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Abstract
The three homologous members of the p160 SRC family (SRC-1, SRC-2 and SRC-3) mediate the
transcriptional functions of nuclear receptors and other transcription factors, and are the most
studied of all transcriptional coactivators. Recent work has indicated that the SRC genes are
subject to amplification and overexpression in various human cancers. Some of the molecular
mechanisms responsible for SRC overexpression along with the mechanisms by which SRCs
promote breast and prostate cancer cell proliferation and survival have been identified, as have the
specific contributions of individual SRC family members in spontaneous breast and prostate
carcinogenesis in genetically manipulated mouse models. These studies have identified new
challenges for cancer research and therapy.

Introduction
Nuclear hormone receptors (NRs) are ligand-dependent, DNA-binding transcription factors
that regulate gene expression and various physiological functions. Understanding how NRs
control gene transcription has been a long and difficult journey. Initially, it was thought that
NRs enabled general transcription factors (GTFs) and RNA polymerase II to assemble at the
promoter to turn on mRNA synthesis. However, work began in the 1970s to search for
nuclear non histone helper proteins that were thought to aid the binding to DNA and the
transcriptional function of NRs 1, 2. The finding that activation of one overexpressed NR
could indirectly inhibit the transcriptional activity of another NR3, 4 and that in vitro
transcription systems consisting of purified NRs and GTFs were inefficient further
suggested that additional transcription activators were required for efficient hormone-
induced transcriptional activation 5. In 1995, the steroid receptor coactivator-1 (SRC-1) was
cloned as the first authentic NR coactivator. SRC-1 interacted with steroid receptors in a
hormone-dependent manner and robustly increased the transcriptional activities of steroid
receptors 6. Soon after, two other homologous proteins, SRC-2 (TIF2 or GRIP1) 7, 8 and
SRC-3 (p/CIP, RAC3, AIB1, ACTR or TRAM-1) 9–13, were characterized as NR
coactivators. These three homologous proteins comprise the p160 SRC family. In this
review, we summarize our current knowledge regarding the molecular features, functional
mechanisms, posttranslational modifications and physiological functions of the SRC family
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members. Our major emphasis will be on the contributions and mechanisms of the SRC
family in cancer.

Structural and functional characteristics of the SRC family
SRCs contain three structural domains. The N-terminal basic helix-loop-helix-Per/ARNT/
Sim (bHLH-PAS) domain is the most conserved region and is required for protein-protein
interactions 14–16. The bHLH-PAS domain can interact with several transcription factors
such as myogenin, MEF-2C and TEF to potentiate transcription 17, 18. The central region
contains three LXXLL (L for leucine and X for any amino acid) motifs, which form
amphipathic α-helices and are responsible for interacting with NRs 19–21. The C-terminus
contains two transcriptional activation domains (AD1 and AD2). AD1 binds CBP and p300
histone acetyltransferase (HAT), and the recruitment of CBP or p300 by SRCs to the
chromatin context is essential for SRC-mediated transcriptional activation. AD2 interacts
with coactivator-associated arginine methyltransferase 1 (CARM1) and protein arginine
methyltransferases (PRMT1), which are histone methyltransferases 22–29. The C-termini of
SRC-1 and SRC-3 contain HAT activity domains, although their cellular substrates are
incompletely identified 12, 30. These molecular features provide SRCs with a suitable
structural base for recruiting additional coregulators and general transcription factors, which
in turn results in chromatin remodeling, assembly of general transcription factors and
recruitment of RNA Polymerase II for transcriptional activation 31, 32. The basic SRC
structural domains and the simplified functional mechanisms for SRCs in NR-dependent
transcriptional activation are sketched in Fig. 1.

In addition to serving as coactivators for NRs, SRCs also serve as coactivators for other
transcription factors, including NF-κB, Smads, E2F1, STATs, HIF1, p53 and RB (Table 1).
SRCs also can promote gene transcription by interacting with kinases, phosphatases,
ubiquitin/sumo ligases, histone acetyltransferases and histone methyltransferases (Table 1).
By modulating gene expression controlled by a broad range of NRs and non-NR
transcription factors, SRCs regulate many diverse physiological functions.

The molecular targets of SRCs are numerous (Box 1). Genetic ablation of SRC-1 altered
gene expression patterns involved in cell cycle and energy metabolism pathways such as
glycolysis, glycogen synthesis and fatty acid synthesis 33. Genetic ablation of SRC-2
increased gene expression for energy expenditure but decreased gene expression for energy
storage 33. SRC-3 is required for the expression of several genes for cell cycle and apoptosis
in breast cancer cells 34.

Box 1

SRC knockout mice

Although SRC-1 null (Src1−/−) mice display no gross defects in development and
growth, careful analyses revealed that SRC-1 plays important in vivo roles in organ
physiology. In reproductive organs, SRC-1 deficiency reduces oestrogen-induced uterine
growth, oestrogen- and progesterone-dependent uterine decidual response, mammary
gland ductal side branching and alveolar formation, and testosterone-stimulated prostate
growth 139. In addition to partial resistance to sex steroids, partial resistance to thyroid
hormone (RTH) also exists in Src1−/− mice140,141. In the liver, SRC-1 is an essential
coactivator for CEBPα, which together with PPARγ regulates the pyruvate carboxylase
gene, the limiting enzyme for gluconeogenesis. In brown fat, activation of PPARγ
triggers the recruitment of a coactivator complex containing PGC-1, SRC-1 and CBP/
p300 142 and inactivation of SRC-1 impairs the thermogenic activity of PGC-1,
decreasing energy expenditure and resulting in obesity with a high fat diet 143.
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Assessment of Src2−/− (Tif2−/−) mice demonstrated an important function of SRC-2 in
reproductive organs and in the regulation of metabolism. Src2−/− Sertoli cells are unable
to support normal spermatogenesis144 and SRC-2 is the dominant member of the SRC
family that mediates androgen receptor function in the testis 145. The hypofertility of
female Src2−/− mice is partially due to a placental hypoplasia 144 and specific ablation of
SRC-2 in the PR-positive cell linage inhibits the progesterone-induced decidual response
and causes a block in embryo implantation. SRC-2 ablation also results in reduced ductal
side branching and alveologenesis in the mammary gland 137. In white adipose tissue,
SRC-2 deficiency increases leptin expression and decreases the expression of genes
responsible for anti-lipolysis and fatty acid uptake and trapping. In brown adipose tissue,
SRC-2 deficiency increases levels of UCP-1, PGC-1 and acetyl CoA oxidase, promoting
energy expenditure. As a result, Src2−/− mice exhibit higher body temperature under cold
conditions, less fat accumulation, lower levels of fasting glycemia and triglycerides, and
higher insulin sensitivity 143. In the liver, SRC-2 enhances RORα-mediated G6Pase
expression to regulate fasting hepatic glucose release from the liver. SRC-2 ablation
recapitulates the human syndrome of Von Gierke’s disease (glycogen storage disease-1a)
146.

Src3−/− mice show growth retardation, delayed puberty, reduced female reproductive
function and blunted mammary gland development 147, 148. In agreement with the growth
retardation, circulating IGF-I levels in Src3−/− mice are significantly reduced. SRC-3 is
required for vitamin D receptor-mediated expression of IGFBP-3, a binding protein
maintaining IGF-I stability in the circulation 149. In the mammary gland, SRC-3
deficiency decreases oestrogen and progesterone-induced mammary ductal growth and
alveologenesis, revealing SRC-3’s role in ER and PR function 147. SRC-3 is not required
for castration-induced regression and testosterone-stimulated regeneration of the prostate
in mice, suggesting that SRC-3 is not essential for androgen and androgen receptor-
dependent prostate morphogenesis 118.

Four SRC-1 splicing isoforms have been reported 35. In comparison with SRC-1a, SRC-1b
lacks a N-terminal region, while SRC-1c, SRC-1d and SRC-1e differ from SRC-1a and from
each other at their unique C-terminal sequences. It has been shown that SRC-1a and SRC-1b
have different abilities to enhance ERα activity in cultured cells 36. A SRC-3 isoform, AIB1-
Δ3, also has been reported 37. AIB1-Δ3 lacks the N-terminal PAS/bHLH domain and it may
be a more active coactivator for ERα and PR compared with the full-length SRC-3.
However, the in vivo expression profiles and physiological significances of these SRC-1 and
SRC-3 isoforms are currently unclear.

Posttranslational modifications of SRCs
The limiting concentrations of cellular SRCs suggest that changes in SRC levels and/or
activities are efficient means for the cell to regulate gene expression. A number of studies
have demonstrated that signaling pathways activated by extracellular stimuli such as
hormones, growth factors and cytokines induce multiple posttranslational modifications of
SRCs, including phosphorylation, ubiquitination, sumoylation, acetylation and methylation
(Fig. 2). These dynamic and often reversible post translational modifications have crucial
roles in determining the protein stability, the transcription factor-interactive specificity and
the transcriptional activity of SRCs, and they link SRC functions to cellular responses to
environmental cues. Deregulated post translational modifcation of SRC molecules have
significant implications in human diseases such as cancer.
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Phosphorylation
Phosphorylation of SRCs changes their affinity for select NRs and modulates NR-dependent
gene expression 38–41. Epidermal growth factor (EGF), interleukin 6 (IL-6) and cAMP
treatments stimulate proline-directed kinase phosphorylation of SRC-1 on Thr1179 and
Ser1185 and phosphorylated SRC-1 has higher coactivator function in both ligand-
dependent and ligand-independent NR pathways 39, 42. Interestingly, EGF induced
phosphorylation of SRC-1 enhances progesterone receptor (PR)-dependent transcription 39;
IL6 mediated SRC-1 phosphorylation promotes androgen receptor (AR)-dependent
transcription in a ligand-independent manner 42; and cAMP induced phosphorylation of
SRC-1 enables recruitment of p300 and CBP and PR-dependent transcription in a ligand-
independent manner 43. Furthermore, MAPK-mediated phosphorylation of SRC-1 on
Thr1179 and Ser1185 increase its affinity for AR in prostate cancer cells, perhaps
contributing to prostate cancer recurrence 42, 44. In endometrial cancer cells, Src-mediated
SRC-1 phosphorylation significantly increases the agonist activity of tamoxifen, indicating
that SRC-1 has a role in tamoxifen-induced endometrial proliferation and increase the risk of
endometrial cancer associated with use of tamoxifen 45, 46.

For SRC-2, Ser736 is phosphorylated by MAPKs, including oestrogen-induced p38 and
EGF-induced ERKs. Phosphorylation of Ser736 enhances SRC-2 and p300/CBP interaction
and increases SRC-2 coactivation function for oestrogen receptor α (ERα), PR and AR 38,
44, 47. Protein kinase A (PKA) also phosphorylates SRC-2, resulting in a rapid increase in
SRC-2 coactivator activity followed by accelerated SRC-2 degradation 48, 49.

In SRC-3, seven Ser/Thr (Thr24, Ser505, Ser543, Ser601, Ser857, Ser860 and Ser867) and
one Tyr (Tyr1357) phosphorylation sites are functionally important 40, 41, 50. The kinases
that phosphorylate and activate SRC-3 include MAPK, IKK, Akt (by inhibiting GSK3) and
CK1δ, suggesting a role for SRC-3 in accepting signals from multiple pathways. SRC-3 is
also a target of the c-Abl tyrosine kinase that can be activated by oestrogen and growth
factors. Phosphorylation of Tyr1357 by c-Abl facilitates SRC-3 action in mediating ERα, PR
and NF-κB-dependent transcription by enhancing SRC-3 binding to p300 and transcription
factors 50. Importantly, Tyr1357 phosphorylation is elevated in ERBB2-induced mouse
breast tumors, suggesting that phosphor-Tyr1357 plays a role in oncogenesis. Moreover,
levels of SRC-3 Tyr1357 phosphorylation might serve as a marker for evaluating the
efficacy of tyrosine kinase inhibitors.

Clinical studies have shown that SRC-3 expression levels are increased in a subset of breast
tumors, and high SRC-3 levels are commonly associated with ERBB2 expression, tamoxifen
resistance, disease recurrence and poor prognosis 51–53. This unfavorable outcome can be
explained by a series of linked molecular events. ERBB2 expression activates MAPK and
Akt and causes phosphorylation of SRC-3 and ER, resulting in transcriptional activation and
cell proliferation. Furthermore, Akt can stabilize SRC-3 by inhibiting GSK3 54, suggesting a
positive feedback mechanism between SRC-3 levels and Akt activity. Akt over activation is
frequently observed in human cancers.

Interestingly, SRC-3 function and cellular concentrations are counter-regulated by kinases
and phosphatases. Phosphatases PDXP and PP2A dephosphorylate SRC-3, inhibit SRC-3
interaction with ER and reduce SRC-3 coactivator activity 55. Phosphatase PP1 de-
phosphorylates phospho-Serines 101 and 102, which decreases SRC-3 transcriptional
activity and increases SRC-3 stability 55 (Fig. 2). In contrast, atypical PKC (aPKC)-
mediated SRC-3 phosphorylation stabilizes SRC-3 by targeting an acidic region of amino
acid residues 1031–1097 and preventing SRC-3 from interacting with the C8 subunit of the
20S core proteasome 56. Since both aPKC and SRC-3 are frequently overexpressed in
cancers, they may synergistically promote carcinogenesis.
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The transcriptional activities of SRCs also are regulated by subcellular localization and
intracellular trafficking. SRCs contain nuclear import and export signals and locate in both
cytoplasm and nucleus 57–59. Post translational modifications can alter the availability of
SRCs in a subcellular compartment by regulating their nucleo-cytoplasmic trafficking. For
example, TNFα and EGF-induced phopshorylation of SRC-3 causes its redistribution from
cytoplasm to nucleus 60, 61.In the cytoplasm, oestrogen-induced SRC-3 phosphorylation
leads to SRC-3 and ERα interaction, suggesting that activation of SRC-3 may play a role in
oestrogen-induced non-genomic effects 62. SRC-3 also is associated with and
phosphorylated by IKK and c-Abl in the cytoplasm in response to TNFα or growth factor
stimulation, indicating a role for SRC-3 in these kinase pathways 50, 61. Furthermore, SRC-3
can interact with TIA-1 and TIAR, two translational repressors associated with AU-rich
regions in the 3’-UTR of cytokine mRNAs in the cytoplasm, thereby inhibiting translation
of IL-1, IL-6 and TNF-α mRNAs 63.

Ubiquitination
26S proteasome-mediated degradation regulates the function of NRs and the turnover of
activated NRs and SRCs 64–68. Recently, two SCF-dependent mono-ubiquitination sites
(Lys723 and Lys786) within the NR interaction domain of SRC-3 were identified 54.
Phosphorylation of Ser505 by GSK3 and Ser860 by p38 MAPK not only enhances SRC-3
interaction with ER and AR but also regulates its ubiquitination and protein stability 54, 69.
Sequential phosphorylation-dependent mono- to poly-ubiquitination events couple
transcriptional activation with SRC-3 degradation, ensuring a proper termination of
transcription (Fig. 2). In contrast to GSK3-mediated phosphorylation that causes SRC-3
degradation, aPKC-mediated SRC-3 phosphorylation protects SRC-3 from proteasomal
degradation in an ERα-dependent manner, leading to an increased oestrogen-induced breast
cancer cell growth 56.

Although the structure of the small ubiqitin-related modifier (SUMO) is similar to ubiquitin,
the fate of a sumoylated protein is usually distinct from that of a ubiquitinated protein.
Sumoylation can either antagonize SRC ubiquitination by targeting a common lysine
substrate to prevent degradation and enhance its concentration, or change SRC into an
inactive confirmation 70–76 (Fig. 2). In addition to ubiquitin-dependent turnover, REGγ, a
proteasome activator that stimulates the trypsin-like activity of the 20S proteasome, binds
and promotes SRC-3 degradation in a ubiquitin- and ATP-independent manner 77.

Acetylation and methylation
The function of SRCs can be modulated by acetylation. After transcriptional initiation,
SRC-3 is acetylated by p300/CBP, resulting in disassembly of the NR and SRC-3 complex
and termination of transcription 78 (Fig. 2). After initial stimulation, oestrogen treatment
enhances CARM-1-mediated SRC-3 methylation on Arg1171 and terminates transcription
by disassembling the SRC-3 coactivator complexes 79 and increasing SRC-3 degradation 80

(Fig. 2).

Combined posttranslational modifications
Different combinations of posttranslational modifications determine SRC coactivator
potency and selectivity and allow SRCs to integrate multiple upstream signals into finely
tuned regulation of gene expression. For example, retinoic acid and p38 MAPK-induced
SRC-3 phosphorylation initially enhances SRC-3 interaction with retinoic acid receptor α
(RARα) to activate transcription. Subsequently, the phosphorylated SRC-3 is subjected to
ubiquitination and degradation, thereby leading to transcriptional termination. Another study
demonstrated that phosphorylation of SRC-3 on Ser509 primed it for phosphorylation on
Ser505. This then triggered SRC-3 mono- and subsequent poly-ubiquitination, which are
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responsible for activation and degradation of SRC-3, respectively 54 (Fig. 2). Oestrogen-
induced MAPK-dependent SRC-3 phosphorylation inhibited SRC-3 sumoylation
conversely, de-phosphorylation increased SRC-3 sumoylation and decreased SRC-3 activity
76. As ubiquitination and sumoylation can occur on the same lysine residue, different
phosphorylation codes may determine whether SRC-3 is ubiquitinated or sumoylated,
methylated or acetylated. As postranslational modifications largely influence both the
cellular concentrations and the coactivator activities of SRCs, interventions that modulate
SRC post translational modification have potential for controlling the detrimental roles of
overexpressed SRCs in cancer.

In vivo functions of SRC Family Members
Our knowledge of the diverse in vivo functions of the SRC family is primarily gleaned from
the characterization of knockout mouse models (Box 1). These studies indicate that each
SRC family member has specific physiological functions. However, the additive severity of
the phenotypes observed in double knockout mice indicates certain cooperative
physiological functions among SRC family members. Most Src1−/−;Src2−/− mice do not
survive and male and female Src1+/−;Src2−/− mice are completely infertile81. SRC-1 and
SRC-3 cooperatively regulate viability, metabolism and energy balance. Most
Src1−/−;Src3−/− mice die before birth, and mice that do survive exhibit compromised
regulation of selective PPARγ target genes involved in adipogenesis and mitochondrial
uncoupling, a higher leptin level, a developmental arrest in interscapular brown fat and a
defect in adaptive thermogenesis. As a result, these mice eat more, but are lean and resistant
to high-fat-diet-induced obesity due to a high basal metabolic rate and increased physical
activity 82.

SRC genes in cancer
Each SRC has been found to be overexpressed in many types of human cancer, and in
steroid hormone-promoted breast and prostate cancers in particular. Amplification of SRC1
or SRC2 is rare in cancers — by contrast, SRC3 on human chromosome 20q21 is more
frequently amplified in cancer (Table 2, a–c). The precise mechanisms that underlie over
expression of SRCs in human cancer are still unclear. Many studies have investigated the
mechanisms through which SRCs promote carcinogenesis and indicate that SRCs have
important and distinct roles in promoting cancer initiation, progression and metastasis
through alterations of multiple signaling pathways (Fig. 3).

SRC expression and function in breast cancer
In normal human breast, the levels of the three SRC proteins in epithelial cells are variable,
but they are usually low or undetectable as assayed by immunohistochemistry (IHC) 83–88.
A number of studies examined the expression profiles of SRC mRNA and protein levels in
human breast tumors and these data are considered below alongside data from mouse
models and cell lines.

SRC1
Several studies demonstrated that SRC-1 protein is significantly elevated in 19% to 29% of
breast tumors 83–86. More importantly, SRC-1 elevation positively correlates with ERBB2
expression, lymph node metastasis, disease recurrence and poor disease-free survival (DFS)
(Table 2a) 83–85. Interestingly, a recent clinical study revealed elevated SRC-1 to be an
excellent independent predictor of breast cancer recurrence following therapy 89.
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In vitro, SRC-1 plays a role in cancer cell proliferation and invasion through multiple
pathways. In MCF-7 breast cancer cells, SRC-1 overexpression potentiates cell growth
stimulated by oestrogen in accordance with an increase in expression of oestrogen-
responsive genes, indicating that SRC-1 plays an important role in oestrogen receptor-
mediated cell growth90. In contrast, reduction of SRC-1 in MCF-7 cells decreases oestrogen-
dependent DNA synthesis and the oestrogen-responsive pS2 gene expression 91.
Interestingly, MUC1, an ERα interactive protein overexpressed in breast carcinomas, can
stimulate ERα-mediated transcription by aiding SRC-1 recruitment to oestrogen-responsive
promoters, suggesting that SRC-1 acts in MUC1-stimulated cell growth 92. Furthermore,
MCF-7 cells lacking SRC-1 do not show increases in oestrogen-induced SDF-1α expression
and cell proliferation and invasion, suggesting that SRC-1 may regulate cell proliferation
and invasion through autocrine/paracrine activity of the SDF-1α–CXCL12 signaling
pathway 93.

In MMTV-polyoma middle T (PyMT) mammary tumor-prone mice, SRC-1 levels are
increased during tumorigenesis. Knockout of Src1 does not affect PyMT-induced mammary
tumor initiation and growth, but it helps to maintain epithelial differentiation and polarity,
and importantly, prevents tumor cell metastasis to the lung. Further analyses revealed that
SRC-1 deficiency reduced ERBB2 expression and Akt activation and also inhibited colony
stimulating factor 1 (CSF-1) expression and macrophage recruitment to the tumor site 94. In
addition, a recent study demonstrated that SRC-1 promotes epithelial-mesenchymal
transition (EMT), migration, invasion and metastasis of mammary tumor cells by
coactivating PEA3-mediated Twist expression 95.

SRC2
One study reported no significant change in the levels of SRC-2 protein in breast tumors,
while another study reported the correlation of SRC-2 with cyclin D1 expression in ERα+
breast tumors 86, 96 (Table 2b). In MCF-7 breast cancer cells, knockdown of SRC-2 reduces
oestrogen-induced cell proliferation and target gene expression 91 and like SRC-1, SRC-2
overexpression may also promote cell proliferation and invasion through inducing SDF-1α
expression 93.

SRC3
In separate studies of breast tumors, the frequencies of SRC3 amplification were 9.5% as
measured by FISH 11 and 4.8% as measured by Southern blot 97. The levels of SRC-3
mRNA and protein in breast cancer have been extensively analyzed. SRC-3 mRNA
overexpression was found in 64% 11, 31.6% 98, 31% 51 and 13% 99 of independent breast
tumor cohorts. SRC-3 protein overproduction was identified in 9.8% 87 and 20% 86 of two
different breast tumor cohorts. Interestingly, SRC-3 overexpression in breast cancer usually
correlates with the expression of ERBB2, matrix metalloproteinase 2 (MMP2), MMP9 and
PEA3 and with larger tumor size, higher tumor grade, and/or poor DFS 11, 51, 52, 86, 88, 96–
98 (Table 2c). In tamoxifen-treated patients, high levels of SRC-3 expression are associated
with tamoxifen resistance and a poorer DFS. Importantly, patients with high levels of both
SRC-3 and ERBB2 exhibit early and severe resistance to selective oestrogen receptor
modulators (SERM) therapy 52. As ERBB2 activates MAPK, which in turn phosphorylates
ER and activates SRC-3 100, the overexpression of both ERBB2 and SRC-3 significantly
enhances the agonist activity of tamoxifen and therefore, reduces its antitumor activity in
patients with breast cancer 101.

In breast cancer cells, SRC-3 can be recruited to the oestrogen responsive CCND1 promoter
to enhance cyclin D1 expression 102 – depletion of SRC-3 in MCF-7 cells significantly
reduces oestrogen-mediated cell proliferation and survival. Down-regulation of SRC-3 in
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MCF-7 cells also reduces oestrogen-dependent colony formation in soft agar and tumor
growth in nude mice 103.

The in vivo role of SRC-3 in breast cancer initiation and progression has been investigated in
multiple mouse models. In mice harboring the MMTV–v-ras (ras) transgene, breast tumor
incidence was reduced dramatically in Src3−/−;ras virgin mice and inhibited completely in
ovariectomized Src3−/−;ras mice 104. Breast tumor latency and growth were delayed
significantly in Src3−/−;ras virgin mice with natural oestrous cycles, multiparous mice with
cyclically elevated reproductive hormones and virgin mice bearing pituitary isografts with
persistently elevated hormones. Interestingly, SRC-3 deficiency did not alter the expression
of oestrogen and progesterone-responsive genes in the mammary gland and tumors, but it
caused partial resistance to insulin-like growth factor I (IGF1) because of a significant
reduction in insulin receptor substrate-1 (IRS-1) and IRS-2. The impaired IGF-I signaling
pathway in Src3−/−;ras mammary epithelium and tumor cells may be responsible in part for
the suppression of mammary tumorigenesis and metastasis.

In a second model, the role of SRC-3 in susceptibility of the mammary gland to chemical
carcinogens was characterized 105. This study demonstrated that mammary ductal
outgrowths emanating from the Src3−/− mammary epithelial transplants in WT mice were
attenuated, indicating that the role of SRC-3 in mammary ductal growth is mammary
epithelial cell autonomous. In mice treated with the chemical carcinogen 7,12-
dimethylbenz[a]anthracene (DMBA), SRC-3 deficiency protected the mammary gland, but
not the skin, from tumorigenesis. In this model, SRC-3 deficiency also suppressed the up-
regulation of both IRS-1 and IRS-2 and thereby inhibited the activation of Akt, the
expression of cyclin D1 and cell proliferation.

In a third model, the role of SRC-3 in breast tumorigenesis was assessed in MMTV-Erbb2-
induced mammary tumorigenesis in WT and Src3−/− mice 106. This study showed that
ERBB2-induced mammary tumor development was significantly delayed in Src3+/− mice
and completely suppressed in Src3−/− mice. In comparison with WT;Erbb2 tumors,
Src3+/−;Erbb2 tumors exhibited a decrease in phosphorylated ERBB2, cyclin D1 and cyclin
E, reduced activity of Akt and JNK, and decreased cell proliferation. These findings suggest
that SRC-3 is required for ERBB2 oncogenic activity and SRC-3 reduction in the mammary
epithelium should potentiate therapies aimed at inhibiting ERBB2 signaling in breast cancer
106.

In a fourth model, the role of SRC-3 in breast cancer metastasis was investigated by using
MMTV-PyMT mice 88. This study demonstrated that genetic ablation of Src3 in MMTV-
PyMT mice significantly reduced lung metastasis and the effect was cell autonomous.
Cellular and molecular analyses revealed that SRC-3 interacted with PEA3 and directly
enhanced the activity of the MMP2 and MMP9 promoters and increased the expression of
MMP2 and MMP9 in WT;PyMT tumor cells. Therefore, SRC-3 can aid breast cancer
metastasis through MMP2- and MMP9-mediated EMT and cell invasiveness. This correlates
with data from human breast tumors where SRC-3 expression is associated with high PEA3,
MMP2 and MMP9 expression levels 88.

Finally and importantly, the oncogenic role of SRC-3 overexpression in the mammary gland
was directly demonstrated by generating and characterizing MMTV-Src3 transgenic mice.
This study demonstrated that SRC-3 overexpression caused mammary hypertrophy,
hyperplasia, abnormal post-weaning involution, and the spontaneous development of
malignant mammary tumors. Tumor incidence was increased in other organs, including the
pituitary and uterus 107. In agreement with the down-regulation of the IGF-I signaling
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pathway in Src3−/−;ras mammary tumors 104, SRC-3 overexpression-induced mammary
tumors have a hyperactive IGF-I signaling pathway 107.

In summary, consensus results indicate that both SRC-1 and SRC-3 are overexpressed in a
subpopulation of breast cancers without clear relevance to ER and PR expression.
Overproduction of SRC-1 and SRC-3 are generally detrimental to patients. SRC-2
expression profiles in breast cancer are less conclusive due to lack of sufficient data. Data
from mouse models and cell lines indicate that SRC-1 and SRC-3 have important functions
in breast cancer, including tumour initiation and progression. Data from SRC-3 mouse
models highlight the oncogenic nature of this protein when its expression is deregulated.

Prostate cancer
The expression profiles of SRC family members have been investigated in prostate tumors
(Table 2, a–c). Amplification of SRC-1 is rare in human tumors and one study reported that
SRC1 was amplified in only 2 out of 70 specimens that included prostate cancer cell lines,
xenografts and primary tumors108. However, several studies have found that the expression
levels of both SRC-1 mRNA and protein are positively correlated with prostate tumor grades
109–111. In addition, one study found more nuclear localized SRC-1 protein in androgen-
independent prostate tumors 108, while another study using quantitative RT-PCR failed to
detect significant correlations between SRC-1 mRNA and prostate tumor progression 112.
Overall, SRC-1 is thought to be elevated in certain prostate tumors, but its overexpression
frequency has not been accurately determined.

In prostate cancer cells, SRC-1 is able to enhance AR-mediated cell proliferation in culture.
Src1 knockdown inhibits proliferation of the androgen-dependent LNCaP cells in culture.
More interestingly, SRC-1 knockdown inhibits the growth of C4-2 prostate cancer cells that
depend on AR for growth in androgen-depleted medium 109. However, reduction of SRC-1
has no effect on the growth of the AR-negative PC-3 and DU145 prostate cancer cells 109.
These results suggest that SRC-1 promotes prostate cancer growth through enhancing AR
function in an androgen-dependent and -independent manner.

The in vivo role of SRC-1 in prostate cancer has been investigated in transgenic
adenocarcinoma of mouse prostate (TRAMP) mice harboring the SV40 large and small T
antigen transgene driven by a probasin promoter113. During prostate carcinogenesis, SRC-1
protein levels remained constant in prostate tumors of TRAMP mice. TRAMP;Src1−/− mice
exhibited similar prostate tumor initiation, progression and metastasis when compared to
that observed in WT mice. Interestingly, in both WT and Src1−/− TRAMP mice, prostate
carcinogenesis induced SRC-3 overexpression. Thus, the role of SRC-1 in murine prostate
carcinogenesis may be nonessential due to possible compensations from SRC-3 or
overexpression of other coactivators.

SRC-2 expression in prostate tumors was found to be elevated but the frequency of SRC-2
overexpression has not been characterized well. It was reported that SRC-2 expression in a
subgroup of prostate cancer was positively associated with high tumor cell proliferation,
high tumor grade and/or disease recurrence 110, 114. In AR-positive prostate cancer cells,
high levels of androgen repress SRC-2 expression. Depletion of SRC-2 reduces AR target
gene expression, and inhibits proliferation of AR-dependent and AR-independent prostate
cancer cells, suggesting that SRC-2 also enhances prostate cancer cell growth through both
AR-dependent and AR-independent pathways 114.

SRC-3 expression in prostate tumors has been examined in two studies. One study with a
small number of samples found that SRC-3 protein was overproduced in 38% of tumor
samples 115. The other study with a large number of tumor samples found that SRC-3 levels
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were positively correlated with increasing PSA levels indicating tumour recurrence, Akt
activation and tumor cell proliferation 116. In prostate cancer cells, SRC-3 activates the Akt–
mTOR signaling pathway and stimulates cell growth by increasing cell size. SRC-3
knockdown decreases cancer cell proliferation and xenograft tumor growth in nude mice and
increases apoptosis 116, 117. The role of SRC-3 in spontaneous prostate cancer was
investigated by comparing tumor initiation and progression in TRAMP and TRAMP;Src3−/−

mice 118. SRC-3 was nonessential for normal androgen–AR-dependent prostate growth and
high levels of SRC-3 expression were found in stromal and basal cells, but not in luminal
epithelial cells. Of note, high levels of SRC-3 expression were detected in prostate tumor
cells during progression toward more malignant stages. In agreement with this finding,
development of prostate epithelial hyperplasia and the initiation of well-differentiated
tumors were not affected by loss of SRC3, but it efficiently arrested prostate tumor growth
and progression at the well-differentiated stage and significantly extended the animal life
118. These results indicate that de novo induction of SRC-3 expression in partially
transformed epithelial cells is essential for progression of prostate tumorigenesis into poorly
differentiated carcinoma. Inhibition of SRC-3 expression or function in the prostate
epithelium may be a potential strategy to suppress prostate cancer progression. Taken
together, these findings suggest that overexpressed SRC family members have detrimental
roles in promotion of prostate cancer initiation and progression.

Other cancers
The expression profiles of SRC family members in other types of cancers are summarized in
Table 2, a–c). Briefly, in colorectal cancer, high levels of SRC-3 protein were detected in
35% tumors and were positively associated with tumor grades 119. In endometrial
carcinoma, one study reported an increase in SRC-1 and SRC-2 mRNAs 120, while another
study reported a decrease in SRC-1 protein 121. SRC-3 mRNA and protein levels were found
to be increased in endometrial carcinomas, and various overexpression frequencies were
reported in different studies 99, 120, 122. SRC-3 overexpression was detected in 46% of
esophageal squamous cell carcinomas and 40% of gastric cancers, and SRC-3 expression
levels were positively associated with higher cell proliferation, metastasis and poor
prognosis 123, 124. Up-regulated SRC-3 protein was found in 64% of high-grade ovarian
cancer specimens and 65% of pancreatic cancer specimens; SRC-3 levels in these cancers
were positively correlated with disease degrees125, 126.

An abnormal chromosomal rearrangement of inv(8)(p11p13) has been identified in a subset
of patients with acute myeloid leukemia (AML) 127, 128. This rearrangement results in a
fusion between the 5’ portion of MOZ mRNA and the 3’ portion of SRC2 mRNA; the fusion
encodes a transcriptional activator domain that binds nucleosomes through MOZ and
recruits CBP through a SRC-2 domain 127–129. MOZ–SRC-2-transduced myeloid
progenitors can be continuously passaged in culture and induce acute myeloid leukemia in
vivo 130. These findings reinforce the concept that deregulation of a transcriptional
coactivator can lead to malignant disease in humans.

Intriguingly, one study reported that SRC-3 could inhibit IκB kinase to stabilize IκB and
suppress NF-κB activation in the lymphoid lineage 131. Genetic ablation of SRC-3 resulted
in the release of IκB kinase inhibition and constitutive NF-κB activation. Consequently, a
subset of old Src3−/− mice developed lymphocyte proliferation and spontaneous β-cell
lymphoma 131. Another study demonstrated that SRC-3 deficiency in macrophages did not
affect NF-κB-mediated gene transcription, but inhibited the production of proinflammatory
cytokines such as IL-1, IL-6 and TNF-α at the translational level 63. It is currently unknown
if the increased inflammatory cytokines in Src3−/− mice are responsible in part for the
development of β-cell lymphoma. Taken together, these findings suggest that SRC-3
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regulates cell proliferation in a cellular and signaling context-dependent manner, ranging
from proliferative and tumorigenenic effects in most endocrine target organ epithelial cells
to paradoxical antiproliferative effects in lymphoid cells.

Overall, one can conclude that miss-expression of SRC family members occurs not only in
steroid hormone-promoted breast and prostate cancers but also in steroid-independent
cancers, suggesting SRC family members promote carcinogenesis through both steroid
dependent and independent pathways.

Summary and perspectives
Since SRC-1 was identified as a NR coactivator in 1995 6, the NR coregulator field has
experienced an explosion in research aimed at understanding the mechanism of NR
coactivator function, much of which has been applied to studies of hormone-related cancers.
Emanating from these studies, many previously unknown proteins such as SRCs, MTA1 and
PGC-1 have been found to be ‘Master Genetic Regulators’ 2. In this review, we have
summarized our present knowledge about the molecular features, post translational
modifications (Fig. 2), interactive proteins (Table 1), molecular targets and physiological
functions of SRCs. By interacting with and coactivating most NRs and certain other
transcription factors, SRCs coordinate expression of many genes directed to accomplishing
larger physiological goals. Importantly, overexpression of SRC-3 in mammary epithelial
cells has been shown to be sufficient to induce spontaneous mammary tumors in mice,
indicating that overexpression of SRC-3 is oncogenic 107. Conversely, knockout of SRC-3 in
mice suppresses oncogene- and carcinogen-induced breast cancer initiation, progression and
metastasis 88, 104–106. However, knockout of SRC-3 only inhibits prostate cancer
progression and metastasis and does not affect the initiation of prostate tumorigenesis in
TRAMP mice 118. Interestingly, knockout of SRC-1 only suppresses mammary tumor
metastasis without affecting primary tumor formation, and does not affect prostate cancer
initiation and progression 94, 95, suggesting differing contributions from SRC-1 and SRC-3.

Many studies have investigated the mechanisms responsible for SRCs to promote
carcinogenesis. These studies revealed that SRC-1 can enhance the expression of ERBB2,
colony stimulating factor 1 (CSF-1) and TWIST expression to promote breast cancer
metastasis 94, 95. SRC-3 overexpression can enhance v-ras-mediated cell transformation and
activate ERα, EGFR and cyclin D1 expression, as well as the Akt pathway, MMPs and FAK
to promote tumor initiation, growth and metastasis 88, 102, 104–106, 117, 132, 133.

Although progress has been made in understanding the function of SRCs in various cancers
and the molecular mechanisms by which SRCs influence carcinogenesis, important
questions remain to be addressed. First, the molecular mechanisms responsible for SRC-1
and SRC-3 gene amplification and mRNA overexpression in cancers are still not fully
understood. A limited number of studies suggested that SRC-3 elevation in cancers might be
attributed to both transcriptional activation and posttranslational stabilization. On one hand,
SRC-3 serves as a coactivator for E2F1, which drives cell proliferation 134, 135. Both E2F1
and SRC-3 can be tethered to the proximal region of the SRC-3 gene promoter through
interacting with SP1, which enhances SRC-3 mRNA transcription. In this manner, E2F1 and
SRC-3 form a positive regulatory loop that can constitutively enhance SRC-3
overexpression in cancer cells (Fig. 3) 136. On the other hand, regulation of SRC-3 protein
stability by posttranslational modifications represents another important mechanism for
increasing SRC-3 protein levels in cancer (reviewed in preceding sections). Further
investigations on the molecular mechanisms responsible for the miss-expression of SRC-3
and other SRC family members may provide approaches to reprogram their expression
levels for cancer therapy.
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Second, although some genes important for carcinogenesis and metastasis have been
identified as SRC-regulated genes, a complete catalog of the direct targets of SRCs in cancer
cells is still unavailable. Characterization of all SRC target genes and a proteomic profile of
the transcription factors that work with SRCs will provide important insights into the gene
networks and pathways used by SRCs to promote carcinogenesis. Third, most in vivo
experiments to date have been carried out in knockout mice where certain systemic effects,
such as changes in IGF-1 activity, exist. It will be important to further assess and validate
the roles of SRCs in carcinogenesis by greater use of conditional knockout mice 137, 138

with cell type-specific Src ablations. In addition, development of stage-specific inactivation
(or overexpression) of SRCs in breast and prostate tumors in mice will allow us to determine
if SRCs are stage-dependent therapeutic targets. Finally, the most challenging of all tasks
will be to translate the knowledge obtained from basic research to clinical applications and
to develop clinically deliverable reagents that can counteract the excessive SRC activities in
SRC-promoted cancers.

Online 'at-a-glance' summary

• SRC-1 was the first cloned steroid receptor coactivator that interacts with
steroid hormone receptors to promote transcriptional activation in a hormone-
dependent manner.

• The p160 SRC family contains three homologous members, SRC-1, SRC-2 and
SRC-3. These SRCs interact with nuclear receptors and certain other
transcription factors and recruit chromatin-remodeling and other transcriptional
enzymes to facilitate the assembly of general transcription factors for
transcriptional activation.

• SRCs are targets of multiple signaling pathways for posttranslational
modifications. These posttranslational modifications determine or modulate
SRC protein stability, subcellular localization, functional specificity, coactivator
activity and/or coactivator complex assembly or disassembly.

• The phenotypes of knockout mice for individual and combinatorial SRC family
genes revealed that SRCs are involved in many physiological processes and
each SRC has both specific and redundant physiological functions in
development and organ function.

• SRC-1 expression is elevated in a subset of breast cancers and is positively
correlated with ERBB2 positivity and poor disease-free survival rate.
Knockdown of SRC-1 in breast cancer cells inhibits cell proliferation.

• Knockout of SRC-1 in MMTV-PyMT mice suppresses metastasis without
affecting primary tumor formation. SRC-1 promotes breast cancer metastasis
through upregulating ERBB2, CSF-1 and Twist expression.

• Both gene amplification and overexpression of SRC-3 are present in a subset of
breast cancers. SRC-3 overexpression usually correlates with the expression of
ERBB2, MMP2, MMP9 and PEA3 and with larger tumor size, higher tumor
grade, and/or poor disease-free survival.

• SRC-3 plays an important role to promote breast tumor cell proliferation,
migration, invasion and metastasis through many mechanisms such as
enhancing ERα and E2F1 functions, IGF-I signaling pathway, EGF receptor and
ERBB2 activation, as well as the expression of MMPs.
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• Knockout of SRC-3 in mice suppresses mammary tumor initiation, growth and
metastasis, while overexpression of SRC-3 in mouse mammary epithelial cells
is sufficient to induce spontaneous mammary tumorigenesis.

• SRC-3 expression is elevated during prostate tumorigenesis in mice. Knockout
of SRC-3 efficiently arrests prostate tumor progression at a well-differentiated
stage.
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Glossary terms

pS2 gene The human pS2 gene in estrogen receptor α (ERα)-positive breast cancer
cells such as MCF-7 cells is a direct target gene of ERα. Upon estrogen
treatment, pS2 mRNA expression can be significantly induced within 15
minutes

Pituitary
isograft

A pituitary gland isolated from a syngenic donor mouse is implanted into
the kidney capsule of the recipient mouse. Upon the stimulation of the
implanted pituitary isograft, the recipient mouse shows significantly
increased levels of prolactin, progesterone and estradiol
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Fig. 1.
Molecular structure of SRCs and their functional mechanisms in steroid hormone-induced
gene expression. The locations of basic structural and functional domains of SRCs are
indicated. Upon hormone (H) binding, the hormone nuclear receptors (NR) expose their
coactivator-binding motifs in their ligand-binding domains and allow SRCs to be recruited
to the enhancer region of the NR target genes. SRCs further interact with CBP, p300, p/
CAF, CARM1 and PRMT1 and recruit these common coactivators to the chromatin to build
up a steroid receptor-directed transcriptional activation complex. This protein complex uses
its protein acetyltransferase and methyltransferase activities to remodel the chromatin
structure and to facilitate the assembly of general transcription factors and RNA polymerase
II on the promoter for transcriptional activation. Of note, in addition to interactions between
NR and the NRID domain of SRCs, interactions between NR and the bHLH/PAS domain of
SRCs have been documented and may be important for function (see dotted line with
arrowheads). Abbreviations: NRID, NR interaction domain; AD1 and AD2, activation
domains 1 and 2; bHLH/PAS, the basis helix-loop-helix/Per-Ah receptor nuclear
translocator-Sim domain; S/T, the serine and threonine-rich domain; L, L and L, the three
LXXLL motifs responsible for interaction with nuclear receptors; Q, the glutamine-rich
region; HAT, the histone acetyltransferase domain; CBP, the CREB (cAMP response
element-binding protein) binding protein; p300, the 300 kDa protein homologous to CBP; p/
CAF, the p300 and CBP-associated factor; CARM1, the coactivator-associated arginine
methyltransferase 1; PRMT1, the protein arginine methyltransferase 1; TBP, the TATA
binding protein; TAFIIs, TBP-associated general transcription factors (GTFs); Pol II, RNA
polymerase II.
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Fig. 2. Posttranslational modifications of SRCs
In general, phosphorylation results in activation of SRCs. In the case of SRC-3,
phosphorylation determines the selectivity of SRC-3 for different transcription factors,
promotes sequential ubiquitination of SRC-3 from mono-ubiquitination (activation) to poly-
ubiquitination (degradation), and controls the duration of transcriptional activation by
SRC-3. Conversely, de-phosphorylation by phosphatase (PPase) promotes SRC-3
sumoylation, stabilizes SRC-3 protein, and inhibits SRC-3 activity. Depending on specific
kinases and phosphorylation sites, phosphorylation could either increase or decrease SRC-3
stability and cellular levels. Sumoylation enhances SRC-1 and SRC-2 activities (the “?”
indicates that the conclusion is based on a limited amount of data), but it inhibits SRC-3
activity. SRC-3 acetylation and methylation cause a disassembly of the transcription
complex and promote transcriptional termination.
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Fig. 3. SRCs promote carcinogenesis through multiple pathways
Extracellular signals and their signaling pathways cause posttranslational modifications of
SRCs, which regulate the cellular concentrations, activities and specificities of SRCs. In
general, SRCs enhance steroid receptor functions and facilitate hormonal promotion of
breast, prostate and ovarian cancers. Specifically, SRC-1 enhances Ets-2-mediated HER2
expression and PEA3-mediated Twist expression and upregulates CSF-1 expression to
promote breast tumor cell migration, invasion and metastasis. MOZ and SRC-2 fusion gene
causes AML (acute myeloid leukemia). SRC-3 upregulates its own expression through
serving as a coactivator for E2F1 and SP1. The overexpressed SRC-3 enhances PEA3 and
AP-1 mediated MMP expression to promote breast and prostate tumor cell metastasis.
SRC-3 also enhances E2F1-mediated cell cycle progression and Gab2 expression that
activates Akt. In addition, SRC-3 upregulates IGF-I, IRS-1 and IRS-2 to promote the IGF-I
signaling pathway and to activate EGFR and ERBB2 to enhance Akt and MAPK activities,
resulting in hyperactivation of Akt and MAPK which contribute to cancer cell proliferation,
growth, survival, migration, invasion and metastasis.
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Table 1

List of proteins that interact with SRCs

Categories Functional consequence Method of detection References

Transcription factors

Nuclear receptors activation Co-IP, in vitro 150, 151

AhR/ARNT activation Co-IP, in vitro 152–154

AP-1 activation Yeast 2-hybrid, in vitro 155

Brn-3 activation Co-IP 156

β-catenin activation Mammalian 2-hybrid, in vitro 157

c-Ets activation Co-IP 158

E2F1 activation Co-IP, in vitro 135

HNF4 activation Yeast 2-hybrid 159, 160

IRF3 activation Yeast 2-hybrid 161

MEF-2C activation Mammalian 2-hybrid, Co-IP, in vitro 18

NF-κB activation Co-IP 162

Smad3 activation Co-IP, mammalian 1-hybrid 163

Tat activation Co-IP, in vitro 164

TEF-4 activation Yeast 2-hybrid, in vitro 17

TTF1 activation in vitro 165

Oncogene/Tumor suppressor

HPV E7 suppression Co-IP, in vitro 166

p53 activation in vitro 167

Rb activation Co-IP, in vitro 168

Kinase/Phosphatase

aPKC phosphorylation, stabilization Co-IP 56

c-Abl phosphoryaltion, activation Co-IP 50

GSK3 phosphorylation, activation, degradation enzyme-substrate interaction 54

IKK phosphorylation, activation Co-IP 61

MAPK phosphorylation, activation enzyme-substrate interaction 42, 69

PDXP dephosphorylation, suppression enzyme-substrate interaction 55

PKA phosphorylation, activation enzyme-substrate interaction 43, 169

PP1 dephosphorylation, stabilization enzyme-substrate interaction 55

PP2A dephosphorylation, suppression enzyme-substrate interaction 55

Ub/Sumo enzymes

ARIP3/PIASxα sumoylation, activation in vitro 74

E6AP ubiquitination, degradation Co-IP, in vitro 170
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Categories Functional consequence Method of detection References

Fbw7 ubiquitination, activation, degradation Co-IP 54

UBCH7 activation Co-IP, in vitro 171

Coregulators

ANCOS suppression Yeast 2-hybrid, Co-IP, in vitro 172

ASC activation Yeast 2-hybrid, in vitro 173

CARM1 activation, methylation, suppression Yeast 2-hybrid, Co-IP 174

CoCoA activation Co-IP, in vitro 15

GAC63 activation Co-IP, in vitro 14

GCN5 activation Co-IP, yeast 2-hybrid 23

MMS19 activation Yeast 2-hybrid, in vitro 175

p300/CBP activation, acetylation, suppression Co-IP, in vitro 35

PGC1 activation in vitro 142

Others

Cyclin T1 activation in vitro 164

FLASH activation, suppression Yeast 2-hybrid, in vitro 176, 177

GAS activation in vitro 178

JAB1 activation Yeast 2-hybrid, in vitro 179

Pin1 activation, degradation in vitro 180

REGγ degradation Co-IP 77

SRA activation IP 181

TIA, TIAR translational inhibition Co-IP, in vitro 63

This is an incomplete list of SRC interactive proteins representing distinct categories. Co-IP, coimmunoprecipitation; IP, immunoprecipitation; in
vitro, in vitro protein-protein interaction assay; AhR/ARNT, aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator; AP-1,
activator protein 1; Brn-3, POU domain, class 4, transcription factor 1; c-Ets, mammalian protooncogene homologue of the avian v-ets; E2F1, E2F
transcription factor 1; HNF4, hepatic nuclear factor 4; IRF3, interferon regulatory factor 3; MEF-2C, myelin basic protein expression factor 2; NF-
κB, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; Smad3, MAD homolog 3; Tat, Human immunodeficiency virus
transactivator protein; TEF-4, transcriptional enhancer factor family of transcription factors; TTF1, thyroid transcription factor 1; p53,
transformation related protein 53; Rb, retinoblastoma 1; APKC, atypical protein kinase C; c-Abl, c-abl oncogene 1, receptor tyrosine kinase;
GSK3, glycogen synthase kinase 3; IKK, inhibitor of kappaB kinase; MAPK, mitogen-activated protein kinase; PDXP, pyridoxal (pyridoxine,
vitamin B6) phosphatase; PKA, protein kinase A; PP1, protein phosphatase 1; PP2A, protein phosphatase 2; ARIP3/PIASxα, protein inhibitor of
activated STAT 2; E6AP, ubiquitin protein ligase E3A; Fbw7, F-box and WD-40 domain protein 7; UBCH7, ubiquitin-conjugating enzyme E2L 3;
ANCOS, ankyrin repeats containing cofactors; ASC, Activating signal cointegrator 1; CARM1, coactivator-associated arginine methyltransferase
1; CoCoA, calcium binding and coiled coil domain 1; GAC63, solute carrier family 30 (zinc transporter), member 9; GCN5, lysine
acetyltransferase 2A; MMS19, MET18 S. cerevisiae; p300/CBP, E1A binding protein p300/CREB binding protein; PGC1, peroxisome
proliferative activated receptor, gamma, coactivator 1; FLASH, caspase 8 associated protein 2; GAS, glutamate-rich coactivator interacting with
SRC1; JAB1, JUN activation binding protein 1; Pin1, protein (peptidyl-prolyl cis/trans isomerase) NIMA-interacting 1; REGγ, proteaseome
(prosome, macropain) 28 subunit, 3; SRA, steroid receptor RNA activator; TIA, TIAR, T-cell intracellular antigen 1 and related protein.
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