacrylamide gel

in TBE, stained for DNA with SYBR Gold. Aliquots of purified two-arms

chimera were incubated overnight with equimolar complementary DNA

with length varying from 18 to 60 bases and then loaded in the gel.

On top of each lane, we indicate schematically the molecular spring confor-

mation in the monomer. The monomer band shifts to lower mobilities for

increasing ‘ reflecting the increased molecular mass of the construct. For ‘

¼ 42, a dimer band appears, as well as a faint slower band, which is probably

trimers and also higher molecular mass objects stuck at the start of the lane.

For ‘ ¼ 60, the dimer band is relatively stronger, as are the higher molecular

mass objects. Each lane in this gel contains the same molar amount of

chimera. The multiple faint bands behind the dimers for ‘ ¼ 60 possibly

correspond to different configurations of the trimers and higher order poly-

mers (e.g., circular versus linear) and impurities (originating, for example,

from chimeras built from two identical DNA arms, which give rise to linear

polymers). The lane 60þGap is a control which shows that polymerization is

driven by the elastic energy. Namely, the complementary DNA is a 68-mer,

which is the 60-mer of the previous lane with an insertion of an 8-bases-long

poly-(T) stretch in the middle. The resulting ss gap in the molecular spring

relaxes the elastic energy. Correspondingly, the dimer and trimer bands

disappear. The bands which do not disappear (compare lanes 60 and

60þGap) correspond to linear polymers formed by impurities.
protein gel (SDS-PAGE; Fig. 2 c) displays the increased

molecular mass of the protein-DNA chimeras. The molecular

mass of GK and single DNA arms are 25 kDa and 10 kDa,

respectively. Therefore, the one-arm and two-arms chimeras

should have mobilities roughly equivalent to 35 kDa and

45 kDa. After conjugation of the first DNA arm (Fig. 2 c,

lane A), we see two bands corresponding to the uncoupled

GK molecule (the band close to the 25 kDa standard) and

the one-arm chimera (the band close to the 37 kDa standard).

After conjugation of the second DNA arm (Fig. 2 c, lane B),

we see a band with molecular mass between 37 and 50 kDa,

corresponding to the two-arms chimera.

The yield of two-arms chimera in the final samples, after

various purifications, is good (>85%, see Materials and

Methods), but the yield in terms of final amount of chimera

compared to initial amount of reactants (protein and amino-

modified DNA) is rather poor, of ~5–15%. Nonetheless,

from one synthesis batch we obtain typically a few nano-

moles of purified chimera, which is enough for the experi-

ments. These consist in adding to aliquots of the two-arms

chimera progressively longer complementary DNA strands,

resulting in the ds chimeras shown schematically in Fig. 3.

The aliquots are then run on a native gel to assess the

contents of monomers, dimers, and higher order polymers.

Namely, as the length of the complementary DNA is

increased, the ds portion of the molecular spring will, on

average, have to bend, while the ss portion has to stretch,

introducing an elastic energy in the system. Although there

is a nick in the ds DNA spring, the nick does not completely

release the elastic energy, as seen from our measurements

below. The reason is that base stacking around the nick is

still intact and provides mechanical stability to the DNA

molecule for small bending (16,17).

On the other hand, the system can choose to relax this

elastic energy by forming dimers, trimers, etc., as sketched

in Fig. 1, where in each case the dsDNA spring can be

straight, i.e., relaxed. However, forming dimers and other

polymers entails the entropic cost of pairing off two

chimeras, so this process is favored only if the elastic energy

of the monomers exceeds the entropic free energy cost of

dimerization.

In Fig. 3, each lane contains ~5 pmol of two-arms chimera

hybridized with equimolar complementary DNA. The length

of the hybridized part of the DNA, or hybridization length ‘,
increases from 18 bp to 60 bp, at which point the two 30-mer

DNA arms are fully hybridized. Due to the comparatively low

charge of the protein in the Protein-DNA chimera, the chimera

and the hybrids migrate much slower than the same DNA

components without the protein load. For the two-arms

chimera hybridized with an 18-mer complementary DNA,

the monomer has the same mobility as a 140–150-bp-long

dsDNA in this gel (data not shown). With increasing ‘,
the band-shifting pattern shows that the fastest band in

each lane is the monomer of different ‘. For ‘ ¼ 42, a dimer

band (and a faint trimer band behind the dimer) appears,
Biophysical Journal 96(6) 2344–2352
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corresponding to the onset of bending of the ds part of the

DNA spring. Finally, for ‘ ¼ 60, a strong dimer band and

higher order polymers appear, illustrating the high elastic

energy of the sharply-bent dsDNA spring.

The last lane (60þGap) is a control that shows that the

driving force for polymerization is indeed the elastic energy.

Namely, we have added a short (eight bases) poly-T stretch

in the middle of the complementary 60-mer, which creates an

ss gap in the ds spring, thus relaxing the elastic energy.

Correspondingly, we observe that the dimer and trimer bands

disappear. The remaining faint bands in the lane are due to

other polymers formed by impurities in the sample (such

as one-arm chimeras).

The structures of each monomer with varying ‘ are drawn

roughly to scale above each lane. From the geometry of

the protein-DNA chimera, we expect zero elastic energy

for ‘ < 30 but a finite elastic energy for ‘ ¼ 42, so the onset

of dimerization in Fig. 4 qualitatively agrees with this

picture. By measuring, from the gels, the relative populations

of monomers and dimers, we can measure the elastic energy

of the monomers, supposing the elastic energy of the dimers

is essentially zero (since in the dimers, because of the geom-

etry, the DNA spring can be relaxed). Considering the

equilibrium between monomers and dimers (Fig. 1), the

essential parts of the chemical potentials are, respectively,

FIGURE 4 The dimerization equilibrium constants with varying hybrid-

ization length ‘. The data are the average of three experiments; the error

bars are �1 SD. The equilibrium constant Keq is calculated from Eq. 4.

The molar fractions of monomer and dimer are related to their molar concen-

trations by XM ¼ CM/55.6, XD ¼ CD/55.6, with 55.6 M being the concentra-

tion of water. The concentrations CM and CD are measured by integrating the

band intensity across the lane and subtracting the background, using the

software ImageJ (http://rsbweb.nih.gov/ij/). The band intensities are

converted to concentrations by comparing with standards with known

DNA content in different lanes of the same gel. For ‘ ¼ 18, 24, and 30,

the equilibrium constant is unmeasurably small, since ID z 0 within the

resolution of the measurement. Geometrically, we do not expect tension in

the molecular spring for these hybridization lengths. The increase in the

equilibrium constant from ‘ ¼ 39 to ‘ ¼ 60 is evidence of a positive elastic

energy destabilizing the monomer state.
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mM ¼ Fel þ kT lnðXMÞ
mD ¼ kTlnðXDÞ

:

�
(1)

Here, Fel is the elastic energy associated with the molecular

spring being under tension, while kT ln(X) is the chemical

potential associated with the concentration of chimeras: XM

is the mole fraction of monomers, XD the mole fraction of

dimers. The equilibrium condition is

2mM � mD ¼ 0 ; (2)

so from Eqs. 1 and 2, we obtain

2Fel ¼ kT ln

�
XD

X2
M

�
¼ kT ln Keq ; (3)

where XD/XM
2¼ Keq is the equilibrium constant of dimeriza-

tion. Equation 1 says that the monomer state is destabilized

by an elastic energy Fel> 0, and there is a reference chemical

potential corresponding to the mole fraction of monomers

XM < 1. In the dimer state, the elastic energy is zero (the

spring is relaxed), but there is the entropic cost of pairing

two monomers together, expressed by the chemical potential

corresponding to the mole fraction of dimers, XD. The

hybridization energy of the DNA does not appear because

it is the same for the two states (all bases are paired).

In Eq. 1, Fel is the part of the free energy difference between

monomer and dimer states, which has to do with molecular

conformation, i.e., excluding concentration effects; this quan-

tity is measured in the experiments. To interpret Fel as the

elastic energy of the molecular spring is a different matter.

For example, if in the monomer state only a fraction of the

bases are paired (because of the competition between base-

pairing energy and elastic energy), then Fel represents a free

energy made up partially of elastic energy and partially of

hybridization energy. Additionally, Fel is the elastic energy

of the whole system: molecular spring plus protein. If the

protein is stiffer than the DNA spring, this is essentially the

energy of the spring. If the protein is very soft, then Fel z 0.

If the stiffness of the protein is comparable to the stiffness of

the spring, then the elastic energy resides partly in the DNA

spring and partly in the protein. In addition, there are, in prin-

ciple, entropic contributions to the free energy difference

between monomers and dimers originating from the different

phase space available to the DNA spring in the two cases.

Thus, the microscopic interpretation of Fel is delicate. On

the other hand, the thermodynamic interpretation of Fel is

unambiguous.

We note that the expression for the concentration depen-

dence of the chemical potential, kT ln(X), which corresponds

to the entropy of mixing of the ideal gas, is an excellent

approximation here since X � 1. Indeed, typical chimera

concentrations in the experiment are C z1 mM, so that

X z10�6/55 z2 � 10�8, the concentration of water being

~55 M.

http://rsbweb.nih.gov/ij/
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a b FIGURE 5 This is a control to check that monomer-

dimer interconversion in the gel does not affect the

measurement of Keq. Namely, as the bands migrate down

the gel, the measured Keq ¼ XD/XM
2 remains constant.

(a) Chimeras with 1.25�molar excess 60-mer complemen-

tary DNA were loaded into consecutive lanes with a delay

of 5 min between successive loadings. Separation of mono-

mers and dimers from the background is achieved after

20 min of electrophoresis. The band intensities of monomers

and dimers are nearly unchanged up to 55 min of running

through the gel. For the longest running time, the excess

60-mer has run to the end of gel and is not seen in the image.

(b) Keq measured for the different lanes in panel a.

The equilibrium constants are randomly scattered ~8� 107

with ~20% variation. There is no systematic trend for Keq

with increasing gel running time.
In the experiment, we measure the equilibrium constant

Keq from the intensities I of the corresponding bands on

the gel (Fig. 3). In the notation of Eq. 1,

Keq ¼
XD

X2
M

¼ g
ID

I2
M

; (4)

where ID and IM are the intensities of the dimer and monomer

bands, respectively, and g is the conversion factor between

intensities and molar fractions that we obtain from the stan-

dards with known DNA contents. The equilibrium constant

Keq measured in the experiments for ‘¼ 18 to 60 is displayed

in Fig. 4.

Keq is unmeasurably small (XD z 0 within our resolution)

for ‘ < 30, then increases with ‘, being of ~108 for ‘ > 40,

which corresponds to Fel ~10 kT. The apparent scatter in the

experimental points corresponds, in fact, to an interesting

modulation of the elastic energy, which we discuss below.

Several controls were performed to establish whether the

monomer and dimer bands in the gels do, in fact, represent

the equilibrium distributions of these species in the experi-

ments. The issue is mainly monomer-dimer interconversion

in the gel. The mere fact that we observe bands means inter-

conversion is not too fast, but to examine this point quantita-

tively we employed the delayed gel loading assay, where the

‘ ¼ 60 sample was repetitively loaded into different lanes of

the same gel with 5 min delay time between any two succes-

sive lanes. The point is to verify whether the apparent value

of Keq¼ XD/XM
2 changes as the bands migrate down the gel.

The monomer and dimer bands were well resolved from the

background after 20 min of electrophoresis (Fig. 5 a) and Keq

was measured from the different lanes corresponding to

running times from 20 to 55 min (Fig. 5 b). No systematic

trend of change in the equilibrium constant was observed,

showing that interconversion, even in this low percentage

(5%) gel, is unimportant over the timescale of the gel assay.

It was also noticed that the variation of the equilibrium

constant among lanes (the scatter of the points in Fig. 5 b)

is of ~20%, which is comparable to other measurements of

equilibrium constants. A 20% uncertainty in the measure-

ment of Keq translates into a very precise determination of
the elastic energy, which allows us to resolve the modulation

we discuss below.

A second control to verify that we are measuring equilib-

rium concentrations of monomers and dimers was to test

whether Keq is independent of the total chimera concentra-

tion (the initial amount of chimera used to prepare the

samples). This was tested with a titration experiment where

the total chimera concentration changed from 0.6 mM to

3.2 mM with 1.25-fold molar excess of 60-mer complemen-

tary DNA (Fig. 6). The range of concentrations is limited on

the lower side by the minimum DNA quantity (in the dimer

band, which is the dimmer one) which can be detected by the

method used (staining with SYBR Gold fluorescent dye),

and on the higher side by overloading of the gel. Within

the concentration range tested, the equilibrium constant at

different concentrations is the same within a 20% scatter,

which is generally the error in estimating the constant from

FIGURE 6 This is a control showing that the measured Keq is independent

of total monomer concentration, as it should be if we are measuring equilib-

rium populations of monomers and dimers. The solid diamonds show

Keq measured for the given total monomer concentration and the open circle

is the overall mean value calculated from all the data. The error bars

indicate �1 SD estimated from four experiments.
Biophysical Journal 96(6) 2344–2352



2350 Wang and Zocchi
gel images (see arguments above). We conclude that the

experiment does measure equilibrium distributions and

therefore the true equilibrium constant of dimerization.

Using the overall mean value of the equilibrium constant

obtained from various chimera concentrations, the elastic

energy calculated from Eq. 3 for ‘ ¼ 60 is (Fig. 6):

Fel½‘ ¼ 60� ¼ 9:18 � 0:05 kT:

We now come back to the apparent scatter of the experi-

mental points in Fig. 4. Closer inspection reveals a periodic

modulation (Fig. 7), with a period of ~10 bp, which corre-

sponds to one turn of the DNA helix. In Fig. 7 the data for

the elastic energy (calculated from the Keq of Fig. 4 using

Eq. 3) are fitted using a sigmoidal curve (for the overall

increase of Fel with ‘) plus a sinusoidal modulation,

Felð‘Þ
kT

¼ a

1 þ e�bð‘�36Þ þ 3sin

�
2p‘

l
þ f

�
; (5)

where a, b, 3, l, and f are the fitting parameters. The best fit

gives a period l ¼ 9.6 � 0.2 bp for the sinusoidal modula-

tion, and an amplitude 3 ¼ 0.19 � 0.03 kT.

The five parameters of the fit notwithstanding, this is

significant; for example, forcing l ¼ 12 or l ¼ 7 throws

the fit completely off the data. The autocorrelation function

of the data also shows a peak corresponding to the same peri-

odicity (Fig. 8).

The average periodicity of the B form of DNA is 10 bp, but

this value varies somewhat with sequence. We conclude that

FIGURE 7 The same data of Fig. 4 plotted for the hybridization length

‘ > 39 in terms of the elastic energy Fel=kT ¼ 1
2

ln ðKeqÞ. The line is a fit

with a function that contains a sinusoidal modulation of period l (see

text). The value l ¼ 9.6 bp gives the best fit, which is shown. Thus, the

elastic energy is modulated with a period equal to the period of the DNA

helix. This graph displays three interesting quantities: the period l ¼
9.6 bp; the amplitude of the modulation 3 ¼ 0.19 kT; and the phase of the

modulation f (the energy is maximum for a relative phase of the two ends

of the complementary strand of 2p).
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we are observing modulations of the elastic energy of the bent

DNA corresponding to the phase relationship of the two ends

of the complementary strand. It is not surprising that this

effect should exist, but Fig. 7 represents nonetheless a remark-

able measurement, given the tiny amplitude (~0.2 kT) of the

modulation. This effect is related to (but different from) the

much larger modulation in j-factors observed in cyclization

experiments (18), which, unlike the present effect, is directly

related to the torsional stiffness of the double helix. The

energy modulation of Fig. 7 arises because of the dependence

of the bending rigidity of dsDNA on the geometric structure of

the helix.

DISCUSSION

The main purpose of this article is to introduce an artificial

molecular system where an externally controlled elastic

energy drives a polymerization process. By externally

controlled, we mean that the elastic energy can be modulated

by adding to the monomer different ligands, in this case,

DNA oligomers of different lengths. The elastic energy

provided by the molecular spring can be large (of ~10 kT),

so polymerization can be driven at relatively low polymer

concentrations (here, mM concentrations). For comparison,

in the case of the domain swapping driven by the two-

Prolines loop (2) the elastic energy is substantially smaller

(~1 kT), and correspondingly, polymerization occurs at

mM concentrations.

Our goal is to develop this molecular spring-based system

into a quantitative tool to measure certain mechanical prop-

erties of biological macromolecules, proteins in particular.

To this end, more work is needed to disentangle the elastic

response of the molecular spring from the elastic response

of the protein.

FIGURE 8 The correlation function CðLÞ ¼ h½Eð‘Þ � Eð‘þ LÞ�2i
1
2, where

E is the elastic energy of Fig. 7 and the average is over the different ‘-values.

The minimum for L ~9 bp corresponds to the periodic modulation seen in

Fig. 7.
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To extract quantitative information, the first question is

whether the intensities in the bands on the gels (Fig. 3) faith-

fully represent the equilibrium distribution of monomers,

dimers, etc. in the experiment. After introducing the comple-

mentary DNA, the samples are left to equilibrate overnight

before loading on the gel, and we have checked that this is

sufficient to establish equilibrium (samples equilibrated for

>72 h show the same monomer-polymer pattern on the

gels). In the gel, diffusion is drastically slowed down and

the rates of dimer formation and dissociation are correspond-

ingly smaller. These time constants must be sufficiently slow

as compared to the 1 h gel running time. If this was not the

case, we would observe a smear instead of the sharp mono-

mer and dimer bands.

We performed two controls to verify that the band inten-

sities do represent the equilibrium populations: one is to

check that the measured equilibrium constant Keq does not

change as the bands migrate down the gel; the second is to

check that the measured Keq is independent of the total

concentration of monomers.

Assuming that the measurements of Fig. 4 represent the

true equilibrium distributions, then one result stands out,

namely that the measured elastic free energy Fel grows very

slowly with ‘ for 40 < ‘ < 60: apart from the ~0.2 kT modu-

lation, Fel is essentially flat in this regime. If the dsDNA part of

the molecular spring was behaving like a flexible rod, and if

the end-to-end distance of the spring was fixed (i.e., if the

protein was rigid), then the elastic energy would grow much

faster with ‘, once the ds part of the spring starts to bend

(i.e., for ‘ > 40 in our geometry). For example, in the WLC

model (19,20), in which the elastic energy per unit length ‘
has the form

Fel

‘
¼ 1

2
B

1

R2
; (6)

where R is the radius of curvature and B z 200 pN$nm2 is

the elastic modulus of dsDNA derived from the persistence

length Lp ¼ 50 nm, one can estimate that in our geometry

the difference in elastic energy between ‘ ¼ 42 and ‘ ¼ 60

is in excess of 10 kT. Therefore, there must be a soft spot

in our construction, which limits Fel, and it is either related

to the DNA spring or to the protein itself. The numbers are

such that the former seems likely. Yan and Marko (21)

proposed that the elastic energy of sharply bent dsDNA is

limited by the process of opening a short bubble of single

strands, which provides a flexible hinge and releases the

tension. Their theory was originally aimed at explaining

cyclization experiments (22) with ~100-bp-long DNA,

which found cyclization rates several orders-of-magnitude

larger than expected from an elastic energy of the form in

Eq. 6. They show (21) that a free energy cost of bubble

opening m z 11 kT is consistent with the cyclization exper-

iments. The quantity m contains the free energy contribution

of opening the basepairs (referred to a final state where the

strands are dissociated) plus the entropy cost of the ss loop
which is the bubble. The unparing energy evidently depends

on the sequence, but is ~2 kT for AT pairs and ~3 kT for GC

pairs, with further (positive or negative) contributions de-

pending on the nearest-neighbor bases (because of the stack-

ing interactions); the entropic cost is of ~3 kT for a 3-bp

bubble (which represents the minimum free energy configu-

ration for the kinked DNA; for the statements above, see (21)

and references therein). In our case, the bubble would mostly

form at the nick, because the 3 kT entropic contribution is

then absent, so the mechanism of Yan and Marko (21) gives

for our case a limit to the elastic energy of 11 � 3 ¼ 8 kT,

close to what we observe.

In future experiments, we will independently examine the

elastic energy of the nicked DNA, by replacing the protein

with something stiff. In the other limit, we can think of soft-

ening the protein (or hardening the DNA) so that the protein

becomes the elastic energy limiting structure. It would then

be possible to measure the work necessary to locally unfold

the protein (i.e., pull out a part of the polypeptide chain).

We stress once again that ours is a thermodynamic

measurement of the free energy difference between mono-

mers and dimers, which we denote by Fel. Most of Fel is

elastic in nature, meaning that it originates from deforming

parts of this polymeric construct (the DNA spring and/or

the protein) with respect to the unconstrained equilibrium

conformations of the protein and DNA. However, there are

also other contributions; for example, the entropy of the

relaxed DNA in the dimer is different from the entropy of

the isolated DNA, due to the excluded volume. In fact,

a precise partitioning of Fel into elastic and other contribu-

tions is probably ambiguous. Ultimately, both the monomer

and the dimer states represent in fact many states, which can

only be adequately described microscopically through an

appropriate statistical mechanics model of the DNA-protein

complex. Our basic observation, though, is that the free

energy difference between monomers and dimers, Fel, is

essentially governed by the degree of hybridization of the

DNA spring, hence Fel reflects mostly the elastic energy

introduced into the monomers by the molecular spring.

The dimerization mechanism provides a very sensitive tool

to measure elastic energies, because of the exponential rela-

tion between the quantity measured (Keq) and Fel (Eq. 3).

This is visible in the remarkable measurements of Fig. 7,

where we pick up a 0.2 kT modulation of the elastic energy

due to the 10-bp periodicity of the DNA helix. This represents

yet another interesting mechanical feature of this molecule.

To conclude, we have presented a molecular system where

an externally controlled elastic energy drives a polymeriza-

tion process. The elastic energy of the monomers in this

construction appears to be limited by the formation of

a kink (denaturation bubble) in the DNA spring, consistent

with the cyclization experiments (22) and the theory (21).

This, however, depends on the relative stiffness of the

protein and the molecular spring. With a softer protein, or

a stiffer spring, one could explore the mechanical response
Biophysical Journal 96(6) 2344–2352
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of the protein instead. The polymerization process exhibited

by this artificial molecular system is analogous to domain

swapping (4), which is one mechanism of polymerization

in the cell, and experiments with the molecular springs

may in the future contribute to explore the energetics of

such systems.
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