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Abstract
HIV-1-associated dementia (HAD) describes the cognitive impairments and behavioral
disturbances which afflict many HIV-infected individuals. Although the incidence of HAD has
decreased significantly in the era of HAART, it remains a significant complication of HIV-1
infection as patients with acquired immune deficient syndrome (AIDS) live longer, antiretroviral
drugs remain unable to effectively cross the blood-brain barrier (BBB), and HIV-1 resistance
grows due to viral strain mutation. Although the precise mechanism leading to HAD is
incompletely understood, it is commonly accepted its progression involves a critical mass of
infected and activated mononuclear phagocytes (MP; brain perivascular macrophages and
microglia) releasing immune and viral products in brain. These cellular and viral products induce
neuronal dysfunction and injury via various signaling pathways. Emerging evidence indicates that
voltage-gated potassium (Kv) channels, key regulators of cell excitability and animal behavior
(learning and memory), are involved in the pathogenesis of HAD/HAND. Here we survey the
literature and find HAD related alterations in cellular and viral products can alter MP and neuronal
Kv channel activity, leading to MP and neuronal dysfunction and cognitive deficits. Thus, MP and
neuronal Kv channels may be a new target in the effort to develop therapies for HAD and perhaps
other inflammatory neurodegenerative disorders.
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Introduction
Human immunodeficiency virus type-1 (HIV-1)-associated dementia (HAD), a severe form
of HIV-1-associated neurocognitive disorders (HAND) (Antinori et al. 2007), describes the
cognitive deficits, motor disturbances, and behavioral abnormalities often observed in HIV-
infected individuals (Kaul et al. 2001; McArthur et al. 2003; Gonzalez-Scarano and Martin-
Garcia, 2005; Kramer-Hammerle et al. 2005; Verani et al. 2005). Although the incidence has
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significantly decreased since the advent of highly active anti-retroviral therapy (HAART),
HAD remains a significant complication of HIV-1 infection as patients with acquired
immune deficient syndrome (AIDS) live longer, antiretroviral drugs remain unable to
effectively cross the blood-brain barrier (BBB), and HIV-1 resistance grows due to viral
strain mutation. Despite more than two decades of investigation, our understanding of the
mechanisms for HAD pathogenesis remains incomplete. It is widely accepted that HIV-1-
infected MPs (brain perivascular macrophages and microglia) secrete soluble viral and
cellular factors causing neuronal dysfunction and damage (Kaul et al. 2001; McArthur et al.
2003; Gonzalez-Scarano and Martin-Garcia, 2005; Kramer-Hammerle et al. 2005; Verani et
al. 2005), leading to cognitive impairment. How soluble viral and cellular factors induce
cognitive impairment is not fully understood. Emerging evidence indicates that voltage-
gated potassium (Kv) channels, key regulators of neuronal excitability and macrophage
secretory activity, are involved in the pathophysiological processes of several
neurodegenerative disorders (Judge and Bever, 2006; Judge et al. 2006) and in animal
behavior (i.e. learning and memory) (Giese et al. 1998; Giese et al. 2001; Solntseva et al.
2003). This review aims at updating our understanding of the role played by Kv channels in
HIV-1-associated neuropathology. As Kv channels are expressed on both macrophages and
neurons, alteration of the Kv channel activity by soluble viral and cellular factors may result
in macrophage and neuronal dysfunction, leading to HAND/HAD. Thus, understanding the
role played by Kv channels in HAND/HAD pathogenesis could provide molecular and
cellular targets for the development of new therapies.

Macrophage Kv Channels and Macrophage-Associated Neurodegeneration
Macrophages and HAD neuropathology

Several different macrophage populations exist in the central nervous system (CNS),
including transient perivascular macrophages and resident microglia. In healthy individuals,
these populations support critical immune and homeostatic functions without pathological
consequences (Cotter et al. 2002; Williams and Hickey, 2002). However, under certain
circumstances a cycle of macrophage activation can cause neurotoxicity through excessive
secretion of inflammatory and immunoactive substances. One such scenario is thought to
unfold with HIV-1 infection, wherein transient populations of macrophage carry HIV-1
across the BBB (Gartner, 2000). Indeed, early autopsies of HIV-1 encephalitis (HIVE)
patients found extensive monocyte-macrophage brain infiltration, formation of
multinucleated giant cells (MNGC), and excess cellularity primarily of macrophage lineage
(Michaels et al. 1988b). In situ hybridization (Stoler et al. 1986) and viral antigen co-
localization studies (Gabuzda et al. 1986; Michaels et al. 1988a; Kure et al. 1991) also
confirmed the primary cellular targets for HIV-1 in the brain are macrophage and microglia
(Koenig et al. 1986; Wiley et al. 1986; Meltzer et al. 1990).

Importantly, progression to HAD is well correlated with high numbers of macrophage and
microglia in the CNS, even more so than the extent of HIV-1 infection itself (Budka, 1986;
Glass et al. 1995). Once in the CNS, infected macrophage provide a sanctuary for the HIV-1
virus (Koenig et al. 1986; Genis et al. 1992; Gendelman, 1997a), while producing
immunoactive and inflammatory substances such as viral proteins, proinflammatory
cytokines, chemokines, excitatory amino acids, nitric oxide, and eicosanoids. In addition to
promoting further entry and activation of macrophage, many of these substances have been
shown to cause electrophysiological disturbances (Koller et al. 1997; Nath and Geiger,
1998; Balschun et al. 2004; Gonzalez-Scarano and Martin-Garcia, 2005; Verani et al. 2005)
and may mediate neuronal dysfunction and/or death (Cotter et al. 1999; Kaul et al. 2001).
Therefore, macrophage play a critical role in the pathogenesis HIVE and HAD by mediating
viral entry into the CNS, harboring viral reservoirs, promoting further macrophage
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migration, producing neurotoxic substances, and participating in tissue destructive
processes.

Macrophage Kv channels and neurotoxicity
Kv channels primarily function to set resting membrane potentials and repolarize actions
potentials in excitable cells. While not typically thought of as electrically excitable cells,
human and mouse macrophage have been found to express Kv channels, including Kv1.3
and Kv1.5 (Gallin, 1991; Mackenzie et al. 2003; Park et al. 2003; Vicente et al. 2003). In
particular, elevated Kv1.3 expression in periventricular and parenchymal inflammatory
infiltrates has been observed in multiple sclerosis patients (Rus et al. 2005), revealing a
possible connection to neurological dysfunction. The importance of Kv channel activity in
macrophage can be seen in its variable expression level, which depends on the state of
activation of the cell (Blunck et al. 2001; Vicente et al. 2003). While patch clamp
experiments have shown that freshly isolated monocytes exhibit low numbers of Kv
channels, this expression increases significantly during monocyte differentiation to
macrophage (Blunck et al. 2001). This increase can be expected to result in greater outward
Kv current, and occurs regardless of whether the stimulation leading to differentiation is
macrophage colony stimulating factor (MCSF), exogenous lipopolysaccharide (LPS),
phorbol myristate acetate (PMA), or HIV-1 Tat protein (Nelson et al. 1992; Schilling et al.
2000; Visentin et al. 2001; Qiu et al. 2002; Gerth et al. 2005).

While the precise functional role of these channels in macrophage has yet to be determined,
membrane potential changes are among the earliest observed eventsafter stimulation.
Mounting evidence suggests alterations in the Kv channel activity of macrophages may be a
key early step in neuroinflammatory disorders, serving to initiate and/or amplify immune
responses by controlling macrophage functions such as migration, proliferation, activation,
and secretion (Gallin, 1991; Lewis and Cahalan, 1995; DeCoursey et al. 1996; Blunck et al.
2001; Qiu et al. 2002). For example, experiments with LPS-stimulated macrophages have
revealed that increased voltage-dependent potassium channel conductance is necessary for
macrophage activation and essential for cytokine production (Blunck et al. 2001). Similarly,
MCSF and LPS were found to induce voltage-dependent potassium channel expression,
while potassium channel blockade inhibited cell growth (proliferation) and nitric-oxide
synthase production (activation) (Vicente et al. 2003). Furthermore, potassium channel
blockers such as quinine, tetraethylammonium (TEA) chloride, and barium chloride, as well
as increased extracellular potassium concentration, have been found to inhibit tumor
necrosis factor-α (TNF-α) (Haslberger et al. 1992; Maruyama et al. 1994; Qiu et al. 2002)
and inter-leukin-8 (IL-8) (Qiu et al. 2002) production by activated macrophages. Increased
Kv channel conductance has also been linked to increased macrophage motility(Gendelman
et al. 2008), which may result in more widespread inflammation. More recently,
upregulation of Kv channel expression has been correlated with immune cell activation
strongly enough to be considered a functional marker (Rus et al. 2005). Also, Kv channel
blockers have now been used to alleviate neuropathology and symptoms in experimental
autoimmune encephalomyelitis by reducing immune cell activation, proliferation, and
production of interleukins and TNFα (Beeton et al. 2001). Collectively, this research implies
increased Kv channel conductance may be a key first step in the activation, migration,
proliferation, and secretion of macrophage. The regulation of macrophage activation and
resultant cytokine production by Kv channels may mirror macrophage functional processes
in vivo, where they are activated by various factors including those released by HIV-1-
infected mononuclear phagocytes. As this is the consensus underlying upstream cause of
HAD, these potassium channels are attractive targets for treatment.
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Neuronal Kv Channels and HIV-1-Associated Neurodegeneration
Neuronal Kv channels and cell excitability

Kv channels are formed by the association of four α-helical subunits, which form homo- or
heteromeric tetramers to create a functional channel (Coetzee et al. 1999). There are a
number of unique subunits which, when combined with a susceptibility to modulation by
diverse factors, account for the large functional variation of these channels. Kv channels are
categorized based on their voltage sensitivity (low- or high-voltage-activated) and
inactivation tendencies (delayed rectifier (Ik) or A-type (IA) (Dodson and Forsythe, 2004).
Regardless of the type of Kv channel, the negative equilibrium potential of K+ relative to the
action potential threshold lends an essentially inhibitory nature to K+ currents. Collectively,
Kv channels set and stabilize resting membrane potential, repolarize action potentials (APs),
and control the discharge frequency by regulating inter-spike intervals, thereby play a
crucial role in the generation of neuronal electrical activity and directly influencing neuronal
excitability. As mentioned, Kv channels can be modulated by a number of different factors,
including membrane potential, redox potential, post-translational modification, organic
molecules, peptides (Hille, 2001; Birnbaum et al. 2004), and other bioactive molecules such
as proinflammatory cytokines. Thus, irregular modulation of Kv channel activity could lead
to neuronal dysfunction and disrupt cognition.

Neuronal Kv channels and learning and memory
Recent genetic targeting studies indicate that Kv channel activity is of great importance in
memory processes (Giese et al. 1998; Giese et al. 2001; Solntseva et al. 2003). As the
number and pattern of APs are thought to encode information (Reike et al. 1997), Kv
channel dysfunction may alter information processing and therefore be an important link in
memory disturbances. Experiments in several different model systems have now shown
decreased K+ channel current correlates with improved memory and long-term potentiation
(LTP), while increased K+ current corresponds to learning and memory deficiencies
(Ghelardini et al. 1998; Alkon, 1999; Solntseva et al. 2003). At present, the effect of altered
potassium current is best characterized by studies of Kv4 channels in the distal dendrites,
Kv1.1 and Kv2.1 in the proximal dendrites and soma, and Kv1 in axons and nerve terminals.

In particular, Kv4 channels are now thought to provide a convergence point for LTP signal
transduction pathways (Olds et al. 1989; Alkon et al. 1998; Dineley et al. 2001; Birnbaum et
al. 2004). Increasing or decreasing this A-type current inversely affects back-propagating
AP (bp-AP) amplitudes (Watanabe et al. 2002), which helps determine the depolarization
sensed by NMDA receptors and may underlie learning and memory networking properties
(Paulsen and Sejnowski, 2000; Johnston et al. 2003; Birnbaum et al. 2004). Importantly,
increased Kv4 current lowers LTP induction probability (Watanabe et al. 2002), while
decreased Kv4 current enhances LTP (Frick et al. 2004), increases EPSP-spike (E-S)
potentiation (Frick et al. 2004), and improves learning and memory (Lilliehook et al. 2003).

Kv1.1/Kvβ1.1 current has also been demonstrated to have an effect on alternative learning
and memory mechanisms in subunit deletion studies (Giese et al. 1998; Giese et al. 2001;
Murphy et al. 2004). The deletion of the Kvβ1.1 subunit causes a reduction in IA amplitude,
which in turn reduces frequency-dependent spike-broadening and the slow after-
hyperpolarization (sAHP). The end result is increased neuronal excitability, improved
Morris watermaze performance, and a decreased threshold for the induction of LTP (Giese
et al. 1998; Murphy et al. 2004).

Meanwhile, clusters of Kv2.1 channels regulate both intrinsic and neuronal excitability
during high frequency stimulation (Murakoshi and Trimmer, 1999; Du et al. 2000; Pal et al.
2003). Dephosphorylation of Kv2.1 channels shifts their activation curves to more
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hyperpolarized potentials and increases their open channel probability (Murakoshi et al.
1997). The increased delayed rectifier current (IK) leads to a diminished LTP, which is
reversible by re-phosphorylation, demonstrating a strong link to this potassium channel
activity (Misonou et al. 2004).

Finally, several Kv1 subtypes have been implicated in gating axonal signal propagation
(Debanne et al. 1997; Debanne et al. 1999), while suppressing hyperexcitability and
reducing aberrant firing (David et al. 1995; Bajetto et al. 1999; Zhou et al. 1999) in both
axons and presynaptic compartments (Dodson et al. 2003). In addition, in presynaptic
compartments several subtypes contribute to raising the AP threshold (Dodson et al. 2003)
and limiting the AP duration and related neurotransmitter release (Sekirnjak et al. 1997;
Southan and Robertson, 2000; Elezgarai et al. 2003), while allowing for cumulative
inactivation upon repeated depolarization to broaden the AP and enhance transmitter release
(Jackson et al. 1991; Thorn et al. 1991). The relationship between these channels and
learning and memory can be easily extrapolated from these results, but has yet to be
explicitly demonstrated.

Neuronal Kv channels and apoptosis
Perhaps just as relevant as the electrophysiological consequences of increased neuronal Kv
channel current is the ability of Kv channel activity to mediate apoptosis. The correlation
between increased potassium channel current and apoptosis is robust and occurs across
multiple cells types throughout the body, including smooth muscle cells, eosinophils,
enterocytes, lymphocytes, thymocytes, T cells, and neurons (for reviews see (Yu, 2003;Burg
et al. 2006). In repeated experiments, apoptotic volume decrease (AVD) and depression of
apoptotic effectors were found to be mediated by K+ efflux and intracellular K+ depletion,
leading to cell shrinkage, caspase activation, cytochrome c release, endonuclease activation,
DNA fragmentation, and eventual apoptosis. In neurons these changes were accompanied by
increased delayed rectifier K+ current and could be prevented by potassium channel blockers
or medium with high K+ concentration (Yu et al. 1997;Wang et al. 2000;McLaughlin et al.
2001;Xiao et al. 2002). Therefore, while tissue homeostasis requires well regulated
apoptosis, chronic increases in neuronal Kv current could initiate apoptotic sequences
leading to premature cell death (i.e. neurodegeneration).

Neuronal Kv channels and HAD pathogenesis
Neuropsychiatric decline in AIDS patients is correlated with increasing numbers of
macrophage in the brain (Glass et al. 1995), and the associated neuronal damage is closely
associated with markers of macrophage activation (Adle-Biassette et al. 1999). This suggests
the source of neuronal dysfunction may be the release of soluble factors from infected and/
or activated macrophage. Cytokines, chemokines, excitatory amino acids, arachidonic acid
metabolites, nitric oxide (NO), and viral proteins (HIV-1 gp120, Tat and Nef) are now
thought to be the primary causes of HAD related neuronal injury (Lipton, 1991; Genis et al.
1992; Tyor et al. 1992; Gelbard et al. 1994; Toggas et al. 1994; Bukrinsky et al. 1995; Nottet
and Gendelman, 1995; Xiong et al. 2000; Yeh et al. 2000; Kaul et al. 2001; Carlson et al.
2004). Emerging evidence indicates this damage could be mediated through excessive
neuronal Kv channel activation.

Macrophage-conditioned media (MCM)
Whole cell patch clamp recordings performed in our lab have demonstrated immune-
activated MCM increases both transient A-type current and delayed rectifier K+ current (Hu
D et al. 2007; Keblesh et al. 2007). Using TEA, a Kv channel antagonist, it was possible to
block the MCM-associated increase of IK. Furthermore, the biological relevance of this was
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assessed by neuronal viability in the presence or absence of TEA, allowing us to conclude
the MCM-mediated Kv channel current is correlated with diminished cell survival.

Cellular factors: Cytokines
Two substances which are elevated in HAD and can increase neuronal potassium channel
current are the proinflammatory cytokines TNF-α and interleukin-1β (IL-1β). Elevated
synthesis (Epstein and Gendelman, 1993b; Gelbard et al. 1994) and release (Nicolini et al.
2001) of TNF-α has been demonstrated in several HAD experimental models. Also, analysis
of patient brain tissue after autopsy has revealed increased TNF-α mRNA expression
correlating with symptom severity (Glass et al. 1993). TNF-α is known to increase the
permeability of the BBB to HIV-infected cells (Fiala et al. 1997), induce expression of cell
adhesion molecules, and upregulate monocyte chemoattractant protein-1 (MCP-1) (Nottet,
2005). In addition, whole-cell patch-clamp recordings have now shown application of
recombinant human TNF-α to cultured embryonic rat cerebral cortex neurons results in an
increase of A-type K+ current (Houzen et al. 1997). Additional electrophysiological
recordings revealed TNF-α applications inhibit LTP in the CA1 in a dose-dependent manner
(Tancredi et al. 1992), while even low doses completely abolished LTP in the dentate gyrus
(Cunningham et al. 1996).

A similar upregulation of IL-1β has also been observed in HAD patients and models (Genis
et al. 1992; Epstein and Gendelman, 1993a; Nicolini et al. 2001; Zhao et al. 2001; Barak et
al. 2002). IL-1β is also believed to induce cell adhesion molecule expression and upregulate
MCP-1 (Brabers and Nottet, 2006). In addition, electro-physiological recordings
demonstrate the application of IL-1β can increase both transient and delayed rectifier K+

currents in a dose-dependent manner (Szucs et al. 1992). This increased outward
conductance causes synaptic inhibition and likely disrupts neuronal plasticity (Zeise et al.
1992), an idea supported by studies demonstrating pretreatment or superfusion of IL-1β
diminishes LTP (Bellinger et al. 1993; Cunningham et al. 1996). In one notable experiment,
i.c.v. injection of gp120 in rats stimulated IL-1β production and behavioral abnormalities,
which could be attenuated with IL-1β antagonist pretreatment (Barak et al. 2002).

Cellular factors: AA, glutamate, BDNF
In addition to the aforementioned cytokines, several other cellular products are known to
effect potassium channels, including arachidonic acid (AA), glutamate, and brain derived
neurotrophic factor (BDNF). In a model for HAD, AA in HIV infected monocyte/glia co-
cultures is converted to its metabolites at an abnormally high rate (Genis et al. 1992). Under
normal conditions, AA suppresses IA current in CA1 pyramidal cells, thereby increasing the
postsynaptic response to stimulation and lowering the threshold for LTP (Ramakers and
Storm, 2002). In contrast, the metabolic products of AA have been found to dampen
excitability by increasing the open channel probability (Piomelli et al. 1987) and the current
(Zona et al. 1993) of sustained potassium channels. In HAD, the increased conversion of AA
to its metabolites may reduce AA suppression of IA while increasing metabolite
enhancement of IK, compromising the reliability of synaptic transmission (Colbert and Pan,
1999).

Recent evidence also suggests HAD related enhancement of glutaminase activity could
result in an overabundance of glutamate (Erdmann et al. 2006). In experiments involving
glutamate application, neuronal Kv2.1 channels were dephosphorylated (Misonou et al.
2004) and the activation curves shifted, resulting in greater open channel probability and
current (Murakoshi et al. 1997). Further, Kv2.1 dephosphorylation leads to a dendritic
beading which has been linked to potassium channel related LTP diminishment (Gelbard et
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al. 1994; Misonou et al. 2004; Bellizzi et al. 2005). Perhaps just as importantly, increasing
Kv2.1 current has been shown to cause apoptotic loss of cell volume (Pal et al. 2003).

HAD models have further shown decreases in the concentration of BDNF (Nosheny et al.
2004). In addition to an essential role in neurogenesis, neuronal development, and neuronal
survival, recent studies demonstrate BDNF down-regulates the expression of Kv1.2, Kv1.4,
and Kv4.2 (Park et al. 2003) and may be essential for long-term potentiation and other forms
of activity-dependent synaptic plasticity (Korte et al. 1996; Hartmann et al. 2001;
Zakharenko et al. 2003). Interestingly, BDNF was found to reduce gp120 related
neurotoxicity (Nosheny et al. 2005), possibly via down-regulation of A-type potassium
channel genes and their associated currents.

Viral products
The viral protein Nef has also been detected in brain tissue (Ranki et al. 1995) and sera
(Deacon et al. 1995) of AIDS patients. Furthermore, this soluble protein shares functional
sequences with scorpion peptides known to interact with potassium channels (Garry et al.
1991; Werner et al. 1991) and has been demonstrated to reversibly increase total K+ current
(Werner et al. 1991). These increased potassium currents may account for the neurotoxic
effects Nef application causes in cultured human neurons (Trillo-Pazos et al. 2000).

Treatment with Kv Channel Antagonists
Kv channel blockade ameliorates macrophage-associated tissue damage

Reactive macrophage/microglial response leading to inflammatory tissue damage is now
considered characteristic of a wide range of neurodegenerative disorders, including
Alzheimer's disease, multiple sclerosis, and HIV associated dementia (Gendelman et al.
1998; Cotter et al. 1999; Rus et al. 2005). Consequently, many therapeutic approaches now
attempt to modulate neuroinflammation in conjunction with symptomatic treatments (Judge
and Bever, 2006; Judge et al. 2006). In light of the role of Kv channels in macrophage
activation, secretion, migration, and proliferation, interest in developing effacious
immunomodulatory Kv channel antagonists as an means of limiting neurodegeneration is
growing (Judge and Bever, 2006; Judge et al. 2006). The use of both nonspecific Kv channel
blockers (4-AP and 3,4-DAP) and highly selective blockers (margatoxin, kaliotoxin, and
correolide) have been used to inhibit immune responses in rodent experimental allergic
encepholomyelitis (EAE) models for multiple sclerosis (MS) (Beeton et al. 2001) and have
now been clinically tested for treatment of patients with MS (Bever, 1994; Bever et al.
1994). In another in vivo study, injection of the Kv channel blocker quinidine in rats was
found to ameliorate symptoms of clinical experimental allergic neuritis, an accepted animal
model for human Guillain–Barre syndrome that is the peripheral nervous system counterpart
of EAE in the CNS(Mix et al. 1989). Importantly, as expected the neuroprotective effects of
these Kv channel inhibitors were accompanied by reduced inflammation in target tissue.

Kv channel blockade ameliorates HAD related neuronal dysfunction
Our lab has previously demonstrated i.c.v. injection of severe combined immunodeficient
(SCID) mice with virus infected macrophage leads to impaired spatial learning and
diminished long-term potentiation (Zink et al. 2002; Anderson et al. 2003), while also
establishing that macrophage conditioned media increases neuronal IA and IK in culture(Hu
D et al. 2007). We next studied the effects of systemic administration of the Kv channel
antagonist 4-AP on LTP and animal behavior in our murine model of human HIV disease.
We found the injection of HIV-1-infected human MDMs produced encephalitis, impaired
spatial learning, and diminished long-term potentiation, which were ameliorated with
administration of 4-AP (Keblesh et al. 2007).
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At present it is difficult to estimate the relative contribution of neuronal and macrophage Kv
channels. While 4-AP may protect neuronal physiology by blocking neuronal Kv channels, it
may also mediate neuroprotective effects via inhibition of proinflammatory cytokine
production from MDMs (Blunck et al. 2001; Qiu et al. 2002) and/or reduction of the
migration, proliferation, and activation of additional macrophage. It is therefore our view
that both macrophage and neuronal Kv channels be considered worthy targets for the
development of new therapeutic strategies for chronic inflammatory and neurodegenerative
disorders.

Summary
At present the complete mechanism of HIV-associated dementia has yet to be elucidated and
as such, there is no effective prescribable treatment to date. At the same time, the role of
voltage-gated potassium channels in the processes of macrophage activation, secretion,
migration, and proliferation is just now beginning to be appreciated, while the effects of
macrophage secreted cellular and viral factors on neuronal voltage-gated potassium channel
current, and the significance of this for the neuron, are only gradually becoming clear. While
this line of investigation into Kv channels and HAD pathogenesis is young it is also
promising, and we hope to have provided a clear starting point and encouragement for future
research in this area.
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