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Abstract
In this paper we investigate tradeoffs between speed and accuracy that are produced by humans
when confronted with a sequence of choices between two alternatives. We assume that the choice
process is described by the drift diffusion model, in which the speed-accuracy tradeoff is primarily
controlled by the value of the decision threshold. We test the hypothesis that participants choose
the decision threshold that maximizes reward rate, defined as an average number of rewards per
unit of time. In particular, we test four predictions derived on the basis of this hypothesis in two
behavioural experiments. The data from all participants of our experiments provide support only
for some of the predictions, and on average the participants are slower and more accurate than
predicted by reward rate maximization. However, when we limit our analysis to subgroups of
30-50% of participants who earned the highest overall rewards, all the predictions are satisfied by
the data. This suggests that a substantial subset of participants do select decision thresholds that
maximize reward rate. We also discuss possible reasons why the remaining participants select
thresholds higher than optimal, including the possibility that participants optimize a combination
of reward rate and accuracy or that they compensate for the influence of timing uncertainty, or
both.
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Introduction
During decision making in natural environments, as well as in experimental settings,
humans and animals can select to be either fast or accurate. When accuracy is emphasized,
their decisions are slower, but when speed is emphasized, they make more mistakes. This
phenomenon is known as the speed-accuracy tradeoff (Franks, Dornhaus, Fitzsimmons, &
Stevens, 2003; Pachella, 1974; Wickelgren, 1977).
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The existence of the speed-accuracy tradeoff can be explained within the framework of
sequential sampling models of decision making (Busemeyer & Townsend, 1993; Laming,
1968; Ratcliff, 1978; Stone, 1960; Usher & McClelland, 2001; Vickers, 1970). In this paper
we focus on one of these models, the drift diffusion model (DDM), which is a continuous
version of the Sequential Probability Ratio Test (Wald & Wolfowitz, 1948), and has been
shown to fit behavioural data from human choice tasks (Ratcliff, 2006; Ratcliff, Gomez, &
McKoon, 2004; Ratcliff & Rouder, 2000; Ratcliff & Smith, 2004; Ratcliff, Thapar, &
McKoon, 2003). The DDM describes choice between two alternatives. It makes the
following assumptions: (i) The sensory evidence supporting the alternatives is noisy. (ii)
During the decision process the difference between the evidence supporting the two
alternatives is integrated over time. (iii) When this integrated difference reaches a certain
positive or negative threshold value, the choice is made in favour of the corresponding
alternative. In the DDM, the height of the threshold controls the speed-accuracy tradeoff: If
the threshold is lower, it can be reached quicker, so decisions are faster, but they are less
accurate because they are based on a smaller amount of noisy evidence. Conversely, if the
threshold is higher, decisions are slower, but they are also more accurate because they are
based on the integration of more evidence.

However, an important question remains unanswered: What decision thresholds do people
select, especially when they are not explicitly told to emphasize speed or accuracy, or are
encouraged to favor some ill-defined combination of both (as in many experimental tasks)?
A number of theories addressing this question have been suggested (Busemeyer & Rapoport,
1988; Edwards, 1965; Mozer, Colagrosso, & Huber, 2002; Myung & Busemeyer, 1989;
Rapoport & Burkheimer, 1971). Recently, Gold and Shadlen (2002) proposed that
participants select the threshold that maximizes the reward rate (RR), defined as an average
number of rewards per unit of time. How the RR can be maximized depends on the
paradigm.

Gold and Shadlen (2002) considered the following experimental paradigm: a participant is
presented with a choice stimulus and is free to indicate his/her choice at any time. After the
response, there is a fixed interval D between the response and the onset of the next trial. If
the participants' choice is correct, he/she receives a reward, and if it is an error, the response-
stimulus interval D is increased by an additional penalty delay Dp. This paradigm is often
used in animal studies of decision making, as it captures some key aspects of decision
making in natural environments (Gold & Shadlen, 2002).

In the above paradigm, RR depends on threshold height. If the threshold is too low, the
participant makes fewer correct choices and receives fewer rewards; if the threshold is too
high, response durations are so long that the participant receives fewer rewards per unit of
time (even if most choices are correct). As shown by Bogacz et al. (2006), there exists a
unique threshold for the DDM that maximizes RR. The ability to select this optimal
threshold presumably conveys an evolutionary advantage, providing an animal more
rewards than its competitors.

In our previous theoretical work (Bogacz et al., 2006), we have shown how the optimal
threshold depends on task parameters, such as choice difficulty and experimental delays D,
Dp. We also made experimental predictions regarding error rates (ER) and reaction times
(RT) that must hold if participants indeed select the threshold maximizing RR. This article
describes experiments that test the following four predictions:

1. The optimal threshold is higher for longer D, and hence the participants should
have lower ER and longer RT in blocks of trials with longer D.
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2. The optimal threshold depends only on D+Dp, rather than D and Dp individually,
and hence ER and mean RT should be the same on blocks of trials with equal D
+Dp, even if D and Dp themselves differ between blocks.

3. The values of decision thresholds estimated by fitting the DDM to the distributions
of RT should match the optimal values that maximize RR.

4. The mean (normalized) RT, plotted as a function of ER, should follow a particular
relationship defined by the optimal performance curve (described in detail in the
next section).

In Bogacz et al. (2006), we also derived optimal thresholds under the assumptions that
participants not only maximize RR, but also combinations of RR and accuracy. Here, we
compare predictions of these analyses with experimental data.

This article is organized as follows. In the next section we review the DDM and the
behavioural predictions following the assumptions that the participants select thresholds
maximizing RR or combinations of RR and accuracy. Then we present two experiments and
analyze their results based on all participants, showing that they provide partial support for
the theoretical predictions. Participants, on average, set their thresholds higher than
predicted by RR maximization. However, for the 30-50% of participants who achieved the
highest reward over the entire experiment, all theoretical predictions are confirmed by the
data. We also present data describing how quickly participants learn their thresholds, and
then conclude with a general discussion of the experimental results and the relation of our
work to other studies. Some initial results of this work were reported by Holmes et al.
(2005).

Review of the Optimal Threshold Theory
Drift Diffusion Model

We begin by briefly describing two versions of the DDM: pure, that captures the main
features of the decision process and that is easier to analyse mathematically; and extended,
that fits more details of behavioural data from choice tasks (for more complete reviews see
Bogacz et al., 2006; Ratcliff & Smith, 2004). All symbols used are listed in Table 1 for
reference.

Let x(t) denote the difference between evidence supporting the first and the second
alternatives accumulated until time t. The pure DDM assumes that at the beginning of the
decision process there is no bias towards either alternative, so x(0)=0, and that when the
signal appears, x(t) is integrated according to the following equation (Ratcliff, 1978):

(1)

In Equation 1, dx denotes the change in x during a small time interval dt. This change in x
includes two parts: constant drift Adt representing the average increase in x during interval
dt, and noise cdW which has a normal distribution with mean 0 and variance c2dt, reflecting
the assumption that sensory evidence, internal processing, or both are noisy. The sign of A
represents which alternative is correct. For simplicity we consider the case A>0 for which
the first alternative is correct. The ratio of the parameters A and c represents how easy the
task is (i.e., the signal-to-noise ratio).

The DDM assumes that as soon the value of x reaches a positive threshold z or a negative
threshold −z, the choice is made in favour of the corresponding alternative. A trial is
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considered as correct if the threshold corresponding to the correct alternative (i.e., the upper
threshold for A>0) is reached, and the trial is considered as an error when the other threshold
is reached (due to noise). For the pure DDM, the expected value of ER is given by (Ratcliff,
1978):

(2)

The mean decision time (DT), defined as the mean time of integration before reaching a
decision threshold, is given by (Ratcliff, 1978):

(3)

The DDM assumes that the RT is comprised of DT and an additional interval T0 due to non-
decision processes (e.g., visual and motor), i.e.,

(4)

The pure DDM assumes that T0 does not differ between trials, although it may differ among
subjects. It is useful to note that if the parameters of the pure DDM: A, c, z are all scaled by
the same constant, the ER and DT do not change. Thus instead of considering these
parameters, it is simpler to consider their ratios. For simplicity of calculations we consider
the following new parameters: a normalized threshold z̃ (which corresponds to DT with zero
noise) and signal-to-noise ratio squared ã:

(5)

For these new parameters1 Equations 2 and 3 simplify to (Bogacz et al., 2006):

(6)

The extended DDM differs from the pure model in three assumptions (Ratcliff & Smith,
2004). First, in the extended model T0 may differ between trials and it is assumed it comes
from a uniform distribution with range [T0-st, T0+st]. Second, the initial value of x is not
always equal to 0, but instead is chosen randomly from a uniform distribution with range [-
sx, sx]. The non-zero value of x(0) may reflect participants' prior expectations about
probabilities of the alternatives to be correct, or the possibility that participants prematurely
start to integrate x before stimulus onset.

1Although these new parameters are ratios, they have units: z̃ has units of time and ã has units of 1/time (Bogacz et al., 2006); and
while listing their values we take units of time to be seconds.
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Third, in the extended model the drift is not the same from trial to trial, but instead is chosen
randomly on each trial from a normal distribution with mean A and standard deviation sA.
Trial-to-trial drift variability may reflect differences in difficulty or attention between trials.
The last two forms of variability allow the extended DDM to account for the differences
between RT on correct and error trials (Ratcliff & Rouder, 2000).

Reward Rate Maximization
For the sequential choice task described in the Introduction, RR is given by the ratio of the
fraction of correct trials and the average duration of the trial (Gold & Shadlen, 2002):

(7)

Let us first examine the predictions made by RR maximization, when it is assumed that the
pure DDM provides a sufficient approximation of the decision process (we will return to the
extended model below). To find the threshold maximizing RR, we substitute Equations 6
into 7, calculate the derivative of RR with respect to z̃, and find that, for this derivative to
vanish, the normalized threshold z̃ must satisfy:

(8)

We refer to the solution of this transcendental equation as the optimal normalized threshold
and denote it by z̃o. Although it does not admit an explicit solution in terms of elementary
functions, Equation 8 has a unique solution (Bogacz et al., 2006) which forms a basis for the
predictions outlined above, and labeled to remind the reader of their contents.

Prediction z∼D—The optimal threshold increases as D lengthens. It follows intuitively
that, as opportunities to receive reward become less frequent, the accuracy of each choice
becomes more important. This may also be shown formally2.

Prediction z(D+Dp)—The optimal threshold depends only on D+Dp, rather than on D and
Dp separately, because in Equation 8 the delays D and Dp appear only as a sum. This makes
the non-intuitive prediction that participants should select the same threshold for a task that
has a very short intertrial interval (D) but long delay imposed after errors (Dp), as for one
that has a long intertrial interval but no penalty delay. For convenience, we denote the sum
of the three delays influencing the optimal threshold together by Dtotal:

(9)

Prediction z=zo—The optimal threshold z̃o satisfying Equation 8 can be found
numerically (since it is known that there is only one) and directly compared against
thresholds chosen by a participant. In order to perform such a comparison for experimental
data collected for given D and Dp, the parameters of the pure DDM ã, z̃ and T0 need to be
obtained by fitting the model to data. We refer to the normalized threshold z̃ estimated from
the data as the participant's normalized threshold. The values of D, Dp, ã and T0 can then be

2By differentiating Equation 8 with respect to D and noting that the derivative of z̃o is always positive.
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substituted into Equation 8, and the equation solved numerically for z̃o. For optimality, the
normalized threshold z̃o obtained in this way should be equal to participant's normalized
threshold z̃ obtained from fitting the model.

Prediction DT(ER)—As we show in Appendix A, Equation 8 can be used to find the
relationship between ER and DT that holds under the optimal threshold, to which we refer as
the optimal performance curve (Bogacz et al., 2006). This relationship has the following
form:

(10)

The left side of the above equation expresses the ratio of the time in the trial used on
decision processes to the maximum interval between the end of one decision process and the
start of the next, while the right side is a function only of ER. Hence, the equation describes
the relationship between ER and normalized DT as a fraction of Dtotal. This relationship,
which contains only behavioral observables (DT and ER) and, in Dtotal, experimenter-
determined delays and the non-decision time T0, is shown in black thick curves in Figure 1.

The above relationship should be satisfied for all values of signal to noise ratio ã and for all
values of total delay Dtotal. Thus the left end of the curve corresponds to very easy tasks on
which the participants should be both fast and accurate. The right end of the curve
corresponds to the tasks which are so difficult that the strategy maximizing RR is to guess
without integrating any evidence at all. The optimal performance curve predicts that the
longest normalized DT should be observed for ER around 18%, at which point DT should be
equal to approximately 20% of Dtotal.

While the pure DDM is more tractable to analysis than the extended DDM, as noted above
the latter has been used to account for a wider range of empirical phenomena. Therefore, we
also consider whether the four predictions described above hold if it is assumed that the
decision process conforms to the extended DDM.

Prediction z∼D—Numerical explorations of the extended DDM indicate that, like its pure
form, the optimal threshold increases as delay D is lengthened.

Prediction z(D+Dp)—Bogacz et al. (2006) have shown that, as for the pure DDM, the
optimal threshold depends on Dtotal (rather than on D and Dp separately).

Prediction z=zo—The optimal threshold for the extended DDM, though different than for
the pure DDM, can also be found numerically (by finding the threshold maximizing
Equation 7 3), yielding alternative versions of prediction z=zo.

Prediction DT(ER)—Unlike the pure DDM, an optimal performance curve independent of
DDM parameters cannot be defined for the extended DDM. This is because the relationship
between DT and ER depends on the variabilities sx, sA, as well as on D and Dp separately
(Bogacz et al., 2006).

3Equation 7 includes ER and DT, for which there are no analytic expressions for the extended DDM, but we evaluated them by
integrating numerically over a distributions of A, the expressions for ER and DT for a DDM with a variability of x(0) (given in Bogacz
et al., 2006).
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Maximization of Reward Rate and Accuracy
It has been suggested that while choosing the decision threshold, participants not only
optimize RR but also accuracy (Maddox & Bohil, 1998). We review two criteria in which
accuracy is explicitly included (Bogacz et al., 2006). In both we assume for simplicity that
Dp=0. The first criterion is a weighted sum of RR and accuracy, which may be written as:

(11)

where q denotes the weight accorded to accuracy, and the second term is normalized by
Dtotal to allow the units [1/time] to be consistent. The second criterion assumes that there is
a penalty q for making an error4, and the modified RR is given by:

(12)

Assuming that the decision process is well approximated by the pure DDM, optimal
performance curves can be derived describing the relationships between DT and ER for
optimizing the threshold for the RA and RRm criteria (see Appendix A). These have the
following form:

(13)

In both cases the right hand sides contain the additional weight parameter q, hence there
exist families of optimal performance curves for different values of q. As q approaches 0,
optimal performance curves for RA and RRm converge to the optimal performance curve for
RR, since in this case both criteria simplify to RR. These families are shown in Figures 1a
and 1b. They are similar in that, for both criteria, DT for the optimal threshold is greater
than for optimizing RR (this reflects the emphasis on accuracy). However, note also that
these criteria differ in their predictions: For RA the value of q does not influence the ER
corresponding to maximum DT (i.e., the position of the peak), while for RRm increasing q
moves the peak to the right. Furthermore, as q increases, the peak of the curve for RA
becomes relatively narrower than for RRm.

We note that the free parameter q in the criterion RA (or RRm) can be adjusted so that any
single combination of ER and DT (in a certain range) lies on the corresponding optimal
performance curve. It is, however, not true that arbitrary multiple combinations of ER and
DT must all lie on one such curve. Each criterion and choice of q predicts a curve with a
particular shape, as shown in Figure 1, and multiple (ER, DT) data points may or may not
follow this shape (e.g., if DT decreased monotonically across conditions as ER goes from 0
to 0.5, no curve could match the data). Hence these criteria must be assessed by comparing
with ERs and DTs from multiple conditions and/or multiple participants, under the
assumption that the participant(s) maximize the same criterion, with the same q, in all the
conditions.

4RRm would describe reward rate in a modified paradigm in which a participant receives a unit of reward for a correct choice and
loses q units of reward for an error. Thus in the standard paradigm q describes the relative negative utility of committing an error.
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General Methods
We present the results of two experiments designed to test whether human decision makers
set their thresholds in an optimal manner. In both experiments participants performed
sequences of choices between two alternatives, but the experiments differed in the stimuli
used. In the first experiment participants discriminated the direction of movement of dots
(stimuli often used in decision studies in monkeys, e.g., by Shadlen and Newsome (2001)).
In the second experiment participants discriminated whether the fraction of an array
occupied by stars was greater or less than 50% (these stimuli were previously used by
Ratcliff et al. (1999)). Both experiments were approved by the Institutional Review Panel
for Human Subjects of Princeton University. Below we describe aspects common to both
experiments, and later in the Methods sections of Experiments 1 and 2 we only describe
aspects specific to individual experiments5.

Participants
These were adults recruited via announcements posted around the Princeton University
campus. Participants were predominantly undergraduate and graduate students. Participants
were paid 1 cent for each correct choice. To further increase motivation, participants were
informed that the one who earned the most overall (in each group of 20 participants) would
receive an additional prize of $100 at the end of the experiment. All participants expressed
written consent for participation.

Procedure
Participants were instructed to gain as many points as possible on a computerized two-
alternative, forced-choice task by making correct choices. In each trial, a stimulus was
presented and remained until the participant responded by pressing a corresponding key.
After each correct response participants were informed by a short beep if the response was
correct and a point was scored. No feedback was given following incorrect responses. After
each response there was a delay D before presentation of the next stimulus (D was kept
constant within each block, but varied across blocks). On some blocks (see below) an
additional delay Dp was imposed after error responses.

Design
The length of a block of trials was limited by fixing overall block duration – rather than by
fixing the number of trials completed within it – in order to enforce the importance of the
speed-accuracy tradeoff. Trials were blocked by delay condition. There were four delay
conditions: (1) D=0.5s; (2) D=1s; (3) D=2s; and (4) D=0.5s and Dp=1.5s (in the first three
conditions Dp=0). Before the start of the experiment participants had three blocks of practice
in which no money was paid for correct choices. Participants were informed about the
number of blocks, their fixed duration, and that delays between trials (and difficulty in
Experiment 2) differed between blocks, but were they not told the exact durations of the
delays (or difficulty levels in Experiment 2).

After finishing the experiment, participants were asked to complete a questionnaire in which
they rated (from 1 to 5) the difficulty of the experiment, the degree to which they were
motivated by the one cent reward after each correct decision, and by the $100 prize.
Participants were also asked if their strategies differed between blocks (answer yes or no),
and if so to describe how their strategies differed.

5Complete behavioural data from both experiments and the estimated parameters of DDM for all participants can be downloaded
from: http://www.cs.bris.ac.uk/home/rafal/optimal/data.html
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Experiment 1
Method

Participants—These were 20 adults (9 males and 11 females; average age: 20 years).

Stimuli and apparatus—We used the same stimuli that were used in other studies of
decision making (e.g., Gold & Shadlen, 2003; Palmer, Huk, & Shadlen, 2005; Ratcliff &
McKoon, 2008). The display was a field of randomly moving dots all of which appeared
within a 5° circular aperture in the center of the screen. Dots were white squares 2 by 2
pixels (0.7° square) displayed against a black background, with a density of 16.7 dots/
degree2/s (6 dots per frame). On each trial, a fraction of the dots moved in a single direction
over time, corresponding to that trial's correct direction, while the remaining dots were
randomly repositioned over time. On each frame, 11% of the dots were independently
selected as the coherently-moving dots, and were shifted 0.2 deg from their position for each
40 ms (3 video frames) elapsed, corresponding to a speed of 5 deg/sec (either leftward or
rightward). The remaining dots were re-plotted in random positions on each frame. The
display was generated in MATLAB on a Macintosh computer using the Psychophysics
Toolbox extension (Brainard, 1997; Pelli, 1997) and software written by Joshua Gold.

Procedure—Participants were asked to decide whether the prevailing motion of the dots
was left or right, and had to indicate their responses by pressing “M” (rightward motion) or
“Z” (leftward motion) on a standard keyboard (the mapping of keys to the right and left
responses was not counterbalanced across participants). Participants were required to release
the key after each response in order to initiate the next trial. The current score was displayed
in the center of the screen during delay intervals.

Design—The experiment consisted of 5 blocks, each lasting 7 minutes. One block of trials
was run for each delay condition, except for condition D=2s. Two blocks were run the D=2s
delay condition because a single 7-minute block yielded too few trials for analysis.

Behavioral Results
Predictions z∼D and z(D+Dp) stated in the Introduction were tested directly by comparing
ERs and RTs on different conditions of Experiment 1 (see Figure 2). A oneway analysis of
variance (ANOVA) on delay condition (with participant as a random effect) revealed
significant differences between delay conditions in ERs (F(df=3) = 5.84, p=0.0015), but the
differences between RTs did not reach significance (F(df=3) = 2.02, p=0.12).

Prediction z∼D—In the first three conditions (D=0.5, D=1, D=2) there was a significant
negative correlation between D and ER (after subtracting each participant's mean ER across
conditions from their ER in each condition; r=−0.53, p<10-4), and a significant positive
correlation between D and RT (after subtracting each participant's mean RT; r=0.29,
p=0.03). Since we know that the ER and RT of the DDM are monotonic functions of the
decision threshold, we can infer from Figure 2 that, on average, in the first three conditions
(D=0.5, D=1, D=2) the participants chose higher thresholds in the longer delay conditions.
This pattern is qualitatively consistent with prediction z∼D.

Prediction z(D+Dp)—To investigate the prediction that participants should choose the
same threshold in delay conditions 3 (D=2s) and 4 (D=0.5, Dp=1.5s so that Dtotal=2s), we
compared the ER and RT between these conditions. Both ER (t(df=19) = 2.23, p=0.04) and
RT (t(df=19) = 2.49, p=0.02) were significantly different between these conditions. This is
not consistent with prediction z(D+Dp). However, as discussed below, this prediction was
largely satisfied for a subset of the best performing participants.
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Estimating Parameters of the DDM
Testing predictions z=zo and DT(ER) requires estimating parameters in the DDM for
individual participants. For the purpose of comparison, we estimated parameters of both
pure and extended models.

There are at least two tenable approaches to estimating the parameters of the DDM: (i) Fit a
separate DDM to each participant and delay condition; or (ii) Assume that certain
parameters (e.g., the non-decision part of reaction time, T0) do not vary across conditions for
a given participant, and fit the DDM with the constraint that these fixed parameters are
constant across conditions. If the assumption of approach (ii) is correct, then this more
constrained approach will give better estimates of parameters. Therefore, we first estimated
the parameters of the pure DDM using the unconstrained method (i) and identified those
parameters that did not differ systematically across conditions; we then treated these as fixed
parameters using the more constrained method (ii), as described below.

For each participant and condition we used the unconstrained method to estimate the
following parameters: non-decision time T0, signal to noise ratio ã and decision threshold z̃
(divided by drift rate)6.

Following Ratcliff and Tuerlinckx (2002), we divide the RT distribution into five quantiles
(in units of seconds): 0.1, 0.3, 0.5, 0.7, 0.9, and denote these by RTq

th and RTq
ex for the pure

DDM (theory) and data (experiment) respectively. For the moment, we do not distinguish
between the distribution for correct and error trials, because for the pure DDM with fixed
drift rate and initial condition, as employed here, their means are identical (Feller, 1968; we
will return to the extended model later). We denote the error rates given by the pure DDM
and observed in the experiment by ERth and ERex respectively.

The subplex optimization algorithm (Rowan, 1990) was used to find parameters minimizing
the cost function describing the weighted difference between ERs and RT distributions of
the model and from the experiment (Ratcliff & Tuerlinckx, 2002):

(14)

In the above equation, w's denote the weights of the fitted statistics. We choose the weight of
a given statistic close to 1 / (the estimated variance of this experimental statistic), as

proposed by Bogacz and Cohen (2004). In particular we take:  and

, where ERaν and RTq
aν are ERex and RTq

ex averaged across all delay
conditions7. This averaging across conditions is done to avoid dividing by 0 in blocks in
which the participant did not make any errors, and also because the differences in ERex and

6We estimate the ratios ã and z̃ rather than the original parameters of the DDM A, c, and z, because it is not possible to estimate A, c,
and z uniquely (see Section Drift Diffusion Model). One could also fit different ratios (e.g. A/c and z/c), but we use ã and z̃ for
consistency with the theoretical treatment, in which these ratios best simplified the mathematical analysis. Although we estimate z̃ (=
z/A) rather than z, we will still be able to determine whether a participant chooses the optimal threshold zo: recall that Equation 5
implies that the optimal normalized threshold z̃o = zo/A, thus if the estimated z̃ is equal to z̃o, this also implies that z = zo.
7The variance of ER can be estimated as follows: Assume, for a given condition, that a participant has a probability of making an
error equal to pe and there are n trials in this condition. Then the experimental error rate ERex comes from the binomial distribution
with mean pe and variance pe(1−pe)/n. For simplicity we estimate pe as ERaν. The variance of RTqex can be estimated using a
method proposed by Maritz and Jarrett (1978), but here for simplicity we assume that this variance is proportional to the mean of
RTqex and inversely proportional to n, thus we simply take wRT,q = n/RTqaν.
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RTq
ex across conditions for single participants are small in comparison to differences

between participants.

Using the unconstrained method described above, we fitted the pure DDM to all conditions
of all 20 participants. The ANOVA did not reveal significant differences in either T0
(F(df=3) = 0.7, p=0.55) or ã (F(df=3) = 0.92, p=0.44) between delay conditions. To further
investigate the differences in T0 and ã between delay conditions, we performed paired t-tests
between all pairs of conditions, and none of the tests were significant (p > 0.1 for all tests).
Therefore, in the constrained estimation method we assumed that a given participant has the
same T0 and ã for all conditions. Accordingly, for a given participant we estimated six
parameters: non-decision time T0, signal to noise ratio ã, and four normalized decision
thresholds z̃ (one for each of the four delay conditions). We found parameters minimizing
the following cost function (analogous to that of Equation 14).

(15)

In the above equation ER and RT denote the error rates and reaction time indexed
additionally by the delay conditions. The parameters of the pure DDM found in this way
were used in the analyses in the following sections.

To estimate parameters of the extended DDM from the data we used the DMAT toolbox
(Vandekerckhove & Tuerlinckx, 2007) that finds parameters that maximize a (multinomial)
likelihood function (Ratcliff & Tuerlinckx, 2002). In fitting the extended DDM we followed
our treatment of the pure DDM by constraining all parameters except the decision threshold
to be constant across conditions for any given participant.

Fits of the DDM
Figure 3 compares the fits of the pure and the extended DDMs to data from a representative
participant (see caption for the explanation of the quintile probability plots). This participant
produced different RTs for error and correct trials (note that open circles are in different
positions in the left and right parts of the panels). As could be expected this difference was
captured by the extended DDM, but not by the pure DDM which always produces the same
RT distribution for error and correct trials (note that lines in Figure 3a are symmetric).
Nevertheless, the pure DDM was able to capture the speed-accuracy tradeoff produced by
the participant: Note that the lines in the right part of Figure 3a are increasing, which
indicates that as the accuracy increases, the RT also increases. Thus, the pure DDM was able
to fit quite well this tradeoff on correct trials (constituting a great majority of trials).

As could be expected, across the participants, there was a strong correlation between the
parameter values estimated by fitting the pure DDM and the corresponding parameters
estimated by fitting the extended DDM, as shown in Figure 4 (for T0, r = 0.67; for ã, r =
0.61; for z̃, r = 0.92). Such strong correlations have been reported before (Wagenmakers, van
der Maas, & Grasman, 2007). Nevertheless, Figure 4 also shows that there are systematic
differences between parameters, namely the pure DDM underestimates ã and overestimates
z̃, in agreement with observations of Wagenmakers et al. (2007)8. Overall, however, our

8Wagenmakers et al. fitted DDMs with an assumption that parameter c is fixed. They observed that the pure DDM underestimates
parameter A in comparison to the extended model. Since the definitions of ã and z̃ involve ratios of A, see Equations 5, it implies that
the pure DDM underestimates ã (proportional to A2) and overestimates z̃ (inversely proportional to A).

Bogacz et al. Page 11

Q J Exp Psychol (Hove). Author manuscript; available in PMC 2010 July 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



findings suggest that the simpler pure DDM is a useful tool in the analysis of the speed-
accuracy tradeoff.

Decision Thresholds
Prediction z=zo—This is tested in Figure 5 which compares the estimated values of
participants' thresholds (estimated from the DDM) with the optimal ones (found as described
in Section Reward Rate Maximization), for the pure and extended DDM.

Figures 5a and 5b show data for a sample participant, whose thresholds are very close to the
optimum values. To quantify the similarity between the normalized participant's and optimal
thresholds, we do not use Pearson's correlation as it can give high values even if the mean of
one set of thresholds is higher than of another (as long as there is a linear relationship
between them). Thus to test Prediction z=zo Appendix B defines a correlation measure r1
that assumes that the two sets of thresholds have the same mean. In Figures 5a and 5b these
correlations are for the pure DDM: r1 = 0.89 (p = 0.07), and for the extended DDM: r1 =
0.87 (p = 0.09)9.

Figures 5c and 5d show the data for all 20 participants. While not all participants set their
thresholds close to the optimal values, nevertheless there is a strong correlation between
normalized participants' and optimal thresholds for the pure DDM: r1 = 0.44 (p < 10−5), and
for the extended DDM: r1 = 0.62, (p < 10−5)10.

Figures 5e and 5f compare the participants' and optimal normalized thresholds for the four
delay conditions, each averaged across all 20 participants. On average, participants appear to
set their thresholds higher than the optimal values, an effect that is significant in the short
delay conditions (D=0.5s and D=1s) for the pure DDM and in all conditions for the extended
DDM.

Comparing the left and right columns of panels in Figure 5 suggests that fitting the pure and
the extended DDM reveals very similar relationships between the participants' and optimal
thresholds. This similarity can be traced to the strong correlation between those parameter
values estimated by fitting the pure DDM and those estimated by fitting the extended DDM
(Figure 4).

In summary, while the optimal threshold theory explains a significant proportion of the
variance in participants' thresholds, on average they tend to set their thresholds to values
higher than optimal for maximizing RR – especially in the short delay conditions. We will
return to this observation below.

Experiment 2
Method

Participants—These were 60 adults (30 males and 30 females). In addition to payments
described in General Methods, participants were also paid $8 for participation. Participants
in Experiment 2 did not take part in Experiment 1.

9Note that since we found no significant differences in signal to noise ratios across conditions within participants (see Section
Estimating Parameters of the DDM), it is reasonable to assume that drift A is also the same in all delay conditions, and all thresholds
in Figure 5a are therefore normalized by the same value of drift. The plot comparing non-normalized thresholds of this participant
with non-normalized optimal thresholds would look exactly the same as Figure 5a, but both scales of the axes would be divided by the
value of the drift. So the non-normalized thresholds of this participant are also very close to the optimal values (and there is the same
correlation r1=0.89 between the participants' and optimal non-normalized thresholds).
10Note however that this does not imply that there is equal correlation between non-normalized participants' and optimal thresholds,
because Figure 5c includes data from all participants and each participant has thresholds normalized by a different value of drift;
unfortunately it is more difficult to say what the correlation would be between the non-normalized thresholds.
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Stimuli and apparatus—Experiment 2 used the same stimuli that were used in a previous
study of the DDM by Ratcliff et al. (1999). Participants were presented with a 10 × 10 grid
in the upper left corner of a VGA monitor, subtending a visual angle of 4.30° horizontally
and 7.20° vertically. Random cells within the grid were filled with asterisks; others were
empty. On each trial, participants had to decide if the majority of locations in the grid were
empty or filled with asterisks. The grid and asterisks appeared as light characters against a
dark background, were presented with high brightness and contrast and were clearly visible.
The VGA monitors were driven by a PC computer, and the stimuli were displayed using the
Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997). The number of displayed
asterisks was either 40 or 60 during blocks referred to as easy, and 47 or 53 during blocks
referred to as difficult.

Procedure—Participants had to indicate their choices by pressing “M” or “Z” key on a
standard keyboard, and the mapping of keys to the “low” and “high” responses was
counterbalanced across participants. The score was continuously displayed in the center of
the screen. In the first series of 20 participants, some participants held one of the buttons
down continuously on some blocks of trials (which resulted in RT = 0, and ER close to
50%). To prevent such behavior, the remaining participants were required to release both
buttons in order to initiate the next trial.

Design—The experiment consisted of 10 blocks lasting 4 minutes each. For each delay
condition there was an easy block and a difficult block, except for condition D=2s for which
there were four blocks (two easy and two difficult) to collect a sufficient number of trials for
analysis.

Behavioral Results
A two-way ANOVA (delay × difficulty) revealed that ER was significantly influenced by
difficulty (F(df=1) = 103, p < 10-4) and delay (F(df=3) = 3.79, p = 0.01), but not by their
interaction (F(df=3) = 0.67, p = 0.55). Similarly, RT was significantly influenced by both
difficulty (F(df=1) = 870, p < 10-4) and delay (F(df=3) = 9.01, p < 10-4), but not by their
interaction (F(df=3) = 0.52, p = 0.62). Since there was no interaction between difficulty and
delay conditions, in order to visualize the overall effect of delays, Figure 6 shows ER and
RT averaged across difficulty conditions. The behavioral data from Experiment 2 follow the
same pattern as in Experiment 1.

Prediction z∼D—In the first three conditions (D=0.5, D=1, D=2) longer delay was
associated with lower ER and higher RT (correlation between D and participants' ER after
subtraction of mean ER for given participant and difficulty condition was r=−0.32, p<10-4;
correlation between D and participants' RT after subtraction of mean RT for given
participant and difficulty condition was r=0.31, p<10-4). Hence, in the first three conditions
(D=0.5, D=1, D=2) the longer the delay, the higher threshold participants chose, in
agreement with prediction z∼D.

Prediction z(D+Dp)—To test the prediction that participants should choose the same
threshold in delay condition 3 (D=2s) and 4 (D=0.5, Dp=1.5s), we compared the ER and RT
between these conditions. ER did not differ significantly (t(df=119) = 0.43, p=0.66) but RT
did significantly differ between these conditions (t(df=119) = 2.88, p=0.005). The latter
finding (for RT) is not consistent with prediction z(D+Dp). However, as discussed below,
this prediction was largely satisfied for a subset of the best performing participants.
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Estimating Parameters of the DDM
We only fit the pure DDM to the data from Experiment 2 because the data were too few to
constrain the extended DDM (involving three more parameters); there were fewer trials per
condition in Experiment 2 than in Experiment 1 (4 minutes instead of 7 minutes). More
importantly, many participants made very few or no errors in the easy conditions of
Experiment 2 and information on RT distribution on error trials is necessary to accurately
estimate the parameters of the extended DDM. We note, however, that the pure and
extended DDM produced highly-correlated parameters (Figure 4), and they provided similar
information on the relationship of participants' and optimal thresholds (observed in Figure
5). Hence we feel that it is worthwhile to use the pure DDM in the analysis of threshold
setting in Experiment 2.

The parameters of the pure DDM were estimated using the same method as in Experiment 1.
Namely, for every participant and difficulty condition we estimated: T0, ã and four
normalized decision thresholds z̃ (different values of both T0 and ã were estimated for each
level of difficulty since these parameters differed significantly between difficulty
conditions).

Decision Thresholds
Prediction z=zo—Figures 7a and 7b compare the estimated values of participants'
normalized thresholds with the optimal ones. The correlation between the participants' and
the optimal normalized thresholds is r1 = 0.67 (p < 10−5) in the easy condition, and r1 = 0.25
(p = 10−4) in the difficult condition.

Figures 7c and 7d compare the participants' and the optimal normalized thresholds averaged
across all 60 participants. Again, participants tend to set their thresholds to higher than
optimal values. The difference between participants' and optimal thresholds is significant in
all conditions, except the easy condition in delay condition 4 (D = 0.5, Dp = 1.5).

Overall, the optimal threshold theory explains a significant proportion of variance in
participants' thresholds, but participants consistently set their thresholds higher than the
optimal values.

Performance of Participants with High Reward Scores
The match of empirical results to theory in Experiments 1 and 2 was short of perfect. Here,
we explore factors that may have influenced how closely participants set their thresholds to
the optimal value. We focus on the results of Experiment 2, for which there were enough
participants to conduct reliable analyses.

To quantify the match between participants' thresholds and the theory, for each participant
we compute a theory match error defined as the Euclidian distance between the participant's
thresholds in the eight conditions of Experiment 2 and the optimal thresholds for those
conditions:

(16)

We found that this measure was not correlated with participants' responses to any of the
questions in the debriefing questionnaire. However, it was strongly correlated (r = −0.71)
with reward score (total amount of money earned), as shown in Figure 8a. This may not
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seem surprising: The theory identifies thresholds that maximize RR, and so those
participants who approximate these thresholds should be expected to earn the highest
rewards. The theory match error of Equation 16 was weakly dependent on gender (two tailed
unpaired t-test t(df=58) = 2.13, p < 0.04), i.e. on average males chose thresholds closer to
values maximizing RR than females. We will come back to a possible interpretation of this
dependence in General Discussion.

Let us now examine whether the performance of those participants who achieved reward
scores above the median satisfies predictions z(D+Dp) and z=zo that were not satisfied when
all participants were considered.

Prediction z(D+Dp)—Figures 8b and 8c show the resulting ER and RT for each delay
condition averaged over this subset of participants. Paired t-tests showed that ER and RT did
not differ significantly between delay conditions 3 (D = 2s) and 4 (D = 0.5s, Dp = 1.5s) (ER:
t(df=57) = 0.32, p = 0.75; RT t(df=57) = 0.16, p = 0.87).11 These findings are consistent
with predictions of the optimal threshold theory: threshold should only depend on D + Dp.

Prediction z=zo—Figures 8d and 8e show the mean (normalized) participants' and optimal
thresholds, averaged across the same set of participants, for the easy and difficult conditions.
In the easy condition, the mean participants' threshold does not differ significantly from
optimal in any of the delay conditions (Figure 8d). In the difficult condition, the mean
participants' threshold is significantly different from optimal only in delay condition D = 0.5
(Figure 8e). Thus, participants with higher reward scores set their thresholds much closer to
the optimal value than other participants (compare with Figures 7c and 7d).

Empirical Test of Relationships between ER and DT
Relationship Predicted by Maximization of RR

Prediction DT(ER)—This describes the relationship between ER and DT that holds for
optimal performance across various task parameters. Here we examine how well this
relationship describes actual human performance. The relationship is expressed in Equation
10, which relates ERs to the normalized DT (i.e., DT as a fraction of Dtotal). Therefore, for
both experiments, we calculated the normalized DT for each participant in each task
condition as: (RT − T0) / Dtotal, where RT was the participant's mean for that condition, and
T0 was the non-decision part of the RT estimated for that participant from the pure DDM as
described earlier. Each of these normalized DTs was associated with a corresponding ER for
that participant in that condition. Figure 9a plots DTs from all experimental conditions as a
function of ER for a sample participant whose DTs lie in the vicinity of values predicted by
the optimal performance curve (see black curve in Figure 9a).

For the majority of participants however, the match between the normalized DT and the
optimal performance curve is not as good as shown in Figure 9a. For each participant of
Experiment 2, we computed the correlation between the normalized DTs for 8 experimental
conditions and the normalized DT predicted by the optimal performance curve. Figure 9b
shows the histogram of these correlations. Although these correlations are usually positive,
they are statistically significant only for 12 participants.

To evaluate how well the optimal performance curve describes the data averaged across
participants, we divided the possible range of ER (0-50%) into ten equal intervals and, for
each interval, calculated the mean normalized DT over all participants and conditions with

11However, both ER and DT did vary significantly for all other pairwise comparisons between conditions, with p ranging from p =
0.018 to p<10-4 (without correcting for multiple comparisons).
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ERs falling into that interval. The results of this analysis are shown in Figure 9c.
Participants' mean normalized DTs are higher than those predicted by the optimal
performance curve for RR (black curve in Figure 9c). This is consistent with the results of
the analyses in the Section Decision Thresholds (see Figures 5e, 5f, 7c, and 7d) indicating
that, in aggregate, participants set their thresholds higher than is optimal to earn maximum
reward. Note, however, that the predicted relationship provides a good qualitative
description of the relationship between ER and DT. In addition to showing the same
inverted-U shape, participants have the highest normalized DT for blocks in which their ERs
range from 15% to 20%, bracketing the predicted value of 18%.

As demonstrated above, there is a strong correlation between participants' reward scores and
how closely their thresholds match the theoretical optima. Therefore, we compared the
optimal performance curves with the data from participants with different levels of reward
score separately. In particular, some participants with the lowest reward scores had DTs an
order of magnitude higher than other participants, and thus we separately analyzed the 10%
of participants with the lowest RRs12 (their DTs are shown in the right panel of Figure 9d).
We split the remaining 90% of participants into 3 equal groups according to RR, but there
was no significant difference in normalized DTs between the 30-60% and 60-90% groups
(paired t-test across 10 bins of ER: p > 0.2), hence we pooled the data from these groups
(constituting the middle 60% of participants). The normalized DTs for the remaining top
30% group and the middle 60% group are shown in left and middle panels of Figure 9d.

The left panel of Figure 9d indicates that the predictions of the optimal performance curve
for RR match the data from the participants with reward scores in the top 30%
quantitatively, and indeed their performance is statistically indistinguishable from the
theoretical predictions except at one ER interval13. The other two groups of participants
(middle 60% and bottom 10%) shown in Figure 9d have significantly higher normalized
DTs than predicted by RR maximization.

Relationships Predicted by Maximization of RA and RRm
We investigated whether the optimal performance curves predicted by maximization of the
RA and RRm criteria (combining RR and accuracy) can quantitatively capture the
relationship between the ER and DT of the middle 60% and the bottom 10% of participants.
Both performance curves include a free parameter q describing the emphasis placed on
accuracy. For both curves, q was estimated via the maximum likelihood method, using the
standard assumption that normalized DTs are normally distributed around the performance
curve being fitted with a variance estimated from the data. Additionally, in fitting the curve
for RA, we constrained q ≤ 1.096, and in fitting the curve for RRm we constrained q ≤ 1 (see
Appendix A). The values of estimated parameters are given in Table 2. Note that the groups
of participants with lower performance have higher estimated values of q, which could be
interpreted as greater emphasis on accuracy.

Figure 9e shows the best fitting performance curves for the three groups of participants.
Both performance curves for RA and RRm are able to describe the DTs of the middle 60%
of participants. In case of the bottom 10%, the curve for RA fits the data better than the
curve for RRm, as the latter predicts that the longest normalized DT should be obtained for

12Two participants from Experiment 1, and six participants from Experiment 2.
13For each participant and condition we took the empirically observed ER and used Equation 18 to calculate the theoretically
predicted optimal normalized DT. Then, for each of the ER intervals, we used paired t-tests to compare the distribution of
experimentally observed mean normalized DTs with the distribution of predicted values. The difference was significant only in the
first ER interval [0-5%], p = 0.003, and non-significant, p > 0.05 for all other ER intervals). The reason for the difference in the
interval with the highest ER may be that the first interval contained many blocks with ER = 0, and Equation 18 predicts that for these
blocks DT = 0, but participants had DT > 0.
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higher ERs, which is inconsistent with the data. These observations are quantified in Table
3, which lists the ratios of the likelihoods of the data given different curves. The first row
shows that the data from each group of participants are more likely given the curve for RA
than given the curve for RRm, in particular the data from the bottom 10% are more that 43
times more likely given RA than RRm curves. Table 3 also shows that the curves for RA and
RRm provide much better fit to the data than the curve for RR for the bottom 70% of
participants.

In summary, although the relationship between ER and normalized DTs observed in the
experiments for the middle and the bottom groups of participants cannot be described
quantitatively by the optimal performance curve for RR, it can be described by the
performance curve based on the assumption that participants maximize RA, i.e., the
weighted difference between RR and ER. This suggests that the “conservatism” of these
participants may reflect a greater emphasis on accuracy than is optimal for maximizing
reward rate. In the General Discussion we consider alternative account of this apparent
emphasis on accuracy.

Adjustments in Decision Thresholds
In this brief section we investigate how quickly participants adjust their thresholds after
block onset. Maximization of RR requires higher decision thresholds for longer D, and to
visualize how participants adjust thresholds depending on D, Figure 10 shows differences
between RTs in conditions D = 2 and D = 0.5. These differences are averaged over 5 trials in
a given bin, over all blocks, and over all participants of Experiments 1 and 2. Figure 10a
shows that RT differences develop and stabilize within the first ∼20 trials for participants
with reward scores above the median. RT differences for the remaining participants are
shown in Figure 10b, but unfortunately the data is too noisy to identify when they stabilize.
We will return to the issue of learning decision thresholds in the General Discussion.

General Discussion
Summary of Results

In the Introduction we stated four predictions that should be satisfied if participants select
thresholds maximizing RR. We performed two experiments testing these predictions. The
support provided by experimental data for our predictions is summarized in Table 4. In
general, the predictions were only partially consistent with the data from all participants, but
virtually all of them were satisfied by data from the participants with highest reward scores.

Prediction z∼D—The prediction that the increase in response-stimulus interval D should
increase the decision threshold, and thus decrease ER and increase RT, was satisfied in the
behavioural data averaged over all participants in both experiments.

Prediction z(D+Dp)—The prediction that the threshold (and thus ER and RT) should
depend only on D + Dp, rather than D and Dp individually, was not satisfied in the
behavioural data averaged over all participants. However, the prediction was satisfied in the
data averaged over the participants with reward score higher than the median.

Prediction z=zo—The prediction that the threshold estimated from fitting the DDM
should be equal to the optimal threshold was only partially satisfied by the data from all
participants. There was a significant correlation between the participants' and optimal
thresholds, but in each of the experimental conditions the average participants' thresholds
were higher than optimal. However, the estimated thresholds of participants of Experiment 2
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with reward scores higher than the median was not significantly different from the optimal
thresholds in 7 out of 8 experimental conditions.

Prediction DT(ER)—The predicted relationship between DT and ER was only
qualitatively satisfied by the experimental data from all participants, for whom the
experimental DTs were higher than optimal. However, the data from the top 30%
participants with highest reward scores satisfied the predicted relationship quantitatively.

Taken together, the above results suggest that, on average, participants set threshold higher
than required to maximize RR, but that a significant proportion of participants indeed select
a speed-accuracy tradeoff that approximately maximizes RR. One could ask how surprising
it is that the participants with highest RR follow the predictions of our theory, since our
theory assumes RR maximization. Note however, that the predictions were also based on the
assumption that the choice process can be described by the DDM. Different models of
information processing during choice would require different speed-accuracy tradeoffs to
maximize RR. However, our data suggest that a significant proportion of participant select a
decision threshold required by the DDM to maximize RR, thus our results also provide a
support for the DDM.

Pure Drift Diffusion Model
It is important to note that predictions z∼D, z(D+Dp), z=zo were made by both the pure and
extended DDM while the prediction DT(ER) could only be formulated on the basis of the
pure DDM. The fact that a significant fraction of participants conformed to this prediction
suggests that the pure DDM is a useful approximation of the decision process between two
alternatives.

It is interesting to ask why the predictions of the pure DDM matched well with the
behaviour of many participants despite large systematic differences in the parameter values
estimated by the pure and extended DDM (Figure 4). A possible reason may be that the
maximization of RR under pure and extended DDM predicts similar speed-accuracy
tradeoffs for given task parameters (difficulty and Dtotal) (Bogacz et al., 2006). We have
previously shown that introducing the variability of drift slightly decreases DT predicted for
given ER, while the variability of starting point increases the predicted DT (see Figure 14 in
Bogacz et al., 2006). Since the effects of the two forms of variability on predicted DT are in
opposite directions, it is possible that the speed-accuracy tradeoff predicted by the extended
DDM is similar to that predicted when both forms of variability are ignored.

Relationship to Other Studies on Selection of Speed-accuracy Tradeoff
A parallel study (Simen, Buck, Hu, Holmes, & Cohen, submitted) has also tested some of
the predictions of our previous theoretical work (Bogacz et al., 2006), but its focus was
different. It tested predictions regarding tasks in which one of the alternatives is either more
probable or more rewarded: in such situations accuracy needs to be sacrificed to maximize
reward even to greater extent than in the paradigm considered here (Bogacz et al., 2006;
Maddox, 2002). Simen et al. (submitted) also tested predictions z∼D and z=zo, but not
predictions z(D+Dp)14 and DT(ER). Furthermore, they collected substantially more data
from 9 individual participants, allowing more precise fits of the extended DDM, while here
we gather less data from each of many more (80) participants, allowing analysis of factors
influencing participants' choices of decision threshold. Importantly, the results of Simen et
al. (submitted) support those of the present paper. Specifically, Simen et al. also observed

14In the experiment of Simen et al. (submitted) the delays between response and the onset on the next trial were the same after correct
and incorrect responses (i.e. Dp=0) in all blocks.
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that participants' thresholds increased with D (prediction z∼D satisfied), and found that there
was a high correlation between participants' and optimal thresholds, but on average
participants set their thresholds above the optimal values (prediction z=zo partially satisfied).

Edwards (1965) proposed an alternative theory suggesting that participants choose decision
thresholds that minimize the weighted sum RT + qER (where q is a parameter determining
the relative weight of ER, cf. Equations 11 and 12). Busemeyer and Rapoport (1988)
designed an experiment in which the participants were explicitly required to minimize this
cost function in order to maximize their rewards, and they found that the participants chose
decision thresholds close to those minimizing this function. Their results and ours taken
together suggest that participants are able to adjust their decision thresholds to increase
reward in various experimental paradigms. Such an ability could come from an adaptive
reinforcement learning mechanism aiming to maximize reward rate or reward in any task.
We will return to this issue below.

Why do Some Participants Select Thresholds Higher than Optimal?
We considered the possibility that some participants select thresholds higher than optimal
because they maximize a weighted combination of RR and accuracy, and we showed that
this theory is able to predict the shape of the relationship between ER and DT. This theory
has been widely applied to data from perceptual discrimination tasks in which stimuli
belonging to two classes differ on a continuous perceptual dimension (e.g., length of a line).
In this context a discrimination threshold corresponds to a value on this dimension such that
stimuli below and above this value belong to two different classes. If one of the alternatives
is more rewarded, the discrimination threshold maximizing reward is different from that
maximizing accuracy. The theory that assumes maximization of a combination of reward
and accuracy quantitatively accounts for the discrimination threshold used by participants,
and for the observed dependence of the discrimination threshold on accuracy (Maddox,
2002; Maddox & Bohil, 1998).

Other explanations for why participants select thresholds higher than optimal have also been
suggested. Recently Zackenhouse et al. (submitted) investigated the assumption that
participants are unable to precisely estimate the duration of the response-stimulus interval D
and the value of signal to noise ratio ã, and analyzed predictions of four theories proposing
that they seek to achieve performances robust to the uncertainties in D and ã. One of these
theories assumes that participants maximize a guaranteed level of performance under a
presumed level of uncertainty in estimation of interval D. They show that the data in Figure
9e can be fit slightly better by a performance curve based on this assumption than the
performance curve for RA.

Alternatively, thresholds higher than optimal are also predicted under the assumption that
participants try to maximize RR using an adaptive threshold adjustment procedure (e.g.,
driven by a reinforcement learning mechanism): In previous work we have shown that if
participants do not have a priori knowledge of the threshold that maximizes RR, and
therefore must discover this through adaptive approximation, on average they will achieve a
higher RR by overestimation of the optimal threshold than by underestimation. This is based
on the observation that, for the DDM, there is a greater drop off in RR for thresholds below
the optimum than above it (Bogacz et al., 2006). Timing uncertainty (contributing to
variability in reward rate estimation for a given threshold) could further contribute to this
effect. This would force participants to optimize a distribution of thresholds which, for the
reasons stated above, would have a mean value that is greater than the single optimal
threshold.
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Thresholds higher than optimal can also be expected under the standard economic
assumption that the participants discount future rewards, i.e. they value a present reward
more than the same reward in the future. If so, then participants value the reward on the
current trial more than rewards on succeeding trials, and to increase the probability of
reward on the current trial, they increase the threshold (Yakov Ben-Haim, personal
communication, 20th July 2007). Adjudicating between these alternative hypotheses will
require further research.

Motivational Effects on Threshold Learning
It has been demonstrated in a perceptual discrimination task that if participants receive
rewards for correct choices and no penalty for errors, then the possibility of winning a prize
for best performing participants tends to move participants' discrimination thresholds
towards those maximizing reward (Markman, Baldwin, & Maddox, 2005). Thus it is
possible that the reward of $100 in our experiments also encouraged participants to set
decision thresholds closer to those maximizing RR, and may partially explain why so many
participants were nearly optimal.

Motivational effects of the reward for best participants could also explain the gender effects
in Figure 8a. Namely, it is possible that the reward of $100 in our experiments was on
average more motivating for males than females, since males have been reported to be more
motivated by competition (Gneezy & Rustichini, 2004) and have a higher tendency to
gamble (Desai, Maciejewski, Pantalon, & Potenza 2005).

Influence of Task Difficulty on Match between Optimal and Participants' Thresholds
Figure 7 shows that there is a better match between optimal and participants' thresholds in
the easy task condition than in the difficult one, and a number of speculations are possible
about why this is the case. First, for a difficult task or long Dtotal (or for both), the optimal
threshold may be high and correspond to a firing rate of decision neurons above the range in
which their firing rates are linear functions of input. Since our theory is based on the simple
linear DDM, it cannot predict the value of the optimal threshold outside of the linear range.
Simple phase plane methods show that drift rates will slow down as firing rates exceed the
linear range (Brown & Holmes, 2001), yielding longer integration times for a given level of
accuracy. Attempting to capture these effects with a (constant-drift) DDM may result in the
higher-than-optimal threshold predictions. The analysis required to investigate this is beyond
the scope of this article.

At the same time, for a very difficult task and short Dtotal, the optimal threshold may be very
low, corresponding to near random responding. However, participants may feel
uncomfortable producing random responses. There may also be a computational
disadvantage in keeping the threshold fixed near zero. If the information content of the input
increases (e.g., the task becomes easier), this would go undetected (since no integration is
occurring). Thus, higher level considerations (e.g., knowledge about non-stationarity of the
environment) may also influence threshold setting, and drive participants to raise thresholds
above zero (at least from time to time), providing another possible explanation for
thresholds z>zo.

It is also possible that if the task is very difficult, participants may explore strategies other
than simple diffusion-type accumulation of information. For example, in Experiment 2 they
may have counted the asterisks. Indeed, one participant reported adopting such a strategy in
the questionnaire: “If it is hard to identify, I will roughly count each row.” This participant
produced very long RTs – up to 9.1s. Two participants reported a different change in
strategy: “On the tougher ones […] I started looking for empty spaces instead of stars.” A
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consideration of such alternate strategies is also beyond the range of this article, although it
is certainly an important target for cognitive and neuroscientific research and indeed has
received much attention in cognitive science (e.g., Newell & Simon, 1988). In any event, the
engagement of such alternate strategies would of course weaken the relationship between
observed performance and that predicted by the DDM. However, this observation does
suggest an intriguing possibility: If the DDM, because of its intrinsic simplicity, and its
optimality for simple decision making, is highly conserved, then it should provide a
progressively more accurate account of decision making performance for organisms that
have progressively simpler cognitive architectures, and therefore have less access to more
complex strategies. Similarly, it should be possible to promote optimal performance in
human participants by interfering with higher cognitive functions subserving complex
decision making strategies.

Learning of Decision Thresholds
The observation that some participants were able to find decision thresholds close to the
optimal values raises the question of how this was accomplished. It is most likely that they
determine the threshold using an adaptive procedure: Different values of threshold are set,
their effect on a criterion is observed, and the threshold is adjusted to optimize the criterion.
Several models of such adaptation have been proposed (Erev, 1998; Myung & Busemeyer,
1989; Simen et al., 2006).

Myung and Busemeyer (1989) tested the predictions of threshold adaptation models in the
experiment in which the participants were required to minimize a weighted difference
between ER and RT. In their experiment the effects of learning were observed on a much
longer time-scale than we observed: Their analysis suggested that the threshold was
converging to the optimal value within 100-200 trials, while we observed much faster
convergence (within ∼20 trials). There are a number of factors that can contribute to this
difference. First, Myung and Busemeyer plotted the precise threshold value on each trial
(which was allowed by their experimental design), rather than noisy functions of thresholds,
hence from this point of view their analysis was more precise. On the other hand, our study
generated substantially more data: Myung and Busemeyer calculated the value of threshold
on a given trial as the average over only 6 learning episodes for one condition, and 4
episodes for the other condition. By contrast in Figure 10a we calculated the difference in
RT between delay conditions on a given trial as the average over 700 learning episodes (20
participants of Experiment 1 × 5 blocks + 60 participants of Experiment 2 × 10 blocks).

Furthermore, it can be speculated that we observed faster threshold convergence because RR
is a more ecologically relevant criterion than the weighted difference between ER and RT,
and because humans' threshold adjustment mechanisms are tuned to maximize RR. Recently
Simen et al. (2006) proposed such a specialized mechanism that is able to rapidly find the
threshold maximizing RR. Future work could compare the predictions of different models of
threshold adaptation with experimental data.
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Appendix A. Optimal Performance Curves
Here we show how to obtain the relationship between ER and DT that holds for thresholds
that optimize RR. First, note that Equations 6 can be solved for ã and z̃ (cf. Wagenmakers et
al., 2007):

(17)

Substituting Equations 17 into 8 and rearranging terms, we obtain the optimal performance
curve for RR (Bogacz et al., 2006):

(18)

The curves for RA and RRm can be obtained in an analogous way and are given by
Equations 19 and 20 respectively (Bogacz et al., 2006):

(19)

(20)

Note that for the normalized decision time to be well defined in Equation 19 the weight q
must satisfy:

(21)

Numerically, we find that the lowest value E can take is Emin ≈ 5.224, implying that q ≤
1.096 (Zackenhouse et al., submitted). Similarly, for the normalized decision time to be non-
negative in Equation 20 the weight must satisfy q ≤ 1.

Appendix B. Correlation Measure Assuming Equal Means
Pearson's correlation coefficient between two samples x1, …, xn, and y1, …, yn is calculated
as:

(22)
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where Aν denotes the average. This coefficient assumes that the two random variables
generating the samples have different means – note that in Equation 22 Aν(x) and Aν(y) are
estimated separately. If we assume that the two variables have equal means, we can estimate
the mean from both sets of samples m = Aν(x, y), and use it in the definition of the modified
correlation coefficient:

(23)

The significance of a particular value R of r1 for a given sample size n was found using the
following Monte-Carlo simulation. In each of 10,000 iterations, n pairs of samples were
generated from independent normal standard distributions, and r1 was computed. The
significance was taken as a fraction of iterations in which |r1| > |R| (corresponding to a two-
tailed test).
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Figure 1.
Optimal performance curves. Horizontal axes show the error rate and vertical axes show the
decision time (DT) normalized by total delay Dtotal. The thick line (identical in both panels)
is the optimal performance curve for the reward rate (RR). The thin lines show the
generalized optimal performance curves for reward accuracy (panel a) and modified RR
(panel b). Each curve corresponds to a different value of q ranging from 0 (when it reduces
to the optimal performance curve for RR, shown in the thick lines) to 0.5 (top curves) in
steps of 0.1.
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Figure 2.
Average error rate (ER) and reaction time (RT) in units of seconds for all twenty participants
of Experiment 1 and all delay conditions. Delay conditions are indicated on x-axes – labels
correspond to conditions (1) D=0.5s; (2) D=1s; (3) D=2s; and (4) D=0.5s, Dp=1.5s. Error
bars consider comparisons between two adjacent conditions (inspired by Masson & Loftus,
2003). For example, in panel a, error bar for condition D=0.5 and the left error bar for
condition D=1 consider comparison between these two conditions. The height of the error
bars corresponds to standard error of the differences between ERs (or RTs in panel b) in the
two conditions. Specifically, the difference is first calculated for each participant, and then
the standard error of the differences is calculated across participants; both error bars are
equal to this standard error, so they have equal heights. These error bars have standard
interpretation: if two adjacent bars are different from each other by more than approximately
two heights of corresponding error bars, then ERs (or RTs) are significantly different
according to the paired t-test.
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Figure 3.
Quantile probability plots showing the fits of the pure (a) and the extended (b) drift diffusion
model (DDM) to behavioural data from a sample participant. Open circles correspond to the
behavioural data. The horizontal axes indicate the probability of error in the left parts of the
panels, and probability of correct choice in the right parts (see labels on x-axes). In each
part, the four columns of circles correspond to the four delay conditions in the experiment.
In each column of circles, the vertical positions of the five circles indicate the quantiles of
reaction times. Small filled circles visualise the corresponding predictions for the DDM.
These are connected by lines to make the patterns they create more visible. For clarity, error
bars with confidence intervals for quantiles of reaction times are not shown here. They are
plotted for the same participant in Figure 5 of Bogacz et al. (2006), which shows that the
confidence intervals are very large for the error trials (up to 1.48s for the 0.9 quantile in
D=0.5, Dp=1.5 condition) because of the small number of such trials. The estimated
parameters of the models (for noise parameter fixed at c=0.1): a) pure DDM: T0=0.346,
A=0.219, z1=0.0398, z2=0.0535, z3=0.0610, z4=0.0682; b) extended DDM: T0= 0.372,
st=0.084, mA=0.344, sA=0.152, sx=0.044, z1=0.0503, z2=0.0592, z3=0.0687, z4=0.0816.
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Figure 4.
Comparison of parameters T0, ã and z̃ estimated by fitting pure (vertical axes) and extended
(horizontal axes) drift diffusion model. In the left and the central panels dots correspond to
individual participants; in the right panel different experimental delay conditions are
indicated by different symbols (see legend).
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Figure 5.
Comparison of participants' and optimal thresholds in Experiment 1. The left column of
panels (a, c, e) compares estimates and predictions of the pure drift diffusion model (DDM),
while the right column of panels (b, d, f) – of the extended DDM. In panels a-d, horizontal
axes correspond to participants' normalized thresholds, the optimal normalized thresholds
are along the vertical axes, and the dotted line is the identity line. Different experimental
delay conditions are indicated by different symbols (see legend). Note different scales
between rows of panels. Panels a and b show a sample participant with the best fit; panels c
and d show data of all 20 participants. Panels e and f show the mean participants' (black
bars) and optimal (white bars) thresholds averaged across participants for different delay
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conditions (indicated on the horizontal axis). Error bars show standard error (there are error
bars on bars corresponding to optimal thresholds, because different participants have
different optimal thresholds). Stars indicate the level of significance of the difference
between participants' and optimal thresholds (paired t-test): one star denotes p < 0.05, two
stars denote p < 0.01, three stars denote p < 0.001.
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Figure 6.
Mean error rate and mean reaction time (in seconds) for all 60 participants in Experiment 2
for each delay condition averaged across difficulty conditions. Error bars as in Figure 2.
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Figure 7.
Comparison of participants' and optimal thresholds in Experiment 2. Left panels (a and c)
show findings for the easy condition, right panels (b and d) for the difficult condition. In
panels a and b, participants' normalized thresholds are shown on horizontal axes, optimal
normalized thresholds on the vertical axes, and the dotted line is the identity line. Different
experimental delay conditions are indicated by different shapes (see legend). Note different
scales. Panels c and d show the mean participants' (black bars) and optimal (white bars)
thresholds averaged across participants for different delay conditions (indicated on the
horizontal axis). Error bars show standard error, and stars indicate the level of significance
of the difference between participants' and optimal thresholds (paired t-test): one star
denotes p < 0.05, two stars denote p < 0.01, three stars denote p < 0.001.
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Figure 8.
Performance of participants with reward scores higher than the median reward score for
Experiment 2. a) Relationship between theory match error (x-axis) and achieved reward
score (y-axis). Each symbol corresponds to one participant; genders as indicated in key. b, c)
Mean error rate and reaction time (in units of seconds) averaged across difficulty conditions.
Error bars as in Figure 2. d, e) mean participants' (black bars) and optimal (white bars)
normalized thresholds averaged across participants for different delay conditions (indicated
on the horizontal axis). Panel d shows data for easy conditions; panel e – for difficult
conditions. Error bars show standard error, and stars indicate the level of significance of the
difference between participants' and optimal thresholds (paired t-test): one star denotes p <
0.05, two stars denote p < 0.01, three stars denote p < 0.001.
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Figure 9.
Optimal performance curves. In all panels except b, horizontal axes show the error rate (ER)
and vertical axes show the normalized decision time (DT), i.e. DT divided by total delay
Dtotal. Note the differences in scales between panels. Solid black curves show the theoretical
prediction based on the assumption that participants maximize the reward rate. a)
Normalized DTs as a function for ER plotted for one participant of Experiment 2. Each
circle corresponds to one experimental condition. For two conditions the normalized DTs
and ERs were very close, so two circles overlap (in the bottom right corner of the panel). b)
Histogram of the correlations between normalized DT and the normalized DT predicted by
the optimal performance curve. Each correlation is calculated for one participant of
Experiment 2. Shaded bars indicate the correlations that were statistically significant
(p<0.05). In panels c-e, the bars show the mean normalized DT averaged across participants'
conditions with ERs falling into the given interval (from Experiments 1 and 2). The error
bars indicate standard error. There are no error bars for some bins, as there was just one
condition falling into this bin, or DTs for participants' conditions falling into this bin were
all very close to 0. c) The bars are based on all participants. d) The participants are divided
into three groups on the basis of their reward scores and bars in each of the three panels are
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based on the data from the corresponding group of participants (see titles of the panels). e)
Data from conditions with Dp=0 based on subgroups of participants as in panel d. Best
fitting optimal performance curves for RA and RRm are also shown (see legend).
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Figure 10.
Changes in participants' performance within single blocks of trials. In all panels horizontal
axes show the trial number within a block – each point corresponds to a bin of 5 trials.
Vertical axis shows the difference in the mean reaction time (RT) between delay condition
D = 2, and D = 0.5 averaged over: 5 trials in a given bin and both difficulty conditions. Error
bars indicate standard error. Panel a shows data averaged across participants of Experiments
1 and 2 with reward scores higher than the median for each of experiment, and panel b
shows data averaged across participants with reward scores lower than the median.
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Table 1

Symbols used in the optimal threshold theory.

Symbol Description

A Drift rate

ã Signal-to-noise ratio (squared)

c Magnitude of noise

D Delay between response and next stimulus

Dp Additional penalty delay on error trials

DT Decision Time

Dtotal D + Dp + T0

ER Error Rate

q Relative weight of accuracy

RA Weighted difference between RR and ER

RR Reward Rate

RRm Modified RR

RT Reaction Time

sA Variability of A

st Variability of T0

sx Variability of x(0)

T0 Part of RT connected with non-decision processes

x(t) Integrated difference between evidence supporting two alternatives

z Decision threshold

z̃ Normalized threshold

z̃o Optimal normalized threshold
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Table 2

The estimated values of parameter q of the optimal performance curves for RA and RRm for three groups of
participants sorted by reward score.

Criterion Top 30% Middle 60% Bottom 10%

RA 0.15 0.55 1.096

RRm 0.14 0.49 0.98
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Table 3

Ratios of the likelihoods of experimental data given the pairs of criteria listed in the left columns for groups of
participants listed in top row. To account for the fact that the performance curves for RA and RRm have one
free parameter and the curve for RR does not, the bottom two rows include in brackets the ratio of the
likelihood of the data given the two curves divided by exp(1), as suggested by Akaike (1981).

Criteria compared Top 30% Middle 60% Bottom 10% All

RA / RRm 1.15 4.78 43.16 237.25

RA / RR 42.65 (15.69) > 1020 > 105 > 1026

RRm / RR 36.98 (13.60) > 1020 > 104 > 1025
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Table 4

Summary of the support for the predictions stated in the Introduction in the data from Experiments 1 and 2.

Prediction All participants Participants with highest RR

1. z increases with D Satisfied Satisfied

2. z depends on D + Dp Not satisfied Satisfied

3. z = zo Partially: z correlated with zo but z > zo Satisfied

4. Optimal relationship between ER and DT Partially: qualitative match but DTs higher than optimal Satisfied
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