
Intention-to-Treat Analysis in Cluster Randomized Trials with
Noncompliance

Booil Jo*,
Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305-5795

Tihomir Asparouhov, and
Muthén & Muthén

Bengt O. Muthén
Graduate School of Education & Information Studies, University of California, Los Angeles
Booil Jo: booil@stanford.edu

SUMMARY
In cluster randomized trials (CRT), individuals belonging to the same cluster are very likely to
resemble one another, not only in terms of outcomes, but also in terms of treatment compliance
behavior. Whereas the impact of resemblance in outcomes is well acknowledged, little attention
has been given to the possible impact of resemblance in compliance behavior. This study defines
compliance intraclass correlation as the level of resemblance in compliance behavior among
individuals within clusters. On the basis of Monte Carlo simulations, it is demonstrated how
compliance intraclass correlation affects power to detect intention-to-treat (ITT) effect in CRT. As
a way of improving power to detect ITT effect in CRT accompanied by noncompliance, this study
employs an estimation method, where ITT effect estimates are obtained based on compliance-
type-specific treatment effect estimates. A multilevel mixture analysis using an ML-EM
estimation method is used for this estimation.
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1 Introduction
In conducting randomized field experiments, individual-level randomization is not always
possible for practical and ethical reasons. Two examples are situations in which a number of
patients belong to each doctor in primary care settings (e.g., [1]), and in school settings, a
number of students belong to each teacher (e.g., [2]). In these situations, it is problematic
(e.g., administrative burden, teacher/parent complaints, ethical reasons) to assign individuals
to different treatment conditions ignoring their cluster membership (i.e., physician, teacher).
Therefore, cluster randomized trials (CRT) have been widely used in practice, treating a
cluster of individuals as the unit of randomization. Although practical/ethical reasons are the
main motivation, there is also a statistical advantage to employing CRT. That is, by
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assigning individuals that are very likely to interact to the same condition, each treatment
condition is less likely to be contaminated by other conditions, therefore making the
comparison between different treatment conditions more valid [3]. As a result of cluster-
level randomization, individuals in the same cluster are very likely to resemble one another,
not only in terms of pretreatment characteristics, but also in terms of treatment receipt
behavior and posttreatment outcomes.

If resemblance among individuals is ignored (i.e., data are treated as if they were from
individual-level randomized trials), small variations within the same cluster may result in
underestimated standard errors, exaggerating the statistical significance (i.e., results in
incorrect confidence intervals and significance levels) of the effect of treatment assignment,
which is a cluster-level variable. An honest (valid) way of analysis in this situation is to take
into account increased variance across clusters (due to reduced variance within clusters). For
proper analyses accounting for clustered data structures, multilevel analysis techniques
developed in various statistical frameworks can be employed (e.g., [4–9]). In designing
CRT, it is critical to adjust expected power and required sample sizes assuming that the data
will be properly analyzed taking into account within-cluster resemblance among individuals
(e.g., [10–11]).

Whereas a good amount of attention has been paid to handling resemblance among
individuals in terms of posttreatment outcomes in CRT, little attention has been given to
handling resemblance among individuals in terms of treatment compliance behavior.
Individuals with the same cluster membership share the environment of the cluster they
belong to, resulting in resemblance among individuals in terms of compliance behavior. For
example, some doctors or teachers, which represent cluster units, may more eagerly
encourage their patients or students to comply with the given treatment. A recent study [12]
called attention to this problem, demonstrating the necessity and possibility of estimating
compliance-specific treatment assignment effects considering both CRT and noncompliance.
Whereas their study focused on compliance-specific treatment assignment effects (e.g.,
[13]), the main interest of the current study is in investigating how resemblance among
individuals in compliance behavior influences the intention-to-treat (ITT) effect and whether
the situation can be improved by considering both CRT and treatment noncompliance in the
analysis.

Standard ITT analysis is commonly used in analyzing data from randomized trials to
estimate an overall effect of treatment assignment (i.e., effectiveness) by comparing groups
as randomized. In analyzing data from CRT, the same analysis may be used with an
adjustment for the design effect, or multilevel analysis techniques can be employed
accounting for resemblance among individuals with the same cluster membership. Given
that we are not interested in compliance-type-specific treatment effects (such as for
compliers) and that the effect of cluster-level randomization can be taken into account in the
analysis, it is unclear whether we need to worry about the effect of treatment noncompliance
in estimating ITT effect in CRT. This study shows how resemblance in compliance behavior
within clusters can affect the evaluation of ITT effect in CRT and suggests the use of
analyses that consider both clustering and noncompliance.

2 Motivating Example: JHU PIRC Family-School Partnership (FSP)
Intervention Study

The Johns Hopkins University Preventive Intervention Research Center’s (JHU PIRC)
Family-School Partnership (FSP) intervention trial [2], which was used as a prototype for
the Monte Carlo simulations reported in this study, was designed to improve academic
achievement and to reduce early behavioral problems of school children. First-grade
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children were randomly assigned to the intervention or to the control condition, and the unit
of randomization was a classroom (9 classrooms were assigned to the intervention condition,
and another 9 classrooms were assigned to the control condition). Focusing on the shy
behavior outcome, the intraclass correlation was about 0.125 at the 6-month follow-up
assessment. It is well known that, unless properly handled in the analysis, intraclass
correlation in posttreatment outcomes may lead to misestimation of variances, exaggerating
statistical significance of treatment effects in CRT.

In addition to the fact that the unit of randomization was a classroom, another main
complication in the JHU PIRC trial was poor compliance of parents. In the FSP intervention
condition, parents were asked to implement 66 take-home activities related to literacy and
mathematics. It was expected that the intervention would not show any desirable effects
unless parents report a quite high level of completion (over-reporting of completion level
was very likely given that parents self-reported). Compliance behavior was observed in the
FSP intervention condition, but not in the control condition, since parents assigned to the
control condition were not invited to implement intervention activities. When the receipt of
intervention is defined as completing at least two thirds of activities, about 46% of children
in the intervention condition properly received the intervention. Further, parents’
compliance with the intervention activities substantially varied depending on the classroom
their children belonged to. Table 1 shows proportions of students whose parents completed
at least two thirds of intervention activities.

Varying compliance rates across clusters indicate that parents belonging to the same
classroom tend to be similar in terms of compliance behavior (intraclass correlation of
compliance is about 0.377). One possible explanation for this variation would be that, in
some classrooms, teachers (or parents) are more motivated than in other classrooms (e.g., in
Table 1, 100% of parents in one classroom properly implemented the intervention
treatments, whereas in another classroom, only 5% did). The question here is how
resemblance in compliance will affect the estimation of ITT effect.

3 Common Setting: CRT with Noncompliance
Assume a CRT setting in line with the JHU PIRC trial, where some study participants do not
comply with the given treatment. Individual i (i = 1, 2, 3,…, mj) belongs to cluster j (j = 1, 2,
3,…, G). The assignment status Zj denotes the cluster-level randomization status, and Zj = 1
if cluster j is randomly assigned to the treatment condition, and Zj = 0 if assigned to the
control condition. The observed treatment receipt status Dij = 1 if individual i in cluster j
receives the treatment, and Dij = 0 otherwise. Let Dij(1) denote the potential treatment
receipt status for i when Zj = 1, and Dij(0) when Zj = 0. In this paper, we assume that
treatment receipt in the treatment condition is measured without error. However, this
assumption can be questionable in some trials, especially when study participants self-report
their level of treatment receipt.

In line with the JHU PIRC trial, it is assumed that study participants were prohibited from
receiving a different treatment than the one that they were assigned to. Therefore, only two
compliance types are possible based on Z and D. The latent compliance type Cij = 1 if
individual i would receive the treatment when the treatment is offered, and Cij = 0 if
individual i would not receive the treatment regardless of the intervention assignment.
According to Angrist et al. [13], these two types of individuals are compliers and never-
takers. Since there is only one type of noncomplier (i.e., never-takers), noncomplier will be
used to refer to never-taker. That is,
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Assuming these two compliance types, a continuous outcome Y for individual i in cluster j
can be expressed as

(1)

where αn is the mean potential outcome for noncompliers when Z = 0, αc is the mean
potential outcome for compliers when Z = 0, and αc − αn represents the mean shift due to
compliance. The macro-unit residual εbj represents cluster-specific effects given Z, which
are assumed to be normally distributed with zero mean and between-cluster variance . The
micro-unit residual εwij is assumed to be normally distributed with zero mean and within-
cluster variance , which is equal across clusters. The average effect of treatment
assignment for compliers is γc (i.e., CACE: complier average causal effect). It is assumed
that there is no effect of treatment assignment for noncompliers, given that noncompliers do
not receive the treatment in either condition. This assumption is often referred to as the
exclusion restriction (e.g., [13]), which is likely to hold when treatment is truly all-or-none,
in particular in blinded trials. However, the assumption may be violated in trials where
treatment is not truly all-or-none. For example, in the JHU PIRC trial, there was a large
variation in completed intervention treatment activities (range 0 to 66). Therefore, if the
amount of treatment received is dichotomized (e.g., at the median, which is about 45
activities), individuals categorized as noncompliers would partially receive the treatment if
they were assigned to the treatment condition, while they would not receive the treatment at
all if assigned to the control condition.

In the absence of covariates that predict compliance, the proportions of compliers and
noncompliers can be expressed in the empty logistic regression as

(2)

where πij is the probability of being a complier for individual i in cluster j, and β0 is the logit
intercept. The between-cluster residual ξj has zero mean and a variance of . The logit
value varies across clusters (β0+ ξj), meaning that the proportion of compliers differs across
clusters. Let πc denote the average compliance rate across all individuals. In this paper, we
assume that the correlation between compliance and outcome at the cluster level (i.e.,
between ξj and εbj) is zero. However, this assumption can be relaxed in the proposed
estimation framework that considers both noncompliance and data clustering. This
correlation may increase in some trials, for example, where clusters with higher proportions
of compliers tend to have better outcomes given treatment assignment.

3.1 Intraclass Correlations in CRT with Noncompliance
Intraclass correlation (ICC) has been widely used to represent the level of resemblance
among individuals belonging to the same cluster in terms of outcomes. As ICC increases,
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variance within clusters will decrease, resulting in inflation of variance across clusters. The
direct consequence of this variance inflation is reduced power (compared to power in
individual-level randomized trials) to detect the effect of treatment assignment, which is a
cluster-level variable in CRT. However, if this variance inflation is ignored in the analysis,
the resulting type I error rate will be incorrectly inflated.

From equation (1), the ICC coefficient in outcome Y given Z is defined as

(3)

where  denotes the between-cluster variance of outcome Y given Z. The total variance is
the sum of the between-and within-cluster variances ( ).

In addition to the conventional outcome ICC, another ICC is defined in this study to
represent resemblance among individuals belonging to the same cluster in terms of
compliance behavior. In CRT, individuals belonging to the same cluster are likely to show
resemblance not only in terms of outcomes, but also in terms of compliance behavior. The
compliance ICC represents a unique complication in CRT accompanied by treatment
noncompliance.

There are several ways to present heterogeneity across clusters in proportions [14–18]. In
line with McKelvey and Zavoina [19], the intraclass correlation coefficient in compliance
can be defined from equation (2) as

(4)

where  is the between-cluster variance (i.e., variance of ξj) and π2/3 is the variance for the
within-cluster residual in the logistic distribution. ICCC represents the degree of
resemblance in compliance among individuals belonging to the same cluster. For example,
in the FSP intervention condition in the JHU PIRC trial, the ICCC estimate is 0.37, which
reflects a substantial variation in the compliance rate across classrooms.

4 ITT Analysis Considering Clustering
Under the assumption of Stable Unit Treatment Value (SUTVA; [20–22]), each individual’s
potential outcomes are uncorrelated with other individuals’ treatment assignment status.
SUTVA is a critical assumption that makes identification of causal treatment effects
possible. When dealing with individuals nested within clusters in randomized trials,
plausibility of SUTVA is highly suspect. Cluster-level randomization plays a critical role in
making this obvious violation of SUTVA a more manageable problem by concentrating
individuals who are most likely to interact with one another in the same treatment condition.
For example, in the FSP intervention trial, the unit of randomization was a classroom. By
employing cluster randomization, the interaction rate among individuals across different
treatment conditions remains about the same as that observed without systematic nesting
structures (i.e., classrooms). However, interaction in the same cluster is highly likely, which
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can be handled statistically by considering resemblance among individuals with the same
cluster membership in the analysis.

4.1 Two-level ML analysis
Standard ITT analysis is commonly used in analyzing data from randomized trials to
estimate an overall effect of treatment assignment. In analyzing data from CRT, the same
analysis may be used in conjunction with multilevel analysis techniques. Since
noncompliance is not considered in this method, individual-level and cluster-level variations
in compliance behavior is not taken into account. Given that, the situation described in
equation (1) is simplified as follows. That is,

(5)

where α is the overall mean potential outcome when Z = 0, and the average effect of
treatment assignment (i.e., ITT effect) is γ. The macro-unit residual εbj is assumed to be
normally distributed with zero mean and between-cluster variance . The micro-unit
residual εwij is assumed to be normally distributed with zero mean and within-cluster
variance .

The analysis model described in equation (5) is a standard hierarchical linear model and can
be estimated with the ML estimator. A number of different algorithms are available for
obtaining the ML estimates [9]. In this paper, we used the EM algorithm [23–25]
implemented in Mplus version 5 [26].

We define a two-level ML estimate of ITT effect as

(6)

where μ̂1
2ML and μ̂0

2ML are the estimates of μ1 and μ0 based on two-level ML analysis.

4.2 Two-level ML mixture analysis
Another way to look at the ITT effect is as a combination of the treatment assignment effect
for compliers and the treatment assignment effect for noncompliers. In this approach, the
existence of noncompliance can be taken into account. Considering non-compliance may
have some impact on ITT effect estimation when information on the mixture distribution of
compliers and noncompliers is utilized in CACE estimation. The ML mixture approach is
known to be often more efficient than the IV approach in the estimation of CACE [27–28 ].
Estimation of ITT effect may also benefit from this improved efficiency if the additional
assumptions necessary to identify CACE, such as the exclusion restriction and monotonicity
[13], hold.

In the current setting we consider (i.e., individuals assigned to the control condition have no
access to the actual treatment as in the JHU PIRC trial), monotonicity is a plausible
assumption (i.e., no individuals do the opposite of what they are assigned to do). The
exclusion restriction may not hold if the treatment is not truly all-or-none, especially in non-
blinded studies. When this assumption is violated, CACE estimation is likely to benefit from
the ML mixture analysis, which mitigates the impact of violation by utilizing auxiliary
information such as from distributional heterogeneity, parametric assumptions, and
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covariates [29]. However, ITT effect estimation based on these adjusted CACE estimates in
conjunction with the exclusion restriction may result in biased results. In principle, it is
possible to relax the exclusion restriction relying on auxiliary information such as from
proper priors and covariates [30–32], although it is not well known how these methods work
in the context of CRT. In the current paper, we focus on situations where the exclusion
restriction is a plausible assumption.

To simultaneously handle data clustering, noncompliance, and interaction between these
two, the two-level ML mixture approach considers the same model described in equations
(1) and (2) in estimating the ITT effect. On the basis of the model described in equations (1)
and (2), a formal multilevel mixture analysis [33–34] using the ML estimator can be
conducted. The observed data likelihood for the treatment and the control group is different
because the compliance variable Cij is observed when Zj = 1 but it is unobserved when Zj =
0.

In the treatment group, the observed data likelihood for cluster j is described as

(7)

where f1(Yij | Cij, εbj) is the normal density function

(8)

φbj(εbj) is the normal density function for εbj

(9)

φj(ξj) is the normal density function for ξj

(10)

and the probability of compliance

(11)

In the control group, Cij is unobserved and thus the observed data likelihood is

(12)
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where f0(Yij | Cij, εbj) is the normal density function

(13)

The total likelihood function

(14)

does not have a closed form expression and to compute it we use 2-dimensional numerical
integration. By maximizing L with respect to the parameters in the model we obtain the ML
estimates. The likelihood can be maximized directly by using a general maximization
algorithm. Numerical methods can be used to compute the derivatives of L with respect to
the parameters. A more efficient method for maximizing the likelihood, however, is the EM
algorithm, which is implemented in Mplus version 5 [29]. This algorithm treats the unknown
compliance status in the control group as well as the between level random effects as
missing data. Details on the implementation of this algorithm are available in Muthén and
Asparouhov [35]. Parametric standard errors are computed from the information matrix
using the second-order derivatives of L.

We assume random assignment of treatment conditions, SUTVA, and the exclusion
restriction in this analysis. In CRT, interaction among individuals in the same cluster is
highly likely. As in two-level ML analysis, we statistically deal with resemblance among
individuals with the same cluster membership in two-level ML mixture analysis. In that
sense, SUTVA is not a necessary assumption. However, in CRT, the interaction rate among
individuals across different treatment conditions remains about the same as that observed
without systematic nesting structures. Therefore, although it may not be serious, some
deviation from SUTVA is possible as in any randomized trial.

A two-level ML mixture estimate of CACE is described as

(15)

where  and  are the two-level ML mixture estimates of μ1c and μ0c.

Then, a two-level ML mixture estimate of ITT effect is

(16)

where  is the t wo-level ML mixture estimate of πc.

Standard errors of the ITT estimates are obtained using the delta method as
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(17)

5 Comparison of Analysis Options: Monte Carlo Simulations
To examine the impact of ICCC and ICCY on the estimation of ITT effect in the analysis
options described above, Monte Carlo simulations are employed, since it is not
straightforward to analytically derive possible bias in variance estimation given missing
compliance information and mixture distributions of different compliance types. In this
paper, we focus on how compliance intraclass correlation affects power to detect ITT effect.
Compliance intraclass correlation has different consequences in CACE estimation, which is
dealt with in a separate paper [32].

5.1 Data Generation
The Monte Carlo simulation results presented in this study are based on 500 replications.
The size of each cluster (m) is 20, and the total number of clusters (G) is 100 (50 in the
control and 50 in the treatment condition). A large number of clusters (100 in this study
compared to 18 in the JHU Study) is employed to avoid another source of variance
misestimation and to focus on variance misestimation only due to intraclass correlations.
The true ratio of the treatment and control groups is 50%:50%. The size of ITT effect
increases or decreases proportionally as a function of the compliance rate, and therefore
noncompliance has a direct impact on power to detect ITT effect [36]. In this paper, beyond
this direct impact through compliance rates, we are more interested in studying the impact of
noncompliance on power through within-cluster resemblance in compliance. Therefore, we
used the same true compliance rate (50%) across all simulation settings.

The true ICCC value ranges from 0.0 to 0.8. A zero ICCC indicates that compliance behavior
is independent of the clusters individuals belong to. A high ICCC (e.g., 0.8) indicates a
situation, where individuals in the same cluster show a very similar compliance behavior.
Although how ICCY affects ITT effect estimation is well known, two non-zero ICCY values
(0.05 and 0.10) were considered in simulations to provide reference information (i.e., we can
tell how much difference ICCC makes in the presence of ICCY ).

Data were generated according to equations (1) and (2). Complier and noncomplier outcome
means (i.e., αn and αc) may differ in the control condition. If it is not parameterized properly
in the analysis model, the distance between the two means takes the form of additional
variance in conjunction with variation in compliance (i.e., together with compliance
indicator Cij, having a non-zero distance is like having a missing co-variate that predicts Y).
The effect of having this additional variance can be substantial in CRT because the
additional variance may include between-cluster variance (i.e., due to non-zero ICCC).
Therefore, we focus on the distance between the two distributions as a key source of
variance misestimation in analyses that do not consider within-cluster resemblance in
compliance. The true control condition noncomplier mean αn is 1.0, and the true control
condition complier mean αc takes values of 1.0, 1.5, and 2.0 to reflect the distance between
noncompliers and compliers (0.0, 0.5, and 1.0 SD apart).

The true within-cluster variance  takes values of 1.00, 0.95, and 0.90. The true between-
cluster variance  takes values of 0.00, 0.05, and 0.10 to reflect ICCY of 0.00, 0.05, and
0.10 given the total variance of 1.0. The true treatment assignment effect for compliers γc
(i.e., CACE) is 0.40, and the true overall ITT effect γ is 0.20. The true logit intercept β0 is
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zero (i.e., 50% compliance) and the true between-cluster compliance variance  takes
values of 0.00, 0.82, 2.19, and 13.15 on the logit scale to reflect ICCC of 0.0, 0.2, 0.4, and
0.8 according to equation (4).

In summarizing analysis results with the simulated data, coverage is defined as the
proportion of replications out of 500 replications where the true parameter values are
covered by the nominal 95% confidence interval of the parameter estimates. Power is
defined as the proportion of replications out of 500 replications where the ITT effect
estimates are significantly different from zero (α = .05).

5.2 ITT Analysis Considering Clustering
Figure 1 shows simulation results based on two-level ML analysis and two-level ML
mixture analysis. Since both approaches consider data clustering in the analyses, coverage
rates in these analyses stay close to the nominal level regardless of ICCY and ICCC
(coverage rates are not reported in Figure 1 because they are always very close to the
nominal level). Given that standard errors are correctly estimated in these analyses,
estimated statistical power can be considered valid.

Figure 1 shows power to detect ITT effect when two-level ML analysis and two-level ML
mixture analysis are employed. In two-level ML analysis (see the dotted lines), possible
sources of variance misestimation can be seen by comparing the simplified model in
equation (5) and the full model in equation (1). The cluster-level outcome residual εbj in
equation (1) is properly modeled in two-level ML analysis, and therefore is not a source of
variance misestimation. However, the variance associated with (αc − αn) Cij in equation (1)
is not accounted for, and instead is absorbed by residual variances  and . Depending on
the level of ICCC, the variance associated with (αc − αn) Cij is differently partitioned into 
and . For example, the whole variance associated with (αc − αn) Cij will be added to  if
ICCC = 0, and to  if ICCC = 1. Since any variance associated with Cij is properly added to
separate residual variances (i.e., within-cluster and between-cluster), inflated  and 
should not be considered the result of variance misestimation. Rather, it is the result of
correcting for variance that is not accounted for in the model. Figure 1 shows that, when
two-level ML analysis is employed, as a result of this additional cluster-level variance
associated with compliance, power to detect ITT effect decreases more rapidly in response
to ICCC as the distance between αn and αc increases. The pure impact of ICCC, which can be
observed when ICCY = 0, depicts reduction in power when individuals in the same cluster
are similar in terms of compliance, but not in terms of outcomes. The impact of ICCC alone
is quite remarkable, and this phenomenon has not received enough attention in analyzing
data from CRT.

In two-level ML mixture analysis (see the solid lines), data generated on the basis of the
model described in equations (1) and (2) are analyzed using the same model considering the
fact that randomization was done at the cluster level and that some individuals did not
comply with the given treatment. Since within- and between-cluster variances (  and )
are correctly estimated by simultaneously considering ICCY, ICCC, variances associated
with Cij, and the distance between αc and αn, the resulting ITT estimates have smaller
average standard errors and mean squared errors when using two-level ML mixture analysis
than when using two-level ML analysis. The resulting difference between the two methods
in terms of statistical power is quite remarkable when the distance between αc and αn is large
(e.g., see Panal (c) in Figure 1). When using the two-level ML approach, as this distance
increases, power to detect ITT effect decreases rapidly in response to ICCC due to the
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additional cluster-level variance associated with compliance. When using the two-level ML
mixture approach, this distance instead increases precision in the estimation of unknown
compliance status, and therefore improves power. As a result, the difference in power
between the two analysis approaches becomes substantially larger as the distance between
αc and αn increases.

6 Conclusions
Frangakis and Rubin [37] previously pointed out that estimation of intention-to-treat effect
can be biased in the analysis that ignores treatment noncompliance due to interaction
between noncompliance and nonresponse (i.e., availability of outcome data at posttreatment
assessments). The current study calls attention to a similar phenomenon (i.e., how we deal
with compliance information in the analysis affects the evaluation of treatment effects even
if we are not interested in estimating compliance-type-specific treatment assignment effects)
in a different context, where noncompliance may interact with clustering of individuals. It
was demonstrated in this study that ignoring compliance information in analyzing data from
CRT may result in substantially decreased power to detect ITT effect.

To simultaneously handle data clustering and noncompliance, this study employed a formal
multilevel analysis combined with the mixture analysis. The joint analysis of both
complications is computationally demanding, but it provides a general framework that can
accommodate various forms of clustered data structures considering mixture distributions of
compliers and noncompliers. The ML-EM estimation of the multilevel mixture models has
been implemented in the Mplus program [26], providing an accessible tool for complex
statistical modeling. Although not covered in this study, other complications in randomized
trials such as missing outcomes can also be incorporated in this estimation framework in
addition to noncompliance and data clustering. Further study is needed for better
understanding of how ITT effect estimation may benefit from the joint modeling of multiple
complications in various contexts of randomized trials.

As a way of improving power to detect ITT effect in CRT accompanied by non-compliance,
this study employed an estimation method, where ITT effect estimates are obtained on the
basis of compliance-type-specific treatment effect estimates. The same approach was used
by Frangakis and Rubin [37] to avoid bias in the estimation of ITT effect. The limitation of
this approach is that ITT effect estimates can be biased if underlying assumptions employed
to identify compliance-type-specific treatment effects are violated. Given that, although they
may seem irrelevant, methods to better handle identification problems in estimating
compliance-type-specific treatment effects are likely to improve estimation of ITT effect
when faced with various complications in randomized trials. Extensive treatment of this
topic is left for future study.

Along with possible violation of assumptions employed to identify compliance-type-specific
treatment effects, another complication that poses a major problem in applying the
multilevel mixture analysis method is having small numbers of clusters. In simulation results
reported in this paper, a large number of clusters has been employed (i.e., 100) to focus on
variance misestimation only due to intraclass correlations. In practice, however, much
smaller numbers of clusters are often employed in CRT as in the JHU PIRC trial (i.e., 18).
When applying multilevel mixture analysis, having small numbers of clusters poses serious
consequences. That is, with small numbers of clusters, not only standard errors, but also
compliance-specific treatment effects are likely to be poorly estimated at the cluster level
(e.g., CACE will be basically estimated based on 9 classroom observations in the JHU trial).
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In situations where multilevel ML mixture analysis is not recommended, such as in the JHU
PIRC trial, multilevel ML analysis considering only clustering seems to be a reasonable
solution. A few strategies such as the use of the bootstrap method, the use of the Bayesian
method with strong priors, and the use of an approximate F-test have been used to improve
estimation in one-class multilevel analyses with small numbers of clusters. When we apply
one-class multilevel ML analysis (adjusted for small numbers of clusters), a combination of
simpler analyses and the simulation results reported in this paper can be used together to
guide interpretation of the results. For example, on the basis of a two-level logistic
regression analysis using only the intervention group data, ICCC can be estimated. Complier
and noncomplier means (αc and αn) can be estimated using one-level mixture analysis. If the
distance between these means is small and ICCC is small, there is less need to employ the
two-level mixture approach. As shown in Figure 1, if this distance is substantial, one should
interpret the results of two-level ML analyses as more conservative than necessary,
especially if ICCC is also substantial. Ultimately, for better estimation and interpretation, we
need one-step analysis methods that can accommodate both data clustering and
noncompliance when faced with small numbers of clusters. In principle, the methods of
improving estimation in multilevel analysis, such as the bootstrap method, can be
incorporated in multilevel mixture analysis. However, little is known how these methods
perform with mixture distributions in the CRT context. Further investigation is necessary to
provide practical guidelines in conducting multilevel mixture analysis given small numbers
of clusters.
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Figure 1.
Two-level ML analysis and two-level ML mixture analysis: Statistical power in detecting
ITT effect as a function of ICCC and ICCY (100 clusters, 20 individuals per cluster). The
dotted lines represent power when two-level ML analysis is employed. The solid lines
represent power when two-level ML mixture analysis is employed. Complier and
noncomplier means (i.e., αc − αn) are (a) 0.0, (b) 0.5, and (c) 1.0 standard deviation apart
given treatment assignment.
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