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Abstract
Neisseria meningitidis is a Gram-negative pathogenic bacteria responsible for bacterial meningitis
and septicemia. Porins are the most represented outer membrane proteins in the pathogenic
Neisseria species, functioning as pores for the exchange of ions, and are characterized by a
trimeric β-barrel structure. Neisserial porins have been shown to act as adjuvants in the immune
response via activation of B cells and other antigen-presenting cells. Their effect on the immune
response is mediated by upregulation of the costimulatory molecule B7-2 (CD86) on the surface
of antigen-presenting cells, an effect that is dependent on Toll-like receptor (TLR)2 and MyD88,
through a cascade of signal transduction events mediated by direct binding of the porin to the
TLR2–TLR1 heterodimer. This article summarizes work carried out investigating the mechanisms
of the immune stimulating capacity of the neisserial porins (specifically meningococcal PorB),
emphasizing cellular events involved in antigen-presenting cell activation and induction of
expression of cell surface molecules involved in the immune response.
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For the past 15 years, our laboratory has been investigating the immune-stimulating capacity
of the major outer membrane protein of Neisseria meningitidis, termed PorB. We have
characterized this ability, identified the pattern-recognition receptor, Toll-like receptor
(TLR)2, as the mediator of this ability, and have been able to use the protein as an immune
adjuvant in potential vaccine preparations. This type of activity fulfills the function of
Charles Janeway’s description of the “immunologist’s dirty little secret” [1], where
immunogens contained contaminants that enhanced their immunogenicity. These
‘contaminants’ were always bacterial components that many investigators have subsequently
demonstrated to be TLR ligands, whose adjuvant activity was based on the induction of
‘signal 2’ or enhanced costimulatory activity similar to the mechanism of PorB, which we
shall describe in this article.
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Neisserial porins & immune adjuvanticity
Approximately 60% of the outer membrane protein content of pathogenic Gram-negative
Neisseria consists of porin [2]. In the gonococcus these are termed protein IA (PIA) or IB
(PIB), and for the meningococcus PorA (class 1 protein) or PorB (class 2 or 3 protein) [2].
There is significant structural and functional homology amongst Neisserial porins [3–8] and
amongst other Gram-negative porins [8,9]. The structure of each porin monomer is a 16-
strand β-barrel fold that associates to form the native trimer [8], which acts as a pore
allowing the passage of ions and solutes [10,11].

As the major surface-exposed components of the outer membrane of Neisseria consists of
porin, it has been investigated as a potential anti-Neisserial vaccine candidate. Studies
indicate that the Neisserial porin can induce an immune response in humans and animals in
the absence of exogenous adjuvants [12–15]. This led, early on, to investigations into
whether the porins could act as immune adjuvants for other poorly immunogenic substances,
such as peptides [16,17], as well as alter the immune response to antigens such as capsular
polysaccharide (CPS) from a T-cell-independent to a T-cell-dependent response [17–22]. A
summary of the properties of the Neisserial porins is presented in BOX 1.

To examine the mechanism of the Neisserial porins immune adjuvant activity, in the late
1990s, we began a series of studies to investigate the ability of Neisserial porins, in
particular, meningococcal PorB, to stimulate immune cells. Initial studies in our laboratory
demonstrated that Neisserial porins can activate murine B cells by upregulating MHC class
II and the co-stimulatory ligand B7-2 (CD86), but not B7-1 (CD80) [23]. In addition, porins
from Neisseria was shown to induce B-cell proliferation and secretion of immunoglobulin,
which were enhanced by coincubation with CD40 ligand [24]. The upregulation of CD86 is
essential to the adjuvanticity of porin in vivo, since the administration of anti-CD86
monoclonal antibodies in conjunction with porin conjugated to group C meningococcal CPS
greatly diminishes the anti-CPS response in mice [25]. The question then became, how are
Neisserial porins activating the immune system, specifically antigen-presenting cells? Our
findings revealed that neisserial porins were recognized and induced signaling through the
recently discovered pattern-recognition receptors, TLRs, specifically TLR2. We shall briefly
review TLRs later in this article to better understand this phenomena.

Box 1. Characteristics of neisserial porins

• Major Neisseria outer membrane protein, making up more than 60% of the outer
membrane protein contents

• Involved in solute diffusion, especially sugars

• Gonococci: protein IA or IB; Meningococci: Neisseria meningitidis protein A
(class 1) and Neisseria meningitidis protein B (class 2 or 3)

• Minimal antigenic variability

• Significant homology among themselves and members of the Gram-negative
porin superfamily

• Investigated as potential vaccines candidates

• Immune adjuvant activity and used as vaccine adjuvants in multiple
investigative vaccines

• Adjuvant activity mediated by induction of CD86 expression on antigen-
presenting cells, mediated by Toll-like receptor 2/MyD88
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Toll-like receptors
Toll-like receptors are a recently described set of innate immune receptors that recognize
structures common to many different pathogens and to some endogenous molecules. Their
discovery was based on homology to the Drosophila melanogaster ortholog protein, Toll.
Toll is required in the fruit fly for proper embryonal development [26]. Moreover, flies that
lack Toll are more susceptible to infection by Aspergillus [27]. This suggested that Toll and
related proteins may be important in innate immunity to pathogens. This led to the discovery
of the mammalian TLRs [28]. There are currently 12 murine TLRs and 11 human TLRs
[29,30]. The first TLR with a described function in mammals was TLR4, the signal-
transducing component of the lipopolysac-charide (LPS) binding and signaling complex. For
many years investigators knew that LPS can bind to the
glycosylphosphatidylinositolanchored surface protein, CD14, but as there was no
cytoplasmic portion of the molecule, the method by which LPS would induce cellular
stimulation was a mystery. Subsequently, the defect in a specific murine strain that is
unresponsive to LPS, C3H/HeJ, was found to be a mutation in the cytoplasmic tail of TLR4,
thus, associating this molecule with LPS induction of cellular activation and cytokine
release, as seen in endotoxin-mediated events (i.e., shock) [31]. This led to the search for
ligands recognized by the other TLRs.

There is a set of common ligands identified for most of the TLR molecules [29]. The first
described was LPS. Interestingly, it was originally mistakenly shown that TLR2 was the
signaling molecule responsible for LPS-mediated effects [32]. However, it is now known
that this was owing to a lack of purity of the LPS preparations owing to lipoprotein
contamination, and these latter molecules were the actual ligands for TLR2 [33,34]. Purified
preparations of LPS can not signal through TLR2, but can signal through TLR4 [34]. Other
TLR4 ligands include lipid A analogs [35], taxol [36], mycobaterial components [37],
Aspergillus hyphae [38], cryptococcal capsule [39], respiratory syncytial virus protein F
[40], and endogenous proteins such as heat shock protein [41,42] and fibronectin [43].
dsRNA has been shown to be a ligand for TLR3 [44], bacterial flagellin for TLR5 [45], the
antiviral compounds imidazoquinolines for TLR7 and TLR8 [46], and bacterial CpG DNA
for TLR9 [47].

TLR2 ligands & specificity
Interestingly, ligand recognition and signaling is a little more complicated when it comes to
TLR2. Aderem first suggested that TLR2 mainly recognizes its ligands as a heterodimer
[48] with either TLR1 [49] or TLR6 [50]. Signaling does not appear to occur with TLR2
homodimers. This was demonstrated experimentally by Ozinsky et al., when using CD4–
TLR2 cytoplasmic domain (TLR–IL-1 Receptor [TIR domain]) fusion proteins. Ozinsky
found that TLR2 TIR domain dimerization by anti-CD4 antibody treatment of these
constructs did not induce downstream signaling [48]. This is in contrast to the recognition of
ligands by other TLRs, where homodimerization is adequate to induce downstream effects,
including cell signaling. The implication of the use of TLR2 heterodimers with other TLRs
for ligand recognition is significant, as it broadens the family of TLR2-dependent ligands.
TLR1/TLR2 heterodimers recognize a variety of bacterial lipopeptides, including the 19-
kDa mycobacterial lipoprotein, [51], meningococcal lipoprotein [49], and the synthetic
lipoprotein structure, N-palmitoyl-S-[2,3-bis (palmitoyloxy)-(2RS)-propyl]-[R]-cysteinyl-
[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysine or tripalmitoyl-propyl CysSerLys4
(Pam3CSK4) [50]. TLR6/TLR2 heterodimers recognize mycoplasma lipoproteins [50] and
peptidoglycan [52]. One major structural difference between these two groups of molecules
(TLR1/2 specific vs TLR2/6 specific) that may account for this differential recognition is
that most bacterial lipoproteins and Pam3CYSK4 are triacylated while mycoplasma

Wetzler Page 3

Future Microbiol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



lipoproteins and peptidoglycan can be diacylated [50,53,54]. This data was confirmed by the
use of TLR1, TLR2 or TLR6 knockout (KO) mice [53,55]. Data for the specificity of other
ligands is less compelling and may even be contradictory. For example, Flavell et al., using
TLR1 or TLR2 knockout mice, have shown that TLR1 and TLR2 are necessary for signaling
induced by the Borrelia burgdoferi outer surface lipoprotein (OspA), which is also
triacylated [54], while Ariditi et al., using TLR6 dominant negative transfectants, have
shown that OspA recognition requires TLR6 [56]. The contrasting data maybe due to the
different methods used by these two groups.

Neisserial porins & TLR2-/MyD88-mediated events
As stated previously, our group has demonstrated that the Neisserial porins the and potent
immune adjuvants and induce antigen-presenting cell (APC) activation, increase MHC class
II and CD86 surface expression and inducing the proliferation of B cells [23], and
maturation of dendritic cells (DCs) [57], and activate macrophages. This effect is mediated
by TLR2 and myeloid differentiation primary response gene 88 (MyD88) [58]. This immune
adjuvant effect is due to the induction of CD86 surface expression [25]. The relationship of
TLR-induced activation of APCs and immune adjuvanticity is consistent with Janeway’s
original observation that many microbial products are potent vaccine adjuvants and likely
work through TLRs [59]. Akira has also described TLRs as adjuvant receptors [60]. Other
investigators have identified Gram-negative porins, mainly from Salmonella and
Haemophilus, that also activate APCs via a TLR2-related mechanism [61–64]. This is
consistent with the finding we have for neisserial porins, and the fact that the porins are
indeed, microbial ‘patterns’ recognized by the ‘pattern-recognition receptors’, TLRs.

Prior to our understanding that Neisserial porins, including PorB, transduce their effects via
TLR2, we began early investigations into the signal transduction and transcription factor
activation ability of PorB, which we shall summarize later. We eventually demonstrated that
these signal transduction phenomena and nuclear factor (NF)-κB nuclear translocation by
PorB were all mediated by MyD88 and TLR2, as described later and in multiple
publications [57,58,65,66]. This was performed mainly using NF-κB-specific reporter gene
constructs expressing luciferase transfected into cells, which may also express TLR2.

PorB induction of APC signal transduction & cellular activation
We first investigated the signal transduction events induced by PorB from Neisseria
meningitidis in murine B cells, and by the use of inhibitors of these pathways, we began to
establish the mechanism by which this bacterial major outer membrane protein induces
CD86 upregulation and the proliferation of these cells [67]. PorB was able to induce: protein
tyrosine kinase (PTK) activity; the phosphorylation of Erk1 and Erk2; and IκB-α
phosphorylation, leading to NF-κB nuclear translocation in B cells in a TLR2-dependent
manner. PorB-induced NF-κB nuclear translocation was not dependent on either PTK or
Erk1/2 activities. Moreover, B-cell proliferation was dependent on PTK activity and not
Erk1/2 activation. These published studies demonstrated that PorB acts through TLR2 as a
B-cell mitogen, triggering tyrosine phosphorylation of various cellular proteins that are
involved in proliferation and CD86 expression, as well as the phosphorylation of Erk1/2,
which is not necessary for CD86 upregulation or for the proliferation of B cells [67]. Further
examination of signal transduction events and the role of various MAPKs on PorB induction
of CD86 expression in macrophages are presented later.

We next examined the ability of PorB to activate other cell types, including the induction of
CD86 expression and the production of cytokines, as well as the signal transduction events
involved in such phenomena. We next investigated the signal transduction events induced by
PorB in murine bone-marrow derived macrophages. By this time, multiple investigators
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demonstrated that macrophage activation by TLR ligands leads to multiple signal
transduction events, including MAPK activation, culminating in surface molecule
upregulation and cytokine production, thus creating a bridge between the innate and
adaptive immune systems [68–70]. Using specific inhibitors, we examined the involvement
of the MAPK pathways in CD86 expression and cytokine production induced by TLR2 and
TLR4 agonists. p38 inhibition prevents CD86 upregulation induced by the TLR4 ligand
meningococcal lipo-oligosaccharide (LOS), but not by the TLR2 ligands PorB and
Pam3CSK4, while JNK inhibition prevented CD86 upregulation induced by PorB and
Pam3CSK4, but not by LOS. Erk inhibition had a minimal effect on PorB or LOS induction
of CD86, similar to our findings with B cells [67]. The inhibition of any of these MAPKs
reduced IL-6 and TNF-α secretion by either PorB and LOS treated macrophages [UNPUBLISHED

DATA]. These unpublished data indicated that TLRs (especially TLR2 and TLR4) use
differential signaling pathways to induce CD86 upregulation, but share some common
MAPK pathways involved in cytokine production, thus providing a greater understanding of
the link between the innate and adaptive immune response. The effect of PorB on antigen
presenting cell signaling is shown in Figure 1.

Due to Neisserial porin’s ability to activate B cells and potentiate immune responses, we
hypothesized that porin also employs the potent immune stimulatory function of DCs. We
examined the ability of purified N. meningitidis PorB to induce the maturation of murine
splenic and bone marrow-derived DC. PorB treatment induced DC maturation, as
demonstrated by increased surface expression of CD86 and MHC class I and II molecules.
In addition, PorB not only enhanced the allostimulatory activity of DCs, but also augmented
the ability of DCs to stimulate T cells in an antigen-specific manner. Importantly, PorB-
matured DCs secreted the inflammatory cytokine IL-6, which may have implications for the
adjuvant property of porin. The induction of IL-6 by PorB is also significant because IL-6 is
one of a number of cytokines produced during infection with N. meningitidis, and may be
involved in the inflammatory process observed during infection and disease. We previously
demonstrated the requirement of MyD88 and TLR2 for PorB-induced B-cell activation, and
had similar findings with regards to DCs. When treated with PorB, DCs from TLR2 or
MyD88 KO mice did not have increased expression of CD86, MHC class II nor have an
increased induction of IL-6, as seen with DCs from wild-type (WT) mice. This demonstrated
that MyD88 and TLR2 were also essential for PorB-induced DC activation [57].

PorB directly binds to TLR2
We have gathered enough evidence that PorB mediates its cell-stimulating ability via TLR2
and MyD88, but up until this point, no TLR2 ligand had been shown to actually bind to
TLR2. We investigated the interaction of PorB with TLR2 and described the direct binding
of a bacterial protein to TLR2 for the first time. Using flurochrome-labeled PorB, we
demonstrated its binding to TLR2 when purified TLR2 was bound to ELISA plates. We then
demonstrated that PorB could bind to TLR2, in both a cell free system in vitro when it is
over-expressed, and also on the surface of human embryonic kidney (HEK) 293 cells. We
also demonstrated that TLR2-mediated binding of PorB is directly related to cellular
activation. In addition, using HEK 293 cells expressing the chimeric TLR2/TLR1 and
TLR2/TLR6 complexes, we report the selectivity of PorB binding to the TLR2/TLR1
heterodimer, which is required for initiating signaling in transfected HEK 293 and murine B
cells. Together, these data provide new evidence that TLR2 recognizes PorB through direct
binding, and that PorB-induced cell activation is mediated by a TLR2/TLR1 complex
[65,71].

To further characterize PorB interactions with TLR2/TLR1, we then performed a set of
inhibition studies to determine whether binding of one TLR2 ligand affects the binding of
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another. We had initially performed binding competition studies using unlabeled PorB and
had demonstrated that it can inhibit the binding of flurochrome-labeled PorB to HEK cells
expressing TLR2. We then expanded our studies to other TLR2 ligands, such as
Pam3CSK4, (TLR2/TLR1) and Pam2CSK4 (TLR2/TLR6), and demonstrated that PorB
binding to TLR2 is inhibited by excessive amounts of Pam3CSK4 [65]. We also
demonstrated the same phenomena using native murine B cells [WETZLER LM, UNPUBLISHED

DATA]. We have further examined whether Pam2CSK4, the TLR2/6 ligand, can inhibit PorB
binding to TLR2 by incubating labeled PorB alone or in the presence of 100 µg/ml of
Pam2CSK4 with 293-TLR2 cells. We demonstrated a nonsignificant reduction in
fluorescence-associated PorB to the cell surface, indicative of a lack of competition between
these two ligands. We hypothesize that there could be differences in the specific binding site
on TLR2 for TLR2/1 (PorB and Pam3CSK4) and TLR2/6 ligands (Pam2CSK4). However, a
specific role of the different coreceptors cannot be excluded. The mechanism of TLR1
recruitment by Pam3CSK4 has been recently elucidated but little is known about the
mechanism by which TLR6 associates into a functional heterodimer with TLR2 [72].
Although we have shown that purified PorB is free of LOS contamination [73], we have also
examined whether Neisserial LOS–a TLR4 ligand – might affect PorB binding to TLR2, and
whether LOS fails to prevent PorB binding to TLR2.

As a control for expression of functional TLR2 on these cells and for ligand activity, HEK
cells were cotransfected with TLR2 and a luciferase-NF-κB reporter construct as described
previously [58,74] luciferase was measured activity in response to various TLR2 ligands,
including PorB, Pam3CSK4 and Pam2CSK4. In addition, we used TNF-α (50 ng/ml) as a
non-TLR ligand positive control. The cells expressing TLR2 responded similarly to
Pam3CSK4, Pam2CSK4 and PorB. HEK cells transfected with a control plasmid, HEK
pcDNA, failed to respond to any TLR2 ligand but responded to TNF-α. Furthermore, the
cells failed to respond to the TLR4 ligand, LPS [UNPUBLISHED DATA].

PorB requires TLR2/TLR1 heterodimers for optimal function
We have published data demonstrating that PorB induced cell activation is mediated by
TLR2 and MyD88 [58]. As stated previously, more recent work has now demonstrated that
this activation via TLR2 occurs in association with TLR1 [65]. In this work, we
demonstrated that PorB bound to HEK transfects cells expressing TLR2/TLR1 and induces
cell activation, as determined by IL-8 secretion and NF-κB-mediated luciferase activity. We
have also determined that murine B cells from WT mice respond to PorB by upregulating
the costimulatory surface molecules CD86, CD40 and MHC class II [58]. We have
subsequently examined the role of TLR2, TLR1 or TLR6 in PorB induction of B cell
cytokine production. We first determined the level of IL-6 production in response to PorB in
B cells from WT mice as compared with B cells from TLR2 KO mice. We have
demonstrated that the IL-6 failed to be induced by PorB in the absence of TLR2, although
the coreceptors TLR1 and TLR6 were present on both types of B cells. Similar results were
obtained when induction of B cell TNF-α production was measured [WETZLER LM, UNPUBLISHED

DATA].

We then examined the role of TLR1 in the PorB induction of IL-6 in B cells. B cells from
TLR6 KO mice responded to PorB and to Pam3CSK4, both being TLR2/TLR1 ligands and
hence not affected by the lack of TLR6. Furthermore, these cells responded to LOS by
producing high amounts of IL-6. B cells from TLR1 KO mice produced a much lower
amount of IL-6 in response to either PorB or Pam3CSK4, indicating that the deletion of
TLR1 affects cell activation mediated by these ligands. TLR4 KO B cells produced IL-6 in
response to all ligands, except for Neisserial LOS, a known TLR4 ligand. All the cells
responded greatly to heat-killed N. meningitidis, as these organisms can stimulate B cells via
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either TLR2 or TLR4. Interestingly, we found that PorB was still able to induce a small
amount of IL-6 production even in the absence of TLR1, as opposed to Pam3CSK4, which
could not induce any IL-6 production in these B cells. This indicates that the induction of
cytokine production by PorB may not be dependent on the presence of TLR1, but does
appear to require the presence of TLR2. Whether a TLR2 homodimer or a TLR2
heterodimer with another TLR is needed for PorB induction of IL-6 is unclear and deserves
further study, as does investigation of this phenomena in other cell types.

In vivo demonstration of PorB adjuvant activity & the role of TLR2
We have determined that the ability of PorB to induce immune stimulation is dependent on
its interaction with TLR2 and TLR1, as well as the subsequent TLR-dependent activation of
immune cells and epithelial cells expressing such receptors. We have published evidence of
the actual adjuvant activity of PorB demonstrating that it can enhance the humoral immune
response against bacterial CPS [25], bacterial oligosaccharides derived from LPS [75], and
protein test antigens such as ovalbumin (OVA) [71]. Moreover, we have shown that the
PorB immune enhancement activity is dependent on an increased CD86 expression of APCs
[23,25], which we subsequently demonstrated to require TLR2 and MyD88 [58].

Based on this evidence, we have hypothesized that TLR2 plays a role in the adjuvant
activity of PorB. To test our hypothesis, we compared the adjuvant effect of PorB on the
induction of immune responses to a prototype antigen, OVA, in the presence or absence of
TLR2. We immunized wild-type mice and TLR2 KO mice with a mixture of PorB and
OVA, three times at 2-week intervals, for a total of three immunizations. Sera were collected
prior to each immunization and 4 weeks after the final immunization. Control mice were
immunized with OVA alone. OVA was obtained from commercial chicken egg whites by
freeze-drying followed by lyophilization and resuspension of the total proteins in sterile
phosphosphate-buffered saline, as previously described [57].

Mice immunized with OVA (without additional adjuvants) responded by producing anti-
OVA IgM, and the level in wild-type C57Bl/6 mice was similar to those levels obtained in
OVA immunized TLR2 KO mice, indicative of a TLR2-independent response to this
antigen. When we examined the response of TLR2 KO mice to immunization with OVA
plus PorB as an adjuvant, we detected little or no variation of the specific anti-OVA IgM in
this group, indicating that IgM production was likely due to the baseline production of IgM
to OVA, which did not require an adjuvant.

However, when we then determined the levels of specific anti-OVA IgG in WT mice and
TLR2 KO mice, we found that when PorB was used as an adjuvant, the anti-OVA IgG
concentration in the immune mice sera was ten-times greater than the anti-OVA IgG in mice
immunized with OVA alone. In support of our hypothesis of a role for TLR2 in the adjuvant
activity of Neisserial PorB, sera from TLR2 KO mice immunized with PorB/OVA had
similar low levels of anti-OVA IgG as compared with mice immunized with OVA alone.
This is the first direct evidence that the adjuvant effect of Neisserial PorB is dependent on
TLR2 expression. Anti-OVA IgG subtypes were not determined due to the paucity of sera
obtained, however further studies are planned to examine these parameters as the ratio of
IgG subtypes can be altered by the adjuvant used.

We have continued to use PorB as a vaccine adjuvant in the induction of protection against
actual infectious agents. We have examined the role of PorB as an immune adjuvant using a
T-cell-independent antigen, namely Francisella tularensis LPS, and the ability of PorB to
enhance protection against murine infection with Francisella. BALB/c mice were
immunized with LPS isolated from the F. tularensis subsp. holarctica live vaccine strain
(LVS), with or without PorB, and the antibody levels induced during the vaccination
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regimen and the level of protection against intranasal challenge with LVS were determined.
Antigen administered alone induced a specific F. tularensis LPS IgM response that was not
maintained long-term and which conferred protection to only 25% of the mice when
challenged 4 weeks after the final immunization. By contrast, F. tularensis LPS
administered in combination with Neisserial PorB induced consistent levels of specific IgM
throughout the immunization, and increased the proportion of surviving mice to 70% [75].
Further unpublished observations demonstrated a similar effect when the vaccine was
administered intranasally, including enhanced induction of both anti-LPS IgM and IgG, and
improved protection of LVS pulmonary infection as compared with mice immunized with
LPS alone [CHIAVOLINI D, WETZLER, LM, UNPUBLISHED DATA]. This is an extremely important
observation as it demonstrates the viability of the use of PorB as an adjuvant when
administered intranasally, which may be more pertinent route of delivery for protection from
mucosal or pulmonary infections. Others have also demonstrated the use of Neisserial porins
as potent immune adjuvants when given intranasally [76–80], thus confirming the viability
of this route of immunization and PorB adjuvant activity.

Conclusion
As described in this review, Neisserial porins, as characterized by PorB, bind to TLR2/
TLR1. Through this interaction, they have a set of pleiotropic effects on TLR2/TLR1-
expressing cells, inducing cell activation, enhancing MHC class II and CD86 surface
expression, and inducing significant production of proinflammatory cytokines. We have
gathered experimental evidence that this induction of CD86 is involved in the adjuvant
activity of porins. It is likely that cytokine induction and cell proliferation, including the
induction of increased B-cell immunoglobulin secretion, are also involved in the porins’
immune enhancing activity. Moreover, we have begun to dissect the use of intracellular
signal transduction pathways that are involved in the porins’ ability to induce CD86, cell
proliferation and cytokine production, mainly demonstrating the importance of the MAPK
Jnk for TLR2-mediated events. Our increased knowledge of the innate immune function of
PorB as summarized in this article, will enhance our ability to use this protein as a vaccine
adjuvant, and will add to our understanding of innate immune responses to Gram-negative
bacteria that contain these porins.

Future perspective
We have shown that PorB has a significant immune-stimulating capacity and can act as an
vaccine adjuvant. The mechanism of its activity is likely mediated by TLR2 and the innate
immune system. PorB has been used in experimental vaccines, but its adjuvant activity
needs to be compared with other known vaccine adjuvants (i.e., alum) and investigative
adjuvants, whether they are TLR ligands or not (including CpG DNA, monophosporyl lipid
A, QS-21 and saponins). Moreover, we have evidence that PorB stimulates immune cells in
a more robust manner compared with other TLR2 ligands, and its adjuvant capacity needs to
be compared with other TLR2 ligands that are potential adjuvants, like Pam3CSK. The
adjuvant capacity of other Gram-negative porins also needs to be examined as this may
allow Gramnegative organism-specific vaccine adjuvants to be developed. Finally, beyond
the adjuvant activity of PorB, the role of PorB and its recognition by TLR2 in innate
immunity towards Neisserial infections, along with the induction of Neisserial-specific
inflammation, needs to be further characterized. Similar studies can also be performed for
other Gram-negative organisms containing similar molecules as part of the Gram-negative
porin superfamily.

Executive summary
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Neisserial porins & immune adjuvanticity
• Neisserial porins (especially meningococcal PorB) are immunogenic, with a

need for additional adjuvants.

• Meningococcal PorB can activate B cells, dendritic cells and macrophages,
increasing expression of MHC class II and the T-cell costimulatory molecule
CD86.

• An increase in CD86 on antigen-presenting cells induced by PorB is likely
related to its immune adjuvant activity.

• PorB induces B-cell proliferation and immunoglobulin secretion.

Toll-like receptors
• Toll-like receptors (TLRs) are pattern-recognition receptors essential to innate

and adaptive immunity.

• There are 12 murine TLRs and 11 human TLRs.

• TLR4 is the endotoxin receptor (with MD2).

• dsRNA has been shown to be a ligand for TLR3, bacterial flagellin for TLR5,
the antiviral compounds imidazoquinolines for TLR7 and TLR8, and bacterial
CpG DNA for TLR9.

TLR2 ligands & specificity
• TLR2 forms heterodimers with TLR1 or TLR6 to recognize their ligands.

• TLR2 ligands include di- and tri-acylated lipoproteins, peptidoglycans and
bacterial porins.

Neisserial porins & TLR2/MyD88-mediated events
• PorB induction of antigen-presenting cell signal transduction and cellular

activation.

• PorB induces phosphotyrosein kinase activity, ERK activity and NF-κB nuclear
translocation.

• PorB induces B-cell proliferation. This is dependent on phosphotyrosein kinase
activity but not Erk1/2 activation.

PorB directly binds to TLR2
• PorB binds to purified TLR2 or TLR2/1 dimers, but not TLR2/6 dimers.

• The TLR2/1 ligand Pam3CSK4 inhibits PorB binding to TLR2, but the TLR2/6
ligand Pam2CSK4 does not inhibit binding.

PorB requires TLR2/TLR1 heterodimers for optimal function
• B cells from TLR1 knockout mice had a significantly diminished response to

PorB (as measured by IL-6 production) as compared with B cells from wild-type
mice.

• Response to PorB was similar for B cells from TLR6 knockout mice and B cells
from wild-type mice (as measured by IL-6 production).

• The presence of TLR1 enhanced PorB binding to TLR2-transfected HEK cells,
while TLR6 cotransfection had no effect.

• The presence of TLR1 enhanced the PorB induction of IL-8 by TLR2-
transfected HEK cells, while TLR6 cotransfection had no effect.
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In vivo demonstration of PorB adjuvant activity & the role of TLR2
• PorB enhancement of anti-ovalbumin IgG is diminished in TLR2 knockout mice

but anti-ovalbumin IgM induction was not affected.

• PorB enhances anti-Francisella tularensis supsp. holarctica lipopolysaccharide
IgG and IgM production, and enhances immunity in mice towards Francisella
turlarenisis subsp. holarctica infection.
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Figure 1. Summary of the known effects of neisserial porin PorB induced by its direct interaction
with TLR2/TLR1 heterodimers on antigen-presenting cells
B cells [67], dendritic cells [57] and macrophages [UNPUBLISHED DATA] are all activated by PorB
via TLR2. PorB induces NF-κB nuclear translocation and IkB degradation, which is not
dependent on PTK or MAPK activity (in B cells) [67]. PorB does induce MAPK
phosphoryaltion, but only Jnk is required for CD86 upregulation, p38 appears to be more
important for TLR4-mediated induction of CD86 surface expression in macrophages. PTKs
are involved in B-cell and macrophage proliferation [67], while MAPK and not PTK activity
appears to be required for the induction of macrophage proinflammatory cytokine
production, including IL-6, IL-12 and TNF.
NF: Nuclear factor; Por: Neisseria meningitidis protein; PTK: Protein tyrosine kinase; TLR:
Toll-like receptors.

Wetzler Page 15

Future Microbiol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


