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Abstract

Efforts are currently underway to develop a vaccine against Clostridium difficile infection (CDI).
We developed two decision analytic Monte Carlo computer simulation models: (1) an Initial
Prevention Model depicting the decision whether to administer C. difficile vaccine to patients at-
risk for CDI and (2) a Recurrence Prevention Model depicting the decision whether to administer
C. difficile vaccine to prevent CDI recurrence. Our results suggest that a C. difficile vaccine could
be cost-effective over a wide range of C. difficile risk, vaccine costs, and vaccine efficacies
especially when being used post-CDI treatment to prevent recurrent disease.
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1. INTRODUCTION

Efforts are currently underway to develop a vaccine against Clostridium difficile infection
(CDI), a major and potentially growing cause of substantial morbidity, costs, and mortality
throughout the developed world [1-9]. Although numerous interventions have been
implemented to control the spread of Clostridium difficile (C. difficile) in hospitals, the
bacterial pathogen remains established in many locations and continues to spread to others.
CDI can result in longer hospital length of stay, necessitate antibiotic use that may lead to
more antibiotic-resistant bacteria, and even require surgical procedures. A significant
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percentage of treated patients may experience relapse of disease, in some cases multiple
relapses [10]. Moreover, the recent emergence of more virulent strains may make combating
the nosocomial pathogen even more difficult [11].

Candidate C. difficile vaccines currently are in pre-clinical and early clinical development
and show promise as options for both preventing and treating CDI. A potential vaccine
containing C. difficile toxoids A and B has been shown to induce immune response in
healthy adults [12]. Antibody levels measured from study participants exceeded the level
previously shown to be associated with CDI prevention [9]. There is also evidence that such
a vaccine could effectively treat recurrent infections, particularly those that other methods
have failed to remedy [8].

Constructing economic models early in a vaccine's development can help identify
appropriate target populations, establish vaccine efficacy targets, assist in pricing and
reimbursement decisions, and help determine the investment that should be made into
developing the vaccine when substantial changes are still possible. A number of vaccines
have faced challenges when economic modeling occurred too late in the vaccine timeline to
make necessary changes [13]. To answer such questions regarding C. difficile vaccine, we
constructed computer models to simulate the decision of whether to administer C. difficile
vaccine to patients. One model simulated the choice of whether to perform universal
vaccination on at-risk patients. A second model simulated the option of vaccinating those
currently with CDI and undergoing antibiotic treatment to prevent recurrence. Sensitivity
analyses explored how the economic value of the vaccine varied with CDI risk, vaccine cost,
and vaccine efficacy.

2. METHODS

Using TreeAge Pro 2009 (TreeAge Software, Williamstown, MA), we developed two
decision analytic Monte Carlo computer simulation models:

» Initial Prevention Model: depicting the decision whether to administer C. difficile
vaccine to patients at-risk for CDI.

» Recurrence Prevention Model: depicting the decision whether to administer C.
difficile vaccine to patients currently with CDI to prevent CDI recurrence.

The model assumed the societal, hospital, and third party payer perspectives and simulated
the potential consequences of the decision.

Figure 1a illustrates the Initial Prevention Model structure. Each patient had a risk of C.
difficile colonization based on the local C. difficile prevalence. Figures 1 and 2
showdifferent variable names as the probabilities of moving down each branch. These
variable names correspond to the variable names in the second column of Table 1. For
example, the variable pInf represents the probability of infection; its complement 1-pInf
calculates the probability of no infection. The variable pInf draws from the distribution with
the parameters indicated in Table 1. The median age of a patient was 71 years, the median
age of patients discharged with a diagnosis of C. difficile from the 2007 National Inpatient
Survey from the Healthcare Cost and Utilization Project [14]. Each colonized patient then
entered into a C. difficile outcomes sub-tree. Colonized patients had probabilities of
remaining as asymptomatic carriers or progressing to CDI. Figures 1b and 1¢ show the CDI
outcome models for mild and severe CDI, respectively. Both mild and severe CDI required
antibiotic treatment, which had probabilities of being effective. Ineffective treatment
allowed progression to more severe infections, requiring surgery and potentially leading to
death. Patients successfully treated with antibiotics could either remain free of disease or
suffer a CDI recurrence, i.e., reappearance of CDI within three months of successful
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treatment. Those who had a successfully treated first recurrence could then have a second
recurrence. Patients who suffered two or more recurrences that were unsuccessfully treated
had a probability of progressing to a severe disease state requiring surgery.

Figure 2a depicts the main decision model for the Recurrence Prevention Model. For this
model, the median patient age was also 71 years. Each patient began with successfully
treated CDI and then had a probability of experiencing recurrent CDI. All recurrences had
probabilities of progressing either to mild or severe disease. Figure 2b represents the
outcome model for mild CDI, while Figure 2c represents the outcome model for severe CDI,
with both forms of CDI requiring antibiotic treatment. An effectively treated patient could
then suffer a second recurrence. Ineffective treatments at any point in the model allowed
progression to more serious CDI that required surgery and could result in death.

Treatment options depended on the disease severity, prior treatments, and number of
recurrences. For mild disease, metronidazole was the first-line antibiotic treatment, and
vancomycin was the second-line. For severe disease, the treatment of choice was
vancomycin along with intravenous metronidazole prior to surgery. When patients suffered
a recurrence, the first-line treatment was the same antibiotic that worked for the initial CDI
episode (e.g. a patient who relapsed after being successfully treated with metronidazole then
received metronidazole again). Patients suffering two or more recurrences received a tapered
course of vancomycin. Additionally, patients with severe disease required peripheral
intravenous line insertion as well as an abdominal computerized tomography.

Our model measures effectiveness in disability-adjusted life years (DALYS) prevented using
the following formula:

DALY=YLL+YLD
Where YLL=Years Lost to Life and YLD=Years Lost to Disability.

For each simulation run, we determined the incremental cost effectiveness ratio (ICER) of
C. difficile vaccination as defined as:
— Cost,,

COSt\Iu cination NoVaccination

~(DALYs “DALYs,

Vuccination NoVaccination )

Vaccination was considered to be cost-effective if the ICER fell below three times the per
capita gross domestic product (GDP) or $80,412/DALY prevented for the United States, a
frequently cited threshold for cost-effectiveness [15,16].

2.1 Data Inputs

Table 1 lists the input parameters for the model, including variable names (featured in the
Figures), probabilities, costs, and utilities, as well as the distribution parameters for each
variable. Probabilities assumed beta distributions, except for the efficacy of tapered
vancomycin treatment (triangular distribution), as well as the probability of colonization and
the probability of successful isolation, which were fixed values during each simulation. All
costs were in 2009 U.S. dollars. A 3% discount rate adjusted all costs to 2009 dollars.

We used two separate approaches to determine the costs associated with CDI:

» Health Care Resource Use: A first approach involved identifying the procedure
and hospitalization costs associated with different CDI conditions. Costs drew from
triangular distributions, with several exceptions: costs of hospitalization,
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metronidazole [intravenous (1V) and oral (PO)], and surgery assumed gamma
distributions, while the cost of in-hospital death was fixed at $5000.

*  Opportunity Cost of Lost Bed-Days: An alternative approach re-conducted our
analyses using a method described by Graves to ascribe economic costs to hospital
infections [17]. When CDI caused a patient to occupy a bed for a longer period of
time, the hospital lost revenue because the bed could have been filled by another
patient. The Graves method involved valuing the opportunity cost of a lost bed day
and then multiplying it by the extended hospital length-of-stay caused by the
ensuing type of CDI.

Disability weights corresponding to diarrheal disease came from the World Health
Organization's Global Burden of Disease [18]. CDI, CDI recurrences, and death each
resulted in corresponding DALY increments (Table 1). The length of disease was six days,
the median length of hospitalization for a 71-year-old patient with CDI.

2.2 Sensitivity Analyses

Because C. difficile risk may differ significantly from hospital-to-hospital, sensitivity
analyses systematically varied the risk of C. difficile from 0.1% to 90%. Additional
sensitivity analyses ranged vaccine efficacy from 25% to 100%. Because one of our goals is
to estimate the cost thresholds under which a vaccine would remain cost-effective, we
started vaccine cost at $25 for the Initial Prevention Model and $100 for the Recurrence
Prevention Model. We then systematically increased the cost of the vaccine until it was no
longer cost-effective. (Consequently, sensitivity analyses ranged vaccine cost from $25 to
$100 in the Initial Prevention Model and from $100 to $1600 in the Recurrence Prevention
Model.) Furthermore, probabilistic (Monte Carlo) sensitivity analyses simultaneously varied
the values of each parameter throughout the ranges shown in Table 1. Another set of
sensitivity analyses varied the probability of undergoing colectomy due to severe CDI from
its baseline probability distribution listed in Table 1 down to 0.6% and 0.2%.

3. RESULTS

3.1 Health Care Resource Use Approach

Each simulation run comprised of a cohort of 5,000 patients, each travelling 5,000 times
through the model for a total of 2,500,000 simulated trials. Table 2 displays the results from
the Initial Prevention Model when varying C. difficile risk, vaccine efficacy, and vaccine
cost. Shaded cells correspond to situations where vaccination is not cost-effective.
Vaccination was economically dominant (both less costly and more effective) over no
vaccination when C. difficile risk was at least 5% at almost every vaccine efficacy and cost
combination, except when vaccine efficacy dropped to 25% and vaccine cost was at least
$50 and when vaccine efficacy was 50% and cost was equal to $100. A $25 vaccine was
dominant as long as C. difficile risk was at least 2.5%.

Table 3 shows results from the Recurrence Prevention Model at different vaccine efficacies
and costs. Vaccination was cost-effective, and frequently economically dominant, in most
situations. An $800 vaccine was dominant as long as vaccine efficacy was at least 50%.
Even at a cost of $1600, a 75% efficacious vaccination was cost-effective.

Figure 3 displays acceptability curves at different prevalence levels with vaccine efficacy
equal to 75% and cost of vaccine equal to $100 for the Initial Prevention Model. Each curve
represents the proportion of patients per simulation for which vaccination was a more cost-
effective strategy (optimal choice) over no vaccination at various willingness-to-pay (WTP)
thresholds. For example, when C. difficile risk was 5%, vaccination was the optimal strategy
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for over 40% of patients regardless of the WTP threshold. When risk was 10%, vaccination
was the optimal choice for over 60% of patients at all WTP thresholds. Figure 4 displays
acceptability curves for the Recurrence Prevention Model at varying vaccine efficacy rates
when the cost of vaccine was $800. When vaccine efficacy was 50%, vaccination was the
optimal choice for 68% of patients at a WTP threshold of $0. When vaccine efficacy was
75%, vaccination was the optimal selection for over 90% of patients regardless of the WTP
threshold. All results remained robust to (i.e., were not affected by) varying the probability
of severe disease necessitating colectomy.

3.2 Opportunity Cost of Lost Bed-Day Approach

Each simulation run comprised of a cohort of 5,000 patients, each travelling 5,000 times
through the model for a total of 2,500,000 simulated trials. Table 4 presents the results for
the Initial Prevention Model at varying C. difficile risk, vaccine efficacies, and vaccine costs.
Vaccination was cost-effective when vaccine cost was $25 and C. difficile risk was equal to
or greater than 10%, except when efficacy was 25% and C. difficile risk was less than or
equal to 15%.

Table 5 lists the cost-effectiveness of vaccination for the Recurrence Prevention Model.
Vaccination was cost-effective at all vaccine efficacy and cost combinations except when
cost was equal to $800 and efficacy was equal to or less than 50% and when cost was equal
to $400 and efficacy was equal to 25%. Vaccination became dominant when the cost of
vaccine was $200 or less, except when efficacy dropped to 50% at vaccine cost $200 and
25% at vaccine cost $100. All results remained robust to varying the probability of
colectomy.

4. DISCUSSION

C. difficile vaccination appears to be cost-effective for a wide range of C. difficile risk,
vaccine efficacies, and vaccine costs. In fact, vaccination quickly becomes economically
dominant as C. difficile risk and vaccine efficacy increase, suggesting that vaccination in
some settings could actually save society, third party payers, and hospitals money while
preventing morbidity and mortality. Economically dominant interventions are not common
in health care, as many measures require some cost to prevent morbidity and mortality.
Therefore, finding an intervention to be cost saving in addition to beneficial to health
strongly supports its implementation. So, while the risk of C. difficile may vary significantly
from health care facility-to-health care facility and patient-to-patient, vaccination may be
favorable in many circumstances. This is compelling evidence for policymakers and
researchers to further invest in the development of C. difficile vaccine.

If and when a C. difficile vaccine reaches the market, choosing an appropriate target
population will be important. Even effective vaccines such as the Lyme disease vaccine
have struggled when target populations were not selected carefully [13]. Our results suggest
that preventing CDI recurrence may be good initial indication for the vaccine. This initial
indication could support even higher vaccine prices, which may provide further motivation
for manufacturers to bring the vaccine to market. As expected, broader use for the initial
prevention of CDI may not support as high prices, but increased volume may compensate
for lower prices. Our results also outlined possible effects of using various C. difficile risk
thresholds if vaccination is to be restricted to higher-risk individuals.

The potential value of the vaccine stems from the heavy burden of CDI. Even mild disease
such as diarrhea, abdominal pain, and nausea can add to costs and lengthen hospital stay.
More severe conditions such as fever, severe shock or sepsis, and toxic megacolon can result
in expensive procedures and may even lead to death. The biology of C. difficile makes it a
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difficult pathogen to control; C. difficile spores are resistant to heat, ethanol-based hand
sanitizers, and quaternary ammonium disinfectants and can survive for months without
proper disinfection [1]. In fact, C. difficile may be a growing problem. From 1993 to 2003,
both the number of C. difficile cases and deaths more than doubled in the United States
(cases went from 261 to 546 cases and deaths went from 20.3 to 50.2 per 100,000
discharged patients) [19]. Moreover, recent years have seen the emergence of a
hypervirulent C. difficile strain [11].

Certainly, developing a functional C. difficile vaccine faces some technological challenges
[20-22]. A parenteral or intravenous vaccine candidate may stimulate the production of
circulating antibodies in the bloodstream but not adequately protect the gastrointestinal
mucosa, where the pathogen inflicts most of its damage. Inducing complete mucosal
protection (e.g., stimulating gut-associated lymphoid tissue) may require the stimulation of
all immune system arms, including mucosal secretory IgA, functional serum IgG antibodies,
and systemic and local cell-mediated immune responses. Direct local delivery of an
adequate dose to the gastrointestinal mucosa may be possible but not necessarily easy.
Achieving adequate protection may require an initial priming dose and then subsequent
booster doses. Nonetheless encouraging advances in mucosal immunization have occurred
over the past decade. Flumist (a live attenuated influenza vaccine), the Sabin oral polio
vaccine, Ty21a (for typhoid fever), CVD 103-HgR (for cholera), and RotaTeq (for rotavirus
infection) are examples of licensed and effective mucosally administered vaccines.

Our intent was to be conservative and err on the side of underestimating the benefits of a C.
difficile vaccine. Our model included only the more common CDI sequelae and, when
choices were available, the less expensive procedures. It also excluded chronic disease
exacerbations that CDI may induce (e.g., dehydration leading to diabetic ketoacidosis in a
diabetic) and relatively rare C. difficile complications. In addition, our model did not
incorporate how vaccination could prevent C. difficile transmission or reduce the selection
pressure for antibiotic-resistant bacteria (such as vancomycin-resistant Staphylococcus
aureus) by minimizing the use of antibiotics to treat CDI. Moreover, combining vaccine
with other infection control measures (e.g., hand hygiene and cohorting) could have
compounding effects in controlling C. difficile spread.

4.1 Limitations

All computer models are simplifications of real life and cannot completely represent every
possible C. difficile and CDI-associated factor, event, and outcome. Computer models also
cannot fully represent the full spectrum of socio-demographic and clinical heterogeneity
among hospital patients and hospitals. Additionally, as stated earlier, our model focused on
more common clinical outcomes for which data were available and did not incorporate all of
the potential benefits of vaccination. Finally, the data inputs for our model derived from
different studies of varying quality.

4.2 Conclusions

Once developed, a C. difficile vaccine could be cost-effective over a wide range of C.
difficile risk, vaccine costs, and vaccine efficacies. The vaccine could be particularly
valuable for patients currently treated for CDI to prevent recurrent disease. Our study results
support further investment into developing a C. difficile vaccine and suggest that vaccine
efficacy targets do not necessarily have to be exceptionally high for the vaccine to have
value. Our results also identified possible price points for the vaccine to assist
manufacturers, third party payers, and other potential purchasers.
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FIGURE 2.

FIGURE 2a: Recurrence Prevention Main Model Structure

FIGURE 2b: Recurrence Prevention Mild Disease Outcomes Sub-Tree Structure
FIGURE 2c: Recurrence Prevention Severe Disease Outcomes Sub-Tree Structure
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