

NIH Public Access

Author Manuscript

Chem Commun (Camb). Author manuscript; available in PMC 2011 January 1

Published in final edited form as:

Chem Commun (Camb). 2010 January 7; 46(1): 91–93. doi:10.1039/b918616f.

Thioether S-Ligation in a Side-on μ-η²:η²-Peroxo Dicopper(II) Complex[†]

Ga Young Park^a, Yunho Lee^a, Dong-Heon Lee^b, Julia S. Woertink^c, Amy A. Narducci Sarjeant^a, Edward I. Solomon^c, and Kenneth D. Karlin^{*,a,d}

^aDepartment of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218 USA

^bDepartment of Chemistry, Chonbuk National University, Jeonju, 560-756, Korea

^cDepartment of Chemistry, Stanford University, 333 Campus Drive, Stanford, California, 94305, USA

^dDepartment of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

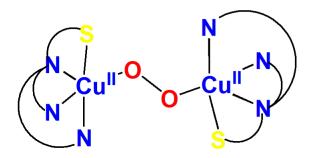
Abstract

 $[(ANS)Cu^{I}(CH_{3}CN)]^{+}$ (1A), with N₂S_{thioether} ANS ligand, reacts with O₂ giving a side-on peroxodicopper(II) species $[{(ANS)Cu^{II}}_{2}(\mu-\eta^{2}:\eta^{2}-O_{2}^{2^{-}})]^{2+}$ (1P), v_{O-O} = 731 cm⁻¹. 1P is shown to possesses S-thioether ligation, following chemical-spectroscopic comparisons with analogues having all N-ligands or a –S(Ph) group. The finding is a rare occurrence and new for side-on O₂²⁻ binding.

Copper(I)–dioxygen adducts or derived species pertinent to copper protein O₂-binding and activation are currently of considerable interest in bioinorganic chemistry.¹⁻⁴ The focus of this paper relates to the discovery and influence of thioether sulfur ligation in copper(I)-dioxygen adducts, a topic which has attracted more recent attention. This is due to the existence of important copper monooxygenases, namely dopamine β -monoxygenase (D β M) and peptidyl glycine α -hydroxylating monooxygenase (PHM), which serve important roles in neurotransmitter or regulatory horomone biosynthesis.⁵ The active-site in these proteins, where substrate binding and copper-dioxygen activation occur, is the so-called Cu_M site, which is ligated by two His and one Met ligands.⁵⁻⁷ Biochemical and chemical evidence suggests that O₂ binds here and that a Cu^{II}-superoxo (O₂⁻⁻) dioxygen adduct or a derived Cu^{II}-hydroperoxo or cupryl (Cu^{II}-O⁻) entity initiates substrate oxidation chemistry.⁵, 8-12 In

© The Royal Society of Chemistry [year]

*Fax: (+1) 410-516-8420; Tel: (+1) 410-516-8027; karlin@jhu.edu.


[†]Electronic Supplementary Information (ESI) available: Experimental details of the structure determinations can be found in the Supplementary Information. Suitable single crystals of [(ANS)Cu^I(CH₃CN)]B(C₆F₅)4 (**1A**) and [(ANS)Cu^{II}(Cl)₂] (**1B**) were mounted in Paratone-N oil on the end of a glass fiber and transferred to the N₂ cold stream of an Oxford Diffraction Xcalibur3 system equipped with Enhance optics and a CCD detector. The frames were integrated and a face indexed absorption correction and an interframe scaling correction were also applied with the Oxford Diffraction *CrysAlisRED* software package (CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta). The structures were solved using direct methods and refined using the Bruker *SHELXTL* (v6.1) software package (Sheldrick, G.M. 2000). [(ANS)Cu^{II}(CH₃CN)]B(C₆F₅)4 (**1A**): Crystal data. C₁₉H₃₃CuN₃S·C₂₄BF₂₀, *M* = 1078.13, Orthorhombic, *Pbca*, *T* = 110 K, *a* = 20.3371(4) A°, *b* = 16.4920(3) A°, *c* = 6.8598(6) A°, *V* (Å³) = 9008.8(3), *Z* = 8, μ (Mo-K α) = 0.65 mm⁻¹, Crystal size (mm) = 0.78 × 0.25 × 0.12, 55908 reflections measured, 10274 unique (R_{int} = 0.083). The final R_1 (*I* > 2 σ (*I*)) was 0.091. CCDC-738906. [(ANS)Cu^{II}(Cl)₂] (**1B**): Crystal data. C₁₇H₃₀Cl₂CuN₂S, *M* = 428.93, Monoclinic, *P*(21)/*n*, *T* = 110 K, *a* = 14.4850(6) Å, *b* = 9.3727(3) Å, *c* = 16.0378(6) Å, *β* = 115.278(5) °, *V* (Å³) = 1968.86 (15), *Z* = 4, μ (Mo-K α) = 1.47 mm⁻¹, Crystal size (mm) = 0.77 × 0.18 × 0.08, 12886 reflections measured, 4653 unique (R_{int} = 0.031). The final R_1 (*I* > 2 σ (*I*)) was 0.032. CCDC-738907. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/datarequest/cif.

fact, the observance of an X-ray structure on a protein Cu^{II}-O₂⁻⁻ complex.⁷ biochemical evidence.⁵, ⁸⁻¹⁰ and theoretical calculations^{9,10} that the Cu^{II}-superoxo species is the one effecting a substrate hydrogen-atom abstraction reaction.

The vast majority of the literature deals with copper(I)/dioxygen chemistry and adducts and reactivity with systems containing all nitrogen ligands, typically bi- tri- or tetradentate entities.^{1-4, 13, 14} However, it is clearly important to develop an understanding of how thioether ligation influences the structure(s), spectroscopy, and reactivity of $Cu_n^I-(O_2)$ -derived species.

Some work in this general area has occurred. A dicopper(I) complex with Met-based ligand was synthesized by Casella and co-workers;^{15, 16} reaction with O₂ led to hydroxylation of a xylyl spacer group. Tolman and co-workers reported Cu^I-O₂ chemistry with a N₂S β -diketiminate ligand, but the S-donor does not coordinate to copper in derived O₂-adduct.¹⁷ Quite recently, Nicholas and co-workers synthesized a bis-imidazole-thioether tridentate N₂S ligand while Cu^I-complex oxidation occurs, they did not observe Cu^I-O₂ adducts.¹⁸⁻²⁰

Recently, we reported the first copper-dioxygen adduct with thioether ligation, an "end-on" μ -1,2-peroxodicopper(II) complex, each copper ion possessing a tetradentate N₃S ligand.²¹, ²²

As D β M and PHM employ N₂S rather than N₃S protein ligand donors, we were interested to look further, at new tridentate ligands. In this report, we describe copper(I)/O₂ reactivity with ANS (Scheme 1), a linear N₂S tridentate ligand. We also had previously studied copper(I)/O₂ chemistry with the N₃ ligand MeAN (Scheme 1), which readily forms a sideon binuclear peroxo complex [{(MeAN)Cu^{II}}₂(μ - η^2 : η^2 -O₂²⁻)]²⁺ (**2P**), $\lambda_{max} = 360$ nm (ϵ =22,000 M⁻¹cm⁻¹) and 540 nm (ϵ = 2,500 M⁻¹cm⁻¹).²³ Our hypothesis was that an analogue, ANS, in which one alkylamine arm of MeAN is replaced by a thioether donor, might exhibit related chemistry. This turns out to be true, as we described here.

The copper(I) complex $[(ANS)Cu^{I}(CH_{3}CN)]^{+}$ (1A) (as $B(C_{6}F_{5})_{4}^{-}$ salt) was generated from $[Cu^{I}(CH_{3}CN)_{4}]B(C_{6}F_{5})_{4}$ addition to ANS, and characterized as a greenish white airsensitive solid. $[(ANS)Cu^{II}(Cl)_{2}]$ (1B) was also synthesized. Both of these Cu^I and Cu^{II} complexes were characterized by X-ray diffraction (Fig. 1). Noteably, the S(thioether) coordination to copper ion occurs in both Cu^I and Cu^{II} complexes.

In order to describe the electronic environment of the ligand copper coordination complexes, while also comparing the environment of sulfur containing ANS _{(N2}S) with MeAN (N₃), CO adducts of $[(ANS)Cu^{I}(CH_{3}CN)]^{+}$ (1A) and $[(MeAN)Cu^{I}]^{+}$ (2A) were generated and the electrochemistry via cyclic voltammetry of 1A and 2A were evaluated (Table 1). The IR spectrum of $[(ANS)Cu^{I}-CO]^{+}$ (1-CO) shows that $v_{CO} = 2092 \text{ cm}^{-1}$, significantly higher than that observed for $[(MeAN)Cu^{I}-CO]^{+}$ (2-CO, 2079 cm⁻¹). It is noteable that v_{CO} for the Cu_M sites in PHM and D β M (Table 1)^{25, 26} are essentially the same as that of $[(ANS)Cu^{I}-CN]^{-1}$

 $CO]^+$ (1-CO), indicating that 1A possesses a chemical environment reasonably mimicking that of protein active sites.

As for the ligand comparison, the results clearly indicate that MeAN is a better donor to copper(I) which then back-donates to its CO ligand to a greater extent, lowering v_{CO} . The electrochemical behavior for **1A** vs **2A** is consistent with findings for CO ligation and v_{CO} values, as the strong donor ligand MeAN better stabilizes the higher oxidation state, giving a more negative $E_{1/2}$ value (Table 1).

Oxygenation of **1A** at -94 °C in acetone gives a dark orange species, $\lambda_{max} = 375$ nm ($\epsilon = 10,000 \text{ cm}^{-1}\text{M}^{-1}$) and 495 nm ($\epsilon = 1,000 \text{ cm}^{-1}\text{M}^{-1}$) (Fig. 2), features consistent with those of an μ - η^2 : η^2 -peroxo-dicopper(II) species.¹ Thus, the complex is formulated as [{(ANS)Cu^{II}}₂(μ - η^2 : η^2 -O₂²⁻)]²⁺ (**1P**) Confirmation derives from resonance Raman spectroscopic data with λ_{ex} =379.5 nm employing either ¹⁶O₂ or ¹⁸O₂ for complex generation: $v_{Cu-Cu} = 273 \text{ cm}^{-1}$ (Fig. 3A) and $v_{O-O} = 731 \text{ cm}^{-1}$ ($\Delta v(^{18}\text{O}_2) = -40 \text{ cm}^{-1}$) (Fig. 3B). These vibrations are characteristic of a μ - η^2 : η^2 -peroxo-dicopper(II) species.^{1,27}

These values are also similar to those observed for [{(MeAN)Cu^{II}}₂(μ - η^2 : η^2 -O₂²⁻)]²⁺ (**2P**) (v_{O-O} = 721 cm⁻¹ and v_{Cu-Cu} = 268 cm⁻¹),²³ however the higher v_{O-O} vibration frequency of [{(ANS)Cu^{II}}₂(μ - η^2 : η^2 -O₂²⁻)]²⁺ (**1P**) (731 cm⁻¹), compared to that for MeAN complex **2P** (721 cm⁻¹), indicates that the O-O bond in **1P** is stronger. Compared to MeAN, ANS is a weaker donor to copper resulting in increased peroxo π^*_{σ} donation to Cu and less backbonding into the peroxo σ^* resulting in a stronger peroxo O-O bond.²⁸

The supposition that S(thioether) ligation occurs in $[{(ANS)Cu^{II}}_{2}(\mu-\eta^{2}:\eta^{2}-O_{2}^{2-})]^{2+}$ (**1P**) derives from observations discussed above and the following argument. If the thioether donor did not bind to copper in **1P** and was dangling, (as seen in Tolman's N₂S system),¹⁷ the remaining "bidentate amine" ligand (N₂ portion of ANS) would result in formation of a bis- μ -oxo dicopper(III) species. As is already known, the copper(I) complex with *N*,*N*,*N*',*N*'-tetramethyl-(*I*,*3*)-propanediamine (TMPD), [(TMPD)Cu^I(CH₃CN)]⁺ (**4A**), which was described by Stack and co-workers,²⁹ does exactly this (Scheme 1); v_{Cu-O} = 609 cm⁻¹: $\Delta v(^{18}O_2) = -28 \text{ cm}^{-1}$. We also note that for a copper(I) complex with TMPD, E_{1/2} is very negative (-393 mV, vs. Fe(Cp)₂^{+/0}), consistent with it's ability to form a bis μ -oxo complex, stabilizing a high oxidation state copper(III) environment.

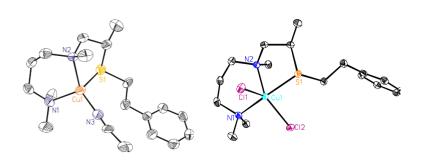
To provide further support for thioether ligation in **1P**, we separately synthesized the ligand ANSPh (Scheme 1) and its Cu(I) complex [(ANSPh)Cu^I(CH₃CN)]⁺ (**3A**). The large phenyl group of the ANSPh ligand, directly on the sulfur atom, inhibits sulfur coordination to copper ion in a Cu₂/O₂ adduct. This in fact is the case. The reaction of dioxygen with **3A** at -94 °C in acetone gives a yellow bis- μ -oxo dicopper(III) species (**3O**), $\lambda_{max} = 409$ nm ($\epsilon = 9,000 \text{ cm}^{-1}\text{M}^{-1}$) similar to typical bis- μ -oxo dicopper(III) species. Resonance Raman data for **3O** (Supporting Material) show only a characteristic core vibration, $v_{Cu-O} = 606 \text{ cm}^{-1}$ ($\Delta v (^{18}\text{O}_2) = -28 \text{ cm}^{-1}$), suggesting a structure just like Stack's TMPD complex (Scheme 1)²⁹ and indicating the –SPh moiety does not coordinate. By inference, these results indicate that the S(thioether) donor in ANS must be able to coordinate to Cu(II) in [{(ANS)Cu^{II}}₂(μ - η^2 : η^2 - $O_2^{2^-}$)]²⁺ (**1P**).

In summary, a side-on μ - η^2 : η^2 -peroxodicopper(II) species has been generated from the oxygenation of LCu(I) complex with N₂S thioether ligand ANS. By comparison to the nature of the Cu₂O₂ species generated with closely related ligands where either the S(thioether) is unable to coordinate or is absent (a bis- μ -oxo dicopper(III) complex), we can conclude that coordination of the S(thioether) donor within [{(ANS)Cu^{II}}₂(μ - η^2 : η^2 -O₂²⁻)]²⁺ (**1P**) occurs. This is the first case of thioether coordination within a μ - η^2 : η^2 -peroxodicopper(II) structural type. This advance in copper-dioxygen chemistry further indicates

that it is possible to study systems with S(thioether) ligation. Future investigations will focus on the effect of S(thioether) on reactivity of derived copper-dioxygen complexes,³⁰ and on the design and study of systems where only one copper ion is present.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.


Acknowledgments

We are grateful to the NIH (K.D.K., GM28962; E.I.S., DK31450) for research support.

Notes and references

- 1. Mirica LM, Ottenwaelder X, Stack TDP. Chem. Rev 2004;104:1013. [PubMed: 14871148]
- 2. Lewis EA, Tolman WB. Chem. Rev 2004;104:1047. [PubMed: 14871149]
- 3. Itoh S. Curr. Opin. Chem. Biol 2006;10:115. [PubMed: 16504568]
- 4. Hatcher LQ, Karlin KD. J. Biol. Inorg. Chem 2004;9:669. [PubMed: 15311336]
- 5. Klinman JP. J. Bio. Chem 2006;281:3013. [PubMed: 16301310]
- Prigge ST, Mains RE, Eipper BA, Amzel LM. Cell Mol Life Sci 2000;57:1236. [PubMed: 11028916]
- 7. Prigge ST, Eipper BA, Mains RE, Amzel LM. Science 2004;304:864. [PubMed: 15131304]
- 8. Chen P, Fujisawa K, Solomon EI. J. Am. Chem. Soc 2000;122:10177.
- 9. Chen P, Solomon EI. J. Am. Chem. Soc 2004;126:4991. [PubMed: 15080705]
- 10. Chen P, Solomon EI. Proc. Natl. Acad. Sci, U.S.A 2004;101:13105. [PubMed: 15340147]
- 11. Yoshizawa K, Kihara N, Kamachi T, Shiota Y. Inorg. Chem 2006;45:3034. [PubMed: 16562959]
- Crespo A, Marti MA, Roitberg AE, Amzel LM, Estrin DA. J. Am. Chem. Soc 2006;128:12817. [PubMed: 17002377]
- 13. Hatcher LQ, Karlin KD. Adv. Inorg. Chem 2006;58:131.
- 14. Fujii T, Yamaguchi S, Funahashi Y, Ozawa T, Tosha T, Kitagawa T, Masuda H. Chem. Commun 2006:4428.
- Casella L, Gullotti M, Bartosek M, Pallanza G, Laurenti E. J. Chem. Soc., Chem. Commun 1991:1235.
- 16. Alzuet G, Casella L, Villa ML, Carugo O, Gullotti M. J. Chem. Soc., Dalton Trans 1997:4789.
- Aboelella NW, Gherman BF, Hill LMR, York JT, Holm N, Young VG, Cramer CJ, Tolman WB. J. Am. Chem. Soc 2006;128:3445. [PubMed: 16522125]
- 18. Zhou L, Powell D, Nicholas KM. Inorg. Chem 2006;45:3840. [PubMed: 16676937]
- 19. Zhou L, Powell D, Nicholas KM. Inorg. Chem 2007;46:7789. [PubMed: 17713902]
- 20. Some other studies involving nitrogen-thioether Cu complexes have been described: Reglier and co-workers demonstrated thioether ligand sulfoxidation from the reaction of a Cu^{II}-N₃S complex with H₂O₂: Casella L, Gullotti M, Bartosek M, Pallanza G, Laurenti E. J. Chem. Soc., Chem. Commun 1991:1235. Kodera and co-workers characterized a Cu^{II}-OOH species from H₂O₂ reactivity with a thioether containing Cu^{II} complex: Kodera M, Kita T, Miura I, Nakayama N, Kawata T, Kano K, Hirota S. J. Am. Chem. Soc 2001;123:7715. [PubMed: 11481001] Lee et al, reported ligand sulfoxidation with Cu^I-N₂S_(thioether) complex: Lee Y, Lee DH, Sarjeant AAN, Zakharov LN, Rheingold AL, Karlin KD. Inorg. Chem 2006;45:10098. [PubMed: 17140215]
- Hatcher LQ, Lee DH, Vance MA, Milligan AE, Sarangi R, Hodgson KO, Hedman B, Solomon EI, Karlin KD. Inorg. Chem 2006;45:10055. [PubMed: 17140210]
- Lee DH, Hatcher LYQ, Vance MA, Sarangi R, Milligan AE, Sarjeant AAN, Incarvito CD, Rheingold AL, Hodgson KO, Hedman B, Solomon EI, Karlin KD. Inorg. Chem 2007;46:6056. [PubMed: 17580938]
- Liang HC, Zhang CX, Henson MJ, Sommer RD, Hatwell KR, Kaderli S, Zuberbuhler AD, Rheingold AL, Solomon EI, Karlin KD. J. Am. Chem. Soc 2002;124:4170. [PubMed: 11960420]

- 24. Addison AW, Rao TN, Reedijk J, Vanrijn J, Verschoor GC. J. Chem. Soc., Dalton Trans 1984:1349.
- 25. Jaron S, Blackburn NJ. Biochemistry 1999;38:15086. [PubMed: 10563791]
- Blackburn NJ, Pettingill TM, Seagraves KS, Shigeta RT. J. Bio. Chem 1990;265:15383. [PubMed: 2394729]
- 27. rR spectra of **1P** obtained with $\lambda_{ex} = 406.7$ nm revealed the presence of a small fraction (~15%) of a bis- μ -oxo dicopper(III) ($v_{Cu-O} = 603 \text{ cm}^{-1} (\Delta v (^{18}\text{O}_2) = -29 \text{ cm}^{-1})$, explaining the small shoulder (near 410 nm) observed in the absorption spectrum (Fig. 2).
- Henson MJ, Vance MA, Zhang CX, Liang HC, Karlin KD, Solomon EI. J. Am. Chem. Soc 2003;125:5186. [PubMed: 12708870]
- 29. Mahadevan V, DuBois JL, Hedman B, Hodgson KO, Stack TDP. J. Am. Chem. Soc 1999;121:5583.
- 30. Following thermal decomposition of [{(ANS)Cu^{II}}₂(O₂²⁻)]²⁺ (**1P**) and [{(ANSPh)Cu^{III}}₂(O²⁻)₂]²⁺ (**3O**) and work-up including demetallation, oxygenated ligand products, i.e., sulfoxides of ANS and ANSPh, were isolated in moderate yield. Further details and expanded studies will be the subject of a future report.

Fig. 1.

ORTEP diagram view (50% probability ellipsoids) of **1A** and **1B**. Left: X-ray structure of **1A**: Cu1-N1, 2.056 Å; Cu1-N2, 2.122 Å; Cu1-N3, 1.935 Å; Cu1-S1, 2.292 Å. Right: X-ray structure of **1B**: Cu1-N1, 2.071 Å; Cu1-N2, 2.136 Å; Cu1-S1, 2.387 Å, $\tau = 0.61$.²⁴

Young Park et al.

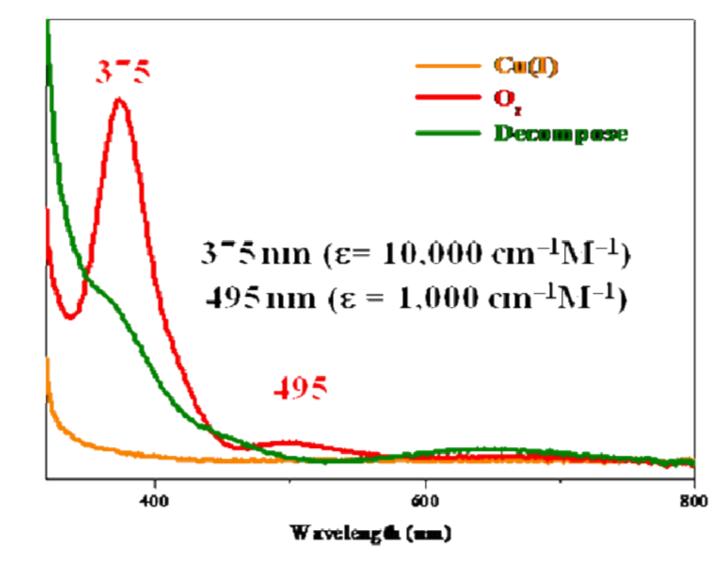
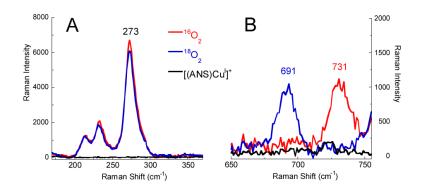



Fig. 2.

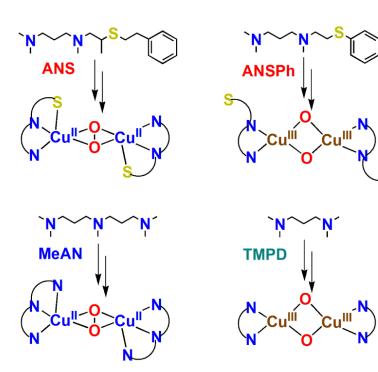

UV-Vis changes upon reaction of O₂ with $[(ANS)Cu(CH_3CN)]^+$ (1A) (yellow) in Acetone at -94 °C giving $[{(ANS)Cu^{II}}_2(\mu-\eta^2:\eta^2-O_2)]^{2+}$ (1P) (red); warming to RT leads to a decomposition product (green).

Fig. 3.

rR spectra of $[{(ANS)Cu^{II}}_2(\mu-\eta^2:\eta^2-O_2^{2^-})]^{2+}$ (**1P**) in acetone with ¹⁶O₂ (red) and ¹⁸O₂ isotopic substitution (blue) in the region of v_{Cu-Cu} (A) and v_{O-O} (B) ($\lambda_{ex} = 379.5$ nm, 77K, 5mW power).

Scheme 1. Ligands and their Cu₂O₂ adducts.

Table 1

IR data for $\mathrm{Cu}^{\mathrm{I}}\text{-}\mathrm{CO}$ adducts and $\mathrm{E}_{1/2}$ values of Cu^{I} complexes

	MeAN	ANS	PHM ^[a]	DβM ^[a]
Cu-CO v_{CO} (cm ⁻¹), THF solution	2079	2092	2093	2089
$E_{1/2}$ (mV) (vs. Fe(Cp) ₂ ^{+/0}) DMF solution under Ar	-195	-180		

 $^{\it [a]}_{\it data}$ for the protein ${\rm Cu}_{M}$ site with His2Met coordination.