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In this study, we assess 34 of the most replicated genetic associations for Alzheimer’s disease (AD) using
data generated on Affymetrix SNP 6.0 arrays and imputed at over 5.7 million markers from a unique cohort
of over 1600 neuropathologically defined AD cases and controls (1019 cases and 591 controls). Testing
the top genes from the AlzGene meta-analysis, we confirm the well-known association with APOE single
nucleotide polymorphisms (SNPs), the CLU, PICALM and CR1 SNPs recently implicated in unusually large
data sets, and previously implicated CST3 and ACE SNPs. In the cases of CLU, PICALM and CR1, as well
as in APOE, the odds ratios we find are slightly larger than those previously reported in clinical samples, con-
sistent with what we believe to be more accurate classification of disease in the clinically characterized and
neuropathologically confirmed AD cases and controls.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia. Estimates suggest that �10% of individuals over
the age of 65 and almost half over the age of 85 have Alzhei-
mer’s dementia (1). As human life expectancy continues to
rise, the total number of afflicted individuals is expected to
also increase dramatically. Chronological age is the most sig-
nificant risk factor for AD. However, twin studies suggest that
genetics plays a crucial role in altering an individual’s risk for
developing the disease contributing between 37 and 78% of
the variation in the age of onset (2).

An early onset form of AD (EOAD) typically develops
before the age of 65 and is often linked to autosomal dominant
mutations in one of three known genes (PSEN1, PSEN2 and
APP) (3). The more common late onset form (LOAD) of the
disease is more complex in nature with proposed combined
genetic and environmental risk factors. The most well-
replicated genetic association for LOAD is the 14 variant of
the APOE gene (4,5); however, it has been estimated that vari-
ation at the APOE locus may account for 20% or less of
LOAD risk (6–10). With the advent and ongoing improve-
ment of genome-scanning technologies, the search for the
remaining genetic risk factors for LOAD is still ongoing.
Recently, two large studies provided some of the strongest evi-
dence to date for three additional loci (CLU, PICALM and
CR1) (11,12).

To aggregate the majority of genetic data related to AD,
Bertram et al. (13) created and currently maintain a database
of association studies performed for the disease termed
AlzGene. The goal of AlzGene is to provide guidance to the
field regarding the rank-ordered importance of purported
AD-associated genetic polymorphisms. In this study, we
used whole genome single nucleotide polymorphism (SNP)
data to assess the top associations within AlzGene in our
unique collection of clinically characterized and neuropatholo-
gically defined cases and controls. We previously reported on
findings from this collection (14–16); however, this new study
includes additional individuals, was performed on a higher
density SNP array and leveraged genome-wide imputation
using the current 1000 Genomes data set. We tested the
SNPs from the newest AlzGene data freeze (February 1,
2010) and analyzed only those 38 SNPs from the ‘Top
Results’ listing of genes with Overall Grades of either A, B
or C. Using imputation, we were able to genotype 34 out of
the 38 SNPs. Six of the tested SNPs demonstrated association
with AD risk (P , 0.05) including the recently identified
CLU, CR1 and PICALM SNPs. We also replicate the associ-
ations with rs6907175 (LOC651924), rs1800764 (ACE ) and
rs1064039 (CST3).

RESULTS

This study analyzed genome-wide association data from 1610
clinically and neuropathologically well-characterized expired
brain donors, including 1019 cases (652 females, 367 males)
with a clinical diagnosis of dementia and neuropathologically
confirmed AD (Braak stage V or VI) and 591 cognitively
normal persons (285 females, 306 males) without neuropatho-
logic AD (Braak stage ,III). Age at death for controls was

80.7+ 8.7 and 82.0+ 7.7 (mean+SD). APOE genotypes
are shown in Table 1. The ORs observed for APOE in this
postmortem cohort are significantly higher than those in
studies of clinically characterized subjects. For instance, in
this larger neuropathological sample, as well as in our pre-
vious neuropathological sample (14), comparing to 13 homo-
zygotes, 14 homozygotes had an OR of about 20, compared
with an OR of about 13 in at the AlzGene site.

Assessment of the other significant SNPs from the AlzGene
list is shown in Table 2. Six loci reach nominal significance in
this analysis: CR1, LOC651924, CLU, PICALM, ACE and
CST3. We note that we have previously reported on ACE in
a proportion of this data set (16) and further replicated that
association, but none of the other loci have been previously
assessed in this data set. In all the cases, the direction of the
association in this study is the same as is reported on
AlzGene. It is notable that three of the five other confirmed
loci are those identified in the two recent large genome-wide
association studies (11,12) and this study therefore supports
the application of this approach to late onset AD.

Interpretation of the analysis of associations we report here
in the presence or absence of the APOE 14 allele is hampered
by the reduction power due to reduction of the number of
cases and controls in each group and by the increase in the
amount of multiple testing. We therefore carried out only
exploratory analysis in APOE 14+ cases and controls, in
APOE 142 cases and controls and found no significant associ-
ations (data not shown). We additionally conducted an epi-
static analysis in which APOE 14 was included as a
covariate (Supplementary Material, Table S1). These analyses
suggested that CCR2 (rs1799864: A allele) showed an epi-
static interaction with APOE 14 (nominal P-value ¼ 0.024)
and was apparently a risk factor only in the presence of an
APOE 14 allele.

DISCUSSION

In this study, we present data from a large neuropathologically
verified cohort for the top reported genetic risk factors for late
onset AD. We leveraged neuropathological phenotyping and
strict sample quality control, which we argue provides
additional power to detect subtle associations due to improved
classification of AD cases and controls (14). As shown in
Table 1, the odds ratios observed for the APOE epsilon var-
iants in this postmortem cohort are markedly higher than
those in studies of clinically characterized subjects. This is
likely due in part to the fact that APOE is more strongly
related to neuropathologic phenotypes than to clinical pheno-
types (17) and the study design reduced both the numbers of
false positive and false negative cases and controls. Addition-
ally, even though the initial studies often suffer from the
‘winner’s curse’ and subject to inflated odds ratios, the odds
ratios we observed in this study are equal to or marginally
greater than the odds ratios observed in the original studies,
although the 95% confidence intervals overlap. Again, we
suspect that the marginally higher odds ratios are a result of
better case and control definition.

We recently sequenced the CLU locus and showed that, in
contrast to the case of APOE, there is no common coding
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variability which underlies this association (18). We interpret
these data as suggesting that it is genetic variability in either
resting or induced CLU expression which is critical to AD
pathogenesis. At the CR1 locus, we find a similar significantly
associated haplotype (P , 1 × 1024 after 100,000 Max (T)
permutations) to that reported by Lambert et al. (12). Within
the 100 kb haplotype, there are currently 26 missense SNPs
reported in dbSNP130, and over 60 for the entire gene
suggesting a possible importance of coding variability in this
gene for AD risk.

With this confirmatory report, and in the absence of any
current negative reports, we feel it is now appropriate to

suggest that there are four loci for late onset AD: APOE,
CR1, PICALM and CLU. Additionally, we believe that ACE
should be considered very close to being additionally declared.
The role of CLU and APOE in cholesterol metabolism and
CLU and CR1 in the complement cascade point to these
biological processes as potentially important biochemical
pathways involved in AD pathogenesis. There is prior
mechanistic support for the role of these processes in neurode-
generative disease in general and AD (19,20). ACE is known
to participate in blood pressure regulation and a link between
hypertension and cognition, executive function and neurode-
generation has also been suggested (21–23). The CST3 gene

Table 1. APOE genotypes

APOE Cases (%) Controls (%) OR (95% CI) AlzGene cases (%) AlzGene controls (%) AlzGene OR (95% CI)

1212 4 (0.4) 19 (3.2) 0.24 (0.08–0.7) 7 (0.3) 44 (0.9) 0.5 (0.22–1.1)
1213 32 (3.1) 68 (12) 0.5 (0.3–0.9) 132 (4.9) 602 (12) 0.7 (0.6–0.8)
1214 37 (3.6) 13 (2.2) 3.2 (1.7–6.2) 75 (2.8) 106 (2.1) 2.3 (1.6–3)
1313 329 (32) 379 (65) 1.0 969 (36) 3039 (60) 1.0
1314 455 (45) 95 (16) 5.5 (4.2–7.2) 1210 (45) 1122 (22) 3.4 (3–3.8)
1414 161 (16) 9 (1.5) 20.6 (10.4–41) 407 (15) 99 (2) 12.9 (10.2–16.2)
Total 1018 583 n ¼ 1601 2712 5100 n ¼ 7812

Apoliprotein E genotyping from this neuropathological series compared with the AlzGene (February 2010 freeze) data from Caucasian clinical series. APOE 1313
used as neutral reference for contingency table.

Table 2. Assessment of AlzGene hits in the current data set

Chr. SNP Gene Position Allele
associated

P-value OR (95% CI) MAF
cases

MAF
controls (%)

MAF AlzGene
cases (%)

MAF AlzGene
controls (%)

1 rs1801133 MTHFR 11778965 A 0.832 0.98 (0.84–1.15) 34.7 35.4 38.0 39.0
1 rs4845378 CHRNB2 152811275 T 0.827 1.03 (0.82–1.28) 11.7 11.8 7.0 10.0
1 rs6656401 CR1 205758672 A 0.008 1.28 (1.07–1.54) 21.1 17.5 22.0 18.0
2 rs1800587 IL1A 113259431 A 0.440 0.94 (0.80–1.10) 30.0 31.5 31.0 30.0
2 rs1143634 IL1B 113306861 A 0.300 0.91 (0.77–1.08) 22.9 24.7 28.0 26.0
3 rs1049296 TF 134977044 T 0.242 1.12 (0.92–1.37) 17.5 16.3 18.0 17.0
6 rs760678 NEDD9 11442640 C 0.852 0.99 (0.85–1.15) 40.5 41.0 39.0 41.0
6 rs3800324 PGBD1 28372660 A 0.159 1.30 (0.90–1.87) 5.0 3.8 5.0 4.0
6 rs6907175 LOC651924 142425775 A 0.027 1.18 (1.02–1.36) 50.8 47.0 50.0 54.0
8 rs11136000 CLU 27520436 T 0.040 0.86 (0.74–0.99) 36.1 39.9 36.0 40.0
9 rs11792633 IL33 6238035 T 0.928 0.99 (0.85–1.17) 29.4 29.9 35.0 36.0
9 rs4878104 DAPK1 89382811 T 0.334 1.08 (0.93–1.26) 35.6 33.9 35.0 38.0
10 rs2306604 TFAM 59818698 G 0.808 1.02 (0.88–1.18) 43.9 43.6 41.0 44.0
10 rs13500 CH25H 90963472 A 0.162 1.18 (0.94–1.48) 12.4 11.1 12.0 10.0
10 rs498055 LOC439999 97344904 C 0.820 0.98 (0.85–1.14) 47.8 48.7 52.0 48.0
10 rs911541 ENTPD7 101423382 G 0.929 0.99 (0.79–1.23) 12.2 12.4 13.0 13.0
10 rs2986017 CALHM1 105208242 A 0.314 0.92 (0.78–1.08) 24.2 26.0 28.0 25.0
10 rs600879 SORCS1 108913108 T 0.712 1.05 (0.82–1.34) 9.8 9.3 11.0 9.0
10 rs1903908 hCG2039140 109191662 A 0.951 1.01 (0.81–1.25) 12.5 12.2 15.0 12.0
11 rs6265 BDNF 27636492 T 0.433 0.93 (0.78–1.11) 19.9 21.1 22.0 21.0
11 rs10793294 GAB2 77674051 C 0.025 0.82 (0.69–0.98) 19.7 23.9 20.0 24.0
11 rs541458 PICALM 85465999 C 0.010 0.81 (0.69–0.95) 27.7 32.3 29.0 31.0
11 rs12285364 SORL1 120898436 T 0.662 1.09 (0.75–1.56) 4.4 4.2 5.0 4.0
14 rs165932 PSEN1 72734606 G 0.121 0.89 (0.77–1.03) 44.5 47.2 44.0 45.0
14 rs11622883 GWA_14q32.13 94225529 A 0.339 1.07 (0.93–1.24) 45.8 43.8 42.0 47.0
17 rs1554948 TNK1 7227050 A 0.569 0.96 (0.83–1.11) 47.3 48.1 45.0 50.0
17 rs939348 THRA 35485379 T 0.757 0.97 (0.82–1.15) 25.7 26.1 29.0 27.0
17 rs1800764 ACE 58904261 C 0.030 0.85 (0.73–0.98) 43.5 47.3 41.0 47.0
19 rs4806173 GAPDHS 40716765 G 0.509 0.95 (0.82–1.10) 37.2 38.9 36.0 39.0
20 rs1064039 CST3 23566427 T 0.033 0.83 (0.69–0.98) 19.8 23.1 21.0 19.0

Uncorrected P-values and ORs +95% CI were calculated logistic regression model with gender and population structure as covariates.
SNPs in bold have P-values less than 0.05.
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encodes the protein cystatin C. The cystatin superfamily
includes proteins that function as extracellular cysteine pro-
tease inhibitors and the biological mechanism of altered AD
risk via cystatin C has been suggested to be due to altered
metabolism of soluble b-amyloid species (24). It is possible
that these genetic data are further suggestive of a role for
the innate immune and vascular systems in AD etiology and
point to the blood brain interface as the site where damage
may be initiated.

MATERIALS AND METHODS

Clinically characterized and neuropathologically verified
subjects

Our US series was obtained from 21 National Institute on
Aging-supported Alzheimer’s Disease Center brain banks
and from the Miami Brain Bank as previously described
(25,26). Additional cohorts from other brain banks in the
United States, United Kingdom, and the Netherlands (see
Acknowledgements) were obtained in the same manner as
the original US series. Our criteria for inclusion were as
follows: self-defined ethnicity of European descent (in an
attempt to control for the known allele frequency differences
between ethnic groups), neuropathologically confirmed AD
or no neuropathology present, and age of death greater than
65. Neuropathological diagnosis was defined by board-
certified neuropathologists based on the presence or absence
of the clinical diagnosis of probable or possible AD, Braak
and Braak staging to reflect the spatial extent of neurofibrillary
tangles, and/or CERAD classification to reflect frequency of
cortical neuritic plaques. Samples derived from subjects with
a clinical history of stroke, cerebrovascular disease, Lewy
bodies or comorbidity with any other known neurological
disease were excluded. AD or control neuropathology was
confirmed by plaque and tangle assessment with 45% of the
entire series undergoing Braak staging (27). Of the 1019
cases, 369 were included in our previous study: of the 591
controls, 298 were included in our previous study.

Samples were de-identified before receipt, and the study
met human studies institutional review board and HIPPA regu-
lations. This work is declared not human-subjects research and
is IRB exempt under regulation 45 CFR 46. See the Funding
section for a list of individual sites that contributed samples
to this effort.

APOE genotyping

APOE genotyping was performed either by the method of
Crook et al. (28) or through the use of a fluorescence-based
allele-specific PCR (also called PASA; PCR Amplification
of Specific Alleles) on array tape (29) by PreventionGenetics
(Marshfield, WI, USA).

Genome-wide SNP genotyping

Genomic DNA samples were analyzed on the Genome-Wide
Human SNP 6.0 Array (Affymetrix, Inc., Santa Clara, CA,
USA) according to the manufacturer’s protocols (Affymetrix
Genome-Wide Human SNP Nsp/Sty 6.0 User Guide; Rev. 1,

2007). Before the initiation of the assay, 50 ng of genomic
DNA from each sample was examined qualitatively on a 1%
Tris-acetate-EDTA agarose gel for visual signs of degrada-
tion. Any degraded DNA samples were excluded from
further analysis (�3%). Samples were quantitated by OD
Spectrometry and diluted to 50 ng/ml in reduced EDTA TE
buffer (10 mM Tris–HCl, 0.1 mM EDTA, pH 8.0). Two
hundred and fifty nanogram of DNA was then aliquoted into
two 96-well reaction plates and digested in either Sty or Nsp
restriction enzymes (New England Biolabs, Inc. Ipswich,
MA, USA) for 2 h at 378C followed by 658C for 20 min.
Sty and Nsp digested samples were then ligated to either the
Sty 1 or the Nsp 1 adaptor (Affymetrix), respectively, with
T4 DNA Ligase (New England Biolabs) for 3 h at 168C then
20 min at 708C. The ligated samples were then diluted in
molecular-grade water and subaliquoted into three (Sty) or
four (Nsp) 96-well PCR plates. PCR was performed using
PCR Primer 002 (Affymetrix) and Titanium Taq DNA Poly-
merase (Clontech, Mountain View, CA, USA) with the follow-
ing thermal cycling parameters: (i) 948C for 3 min, (ii) 30
cycles of 948C for 30 s, 608C for 30 s and 688C for 15 s and
(iii) 688C for 7 min. Like samples for all Sty and Nsp reactions
were pooled into a single deep well plate, the DNA was bound
to Agencourt AMPure beads (Beckman Coulter, Inc. Berea,
CA, USA), placed into MultiScreen filter plates (Millipore,
Billerica, MA, USA), washed with 75% ethanol and eluted
with Buffer EB (QIAGEN, Valencia, CA, USA). Purified
samples were then fragmented using Fragmentation Reagent
(Affymetrix) and incubated at 378C for 35 min then at 958C
for 15 min. Fragmented samples were labeled with DNA
Labeling Reagent (Affymetrix) and TdT Enzyme (New
England Biolabs) at 378C for 4 h followed by 958C for
15 min. The samples were denatured at 958C for 10 min and
held at 498C until they were loaded on to the arrays. The
arrays were placed into the hybridization oven at 508C and
60 rpm for 16–18 h. Arrays were then washed, stained
and immediately imaged on the GeneChip Scanner 3000
(Affymetrix).

Targeted SNP analysis

Birdsuite (30) was used to call SNP genotypes from CEL files.
Initial quality control measures consisted of gender-checks
and a custom SNP fingerprinting approach to identify poten-
tially duplicated or related individuals. After removing
samples based on gender-errors (0.6% of cohort) and finger-
printing overlaps (1.5% of cohort), we applied additional
quality control filters using PLINK v1.07 (31) and assessed
thresholds using histograms and quartile calculations. We
selected samples with SNP call rates of ≥85%, relatedness
(F-values , 0.04) yielding 1024 cases and 595 controls.

Samples were also analyzed for genetic ancestry via
ADMIXTURE software v1.02 (32). Autosomal SNPs (n ¼
8664) with call rates .99%, minor allele frequency (MAF)
.0.3, pairwise R2 , 0.01 that were also genotyped in the
HapMap (33) phase 3 populations were selected for this analy-
sis. Using these SNPs, model-based estimation of genetic
ancestry was calculated with ADMIXTURE software v1.02
with K ¼ 3. We utilize Q1 and Q2 vector solutions from
ADMIXTURE as covariates in subsequent regression analysis.
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Case–control SNP analysis was carried out using PLINK
v1.07 entering gender and ADMIXTURE Q1 and Q2 vectors
as covariates into a logistic model. Minor allele frequencies
in cases and controls were calculated using the Fisher’s
exact test in PLINK. APOE interactions were tested entering
number of APOE 14 copies (0, 1 or 2) as covariates into a
linear model using the PLINK interaction option.

SNP imputation

Genotypes were imputed using MACH v.1.0.16 (34) for all
European ancestry participants in the study based on haplo-
types released from initial low coverage sequencing of 112
European ancestry samples in the 1000 genomes project
(ftp://ftp.sanger.ac.uk/pub/1000genomes/REL-0908/LowCov/).
European ancestry for the imputation analysis was defined as
samples which were within three standard deviations from
the mean C1 and C2 values of the Toscan or CEPH (TSI/
CEU) samples from HapMap V3 after undertaking multidi-
mensional scaling (MDS) in PLINK including CEU/TSI,
Yorban (YRI), and Japanese and Chinese (JPT/CHB) popu-
lations from the Hapmap V3. Nine samples were excluded
based on population clustering. A subset of SNPs was
employed for the MDS analysis excluding SNPs in high
linkage disequilibrium (R2 ≥ 0.8), SNPs with minor allele fre-
quencies ≤0.01, SNPs with greater than 5% of subjects not
called and SNPs where Hardy–Weinberg P-values were
≤0.0000001.

The imputation was undertaken in two stages: first par-
ameters for the imputation were calibrated based on a
random sample of 200 individuals from this study and over
100 iterations of the model. Once parameter estimates were
constructed, maximum likelihood genotypes were imputed
for SNPs in the study population based on the reference hap-
lotypes from the 1000 Genomes Project. These haplotypes
yielded a maximum of �8.2 million SNPs possible to
impute. Results from the imputation were filtered to include
only high-quality imputed SNPs with a minimum quality
index of 0.30 based on the squared correlation between geno-
typed and imputed SNPs (RSQR from MACH). All reported
association statistics herein are derived from imputed geno-
types. As a quality metric, we report 99.5% concordance
between the subset of 12 SNPs that were both imputed and
directly genotyped on the Affymetrix SNP 6.0 array.

Data sharing

Note that genotype data for all of the imputed AlzGene SNPs
are freely available at the TGen Neurogenomics Data web site
[www.tgen.org/data/neurogenomics].

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.
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