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Synopsis
The intestine plays a central role in the pathophysiology of critical illness and is frequently called
the “motor” of the systemic inflammatory response. Perturbations to the intestinal barrier can lead
to distant organ damage and multiple organ failure. Therefore, identifying ways to preserve
intestinal integrity may be of paramount importance. Growth factors and other peptides have
emerged as potential tools for modulation of intestinal inflammation and repair due to their roles
in cellular proliferation, differentiation, migration, and survival. In this review, we will examine
the involvement of growth factors and other peptides in intestinal epithelial repair during critical
illness and their potential use as therapeutic targets.
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Introduction
For more than two decades, the gut has been hypothesized to be the “motor” of the systemic
inflammatory response syndrome. As critical care research has evolved, numerous studies
have defined how the gut plays a role in the origin and propagation of critical illness. During
shock, intestinal hypoperfusion followed by reperfusion leads to production of
proinflammatory mediators that can amplify the systemic inflammatory response1.
Interactions between host and bacterial pathogens in the intestine contribute to gut-derived
sepsis2. Intestinal permeability in critical illness, as a result of compromised epithelial tight
junctions, leads to persistent activation of systemic inflammation3–5. Toxic gut-derived
substances enter the mesenteric lymph leading to lung damage, and distant organ injury can
be prevented by ligating the mesenteric lymph duct in hemorrhagic shock6. Intestinal
epithelial apoptosis is elevated following sepsis, and prevention of sepsis-induced intestinal
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apoptosis by overexpression of the anti-apoptotic protein Bcl-2 improves survival in
multiple animal models of sepsis7,8.

Since perturbations to the intestinal epithelium can cause distant organ damage and
development of multiple organ dysfunction syndrome, identifying ways to preserve
intestinal integrity may be of paramount importance in the treatment of critical illness.
Growth factors have emerged as potential tools for modulation of intestinal inflammation
and repair, playing important roles in cellular proliferation, differentiation, migration, and
survival. In this review, we will examine the involvement of growth factors and other
peptides in intestinal mucosal repair during critical illness and their potential use as
therapeutic targets.

Mucosal repair in the gastrointestinal tract
The mucosal lining of the gastrointestinal tract represents the largest body surface in contact
with the outside world (approximately 300 m2, roughly the area of a tennis court). The
intestinal epithelium consists of a single layer of columnar epithelial cells that are constantly
renewed from multipotent stem cells originating in the crypts of Lieberkühn. These stem
cells give rise to four major epithelial lineages: absorptive enterocytes, goblet cells,
enteroendocrine cells, and Paneth cells9. Over the course of a three to five day lifespan,
enterocytes, goblet cells, and enteroendocrine cells migrate upwards along the crypt-villus
axis where they differentiate and ultimately die of apoptosis or are exfoliated whole into the
lumen10. In contrast, Paneth cells migrate downward over the course of five to eight days to
the crypt base where they reside for approximately three weeks. Each epithelial cell is in
intimate contact with its neighbors, and the integrity of the epithelium is maintained by
apical junctional complexes11. Tight junctions are the most apical components of the
complex and create a dynamic barrier to the paracellular movement of water, solutes, and
immune cells12,13.

While minor breaches in epithelial integrity occur daily due to mechanical strain associated
with intestinal motility and physiologic digestive trauma, more extensive disruption of
epithelial continuity can result from bacterial invasion, chemical injury, or tissue destruction
due to ischemic, septic, and inflammatory enteropathies14. Rapid resealing of the intestinal
barrier is essential to prevent systemic penetration of toxins, immunogens, and other factors
that can lead to activation of the systemic inflammatory response. The gastrointestinal tract
utilizes at least three distinct mechanisms to re-establish epithelial continuity (Figure 1)15,16.
Within minutes after injury, epithelial cells bordering the zone of injury migrate into the
wound to cover the denuded area. During this process, termed epithelial restitution,
epithelial cells adjacent to the injury undergo a striking change in cell shape and phenotype.
Instead of their normal columnar shape, the cells flatten and adopt a squamoid appearance,
followed by extension of lammelipodia. In addition, the cells undergo brush border and
junctional disassembly and become polarized along the leading-trailing edge axis. After the
wound is sealed, the cells reorganize their cytoskeleton and redifferentiate into mature
enterocytes. Epithelial cell proliferation is also stimulated in order to restore the functional
capacity of the mucosa. Finally, undifferentiated epithelial cells undergo maturation and
differentiation to maintain normal mucosal epithelial function. It is important to note that
when an epithelial defect is large, stimulation of cell proliferation is crucial for restoration of
normal mucosal architecture. If the lesion is deep or penetrating, additional repair
mechanisms are required, such as angiogenesis and deposition of extracellular matrix
components to form granulation tissue.
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Regulation of intestinal epithelial repair by growth factors
Numerous growth factors regulate the process of epithelial repair (Figure 2)14,17. Growth
factors control a wide variety of activities, including stimulation of proliferation and
migration, cell differentiation, acceleration of angiogenesis and extracellular matrix
remodeling, as well as promotion of epithelial mucosal repair14,17. These factors can either
be derived from the luminal environment as the result of intrinsic secretions from epithelial
cells, or they can be produced by a wide variety of mucosal and submucosal cells14.
Myofibroblasts beneath a mucosal injury secrete hepatocyte growth factor (HGF) and
keratinocyte growth factor (KGF), both of which stimulate migration and proliferation of
epithelial cells14. Neutrophils also release HGF18. Platelets also release growth factors in
response to tissue injury, including epidermal growth factor (EGF)19, insulin-like growth
factor (IGF-I)20, and HGF 21. These growth factors interact predominantly with receptors on
the basolateral membrane of epithelial cells. In contrast, other growth factors including
intestinal trefoil factor (ITF) and glucagon-like peptide-2 (GLP-2) are secreted into the
lumen and act primarily at the apical surface of epithelial cells. Of note, EGF can also be
secreted into the lumen and act on the apical surface. While a complete understanding of the
complex interrelationships and redundancy of growth factors in epithelial repair remains to
be determined, multiple studies have shed light on how these peptides protect the intestine
during injury.

Epidermal Growth Factor
EGF is a potent 53 amino acid cytoprotective peptide that exhibits trophic and healing
effects on the intestinal mucosa22,23. As a mitogen, EGF is involved with the regulation of
cellular proliferation, survival, and migration. Under basal conditions, the EGF signaling
pathway is crucial for intestinal epithelial proliferation and cell survival24. EGF receptor
(EGF-R) deficient mice die early in postnatal life and exhibit severe defects in intestinal
morphology, including fewer and shorter villi25. Activation of EGF-R following binding of
EGF in the intestine can lead to increased blood flow26, increased cell survival27,28,
decreased inflammation29, and improved barrier function30,31.

There is significantly more preclinical data on the use of EGF in adult critical illness than
other growth factors. Circulating EGF levels are decreased while intestinal EGF and EGF-R
levels are increased following cecal ligation and puncture (CLP), a preclinical model of
peritonitis-induced sepsis32. Animals subjected to CLP have increased sepsis-induced
apoptosis, and this is associated with increased expression of Bid, FADD and p21.
Apoptosis is normalized to sham levels in mice treated with exogenous EGF after the onset
of sepsis, as are the levels of Bid, FADD and p21. Septic mice also have decreased intestinal
proliferation and villus length, while giving exogenous EGF after the onset of sepsis restores
proliferation to levels seen in sham animals and nearly normalizes villus length. Importantly,
giving exogenous EGF after CLP results in a 2-fold improvement in survival in septic mice.

Since EGF can have a number of extra-intestinal effects, it was unclear whether the benefits
conferred by exogenous EGF were enterocyte-specific. Therefore, similar experiments were
performed using transgenic mice with enterocyte-specific overexpression of EGF31.
Intestine-specific EGF overexpression is sufficient to prevent sepsis-induced decreases in
intestinal proliferation and villus length and sepsis-induced increases in gut epithelial
apoptosis. Further, intestinal permeability is markedly increased following CLP in wild type
mice but permeability is normalized to sham levels in septic transgenic mice that
overexpress EGF. This change in barrier function is associated with normalization of
claudin-2 expression and localization in transgenic mice that overexpress EGF in their
intestinal epithelium. Importantly, enterocyte-specific overexpression of EGF confers a
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marked improvement in survival in CLP-induced sepsis, suggesting the protective effects of
systemic EGF in septic peritonitis are mediated in a gut-specific fashion.

In addition, to improving survival in CLP, systemic administration of EGF has also been
demonstrated to be beneficial in other models of adult critical illness. Specifically,
exogenous EGF reduces intestinal injury and improves host survival in animal models of
ischemia-reperfusion injury33,34 and thermal injury35.

Several lines of evidence have demonstrated an important role for EGF in intestinal repair as
well. In a neonatal rat model of necrotizing enterocolitis (NEC), EGF-R is significantly
upregulated in the intestinal epithelium, and supplementation of milk formula with EGF
decreases the incidence and severity of disease36. This protection is associated with
decreased intestinal epithelial apoptosis and restoration of intestinal barrier function28,37.
The EGF/EGF-R signaling axis has also been shown to play a critical role in the adaptive
response following short bowel resection since administration of either exogenous EGF or
enterocyte-specific overexpression of EGF enhance the adaptive response following short
bowel resection38,39. On the other hand, this adaptive response is severely impaired in mice
that lack functional EGF-R or following pharmacological inhibition of EGF-R40. Finally, in
patients with peptic ulcer disease, salivary levels of EGF are significantly reduced, and
EGF-R expression is 75-fold higher in rats with chemically induced ulcers compared to
untreated controls41. Patients with peptic ulcer disease treated intravenously with EGF also
have improved ulcer healing compared to patients treated with cetraxate hydrochloride42.

Exogenous EGF appears to be an attractive candidate for clinical trials in critically ill
patients. EGF and EGF-R have been targeted for therapeutic use in a large number of
diseases, and a federal government registration of clinical trials lists over 200 trials
involving or targeting EGF and/or EGF-R43. While many of these trials target extraintestinal
effects of EGF, beneficial effects in the gut have been noted in clinical trials with EGF. For
instance, in patients with ulcerative colitis, treatment with EGF-containing enemas
significantly improved scoring of disease activity, sigmoidoscopic findings, and histological
grading of injury when compared with placebo44. Similarly, a prospective, randomized trial
with recombinant EGF in a small group of premature neonates with evidence of NEC
demonstrated improved intestinal repair as determined by rectal biopsy specimens45.
Importantly, no toxicities were reported after EGF administration to these infants. Based
upon the benefits of EGF in preclinical trials and its apparent safety when used for short-
term therapy in patients, EGF treatment may represent a novel therapeutic in critical illness.

Growth Hormone and Insulin-like Growth Factor-I
Critical illness alters the body’s metabolic rate, and a prolonged hypercatabolic state is
associated with increased morbidity and mortality46. Critical illness is also often associated
with alterations in the circulating concentrations or a diminished responsiveness of tissues to
anabolic proteins such as IGF-I and growth hormone (GH)47.

GH is a 22-kDa anabolic protein that can antagonize some of the deleterious effects of
hypercatabolism48. In critically ill patients, the circulating concentration of GH is markedly
elevated. Despite this, there is paradoxical GH resistance, in which GH fails to stimulate
IGF-I synthesis in the liver. This has been demonstrated in preclinical trials in sheep that
were injected with endotoxin49, as well as in septic patients who were given exogenous GH
but failed to increase circulating IGF-I levels to the same extent as in controls50.

The receptor for GH is expressed throughout the intestine, which suggests that GH may act
to promote epithelial repair during intestinal injury51. However, the response to GH in the
intestine under both basal and pathophysiologic conditions is incompletely understood.
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Potent trophic effects of GH have been demonstrated in the intestine of unmanipulated
transgenic mice that overexpress GH52. When these transgenic mice are subjected to dextran
sodium sulfate (DSS)-induced colitis, they exhibit increased crypt cell proliferation resulting
in improved intestinal structure53. However, studies examining GH in animal models of
short bowel syndrome have shown conflicting results with varying effects on mucosal
mass54,55. Further, a rat total parenteral nutrition (TPN) model failed to demonstrate a
trophic effect of GH on the intestine despite normalized body weight gain and increased
plasma IGF-I levels56,57. Similarly, rats given GH after severe thermal injury have improved
villus morphology compared to controls, but this effect is not mediated by either increased
crypt cell proliferation or inhibition of epithelial apoptosis58.

Critical illness decreases circulating levels of IGF-I59. IGF-I is a small polypeptide (70
amino acids) with considerable homology to insulin. The primary biological effect of IGF-I
is to stimulate cellular growth and differentiation60,61. Multiple studies have demonstrated
that IGF-I has beneficial effects on intestinal homeostasis, and specific receptors for IGF-I
are present in the gastrointestinal tract of humans and animals. Under normal conditions,
transgenic mice that overexpress IGF-I exhibit increased crypt cell mitosis and increased
growth of the small intestine62. In rats subjected to small bowel resection, administration of
IGF-I augments compensatory mucosal hyperplasia and epithelial restitution63. Further,
IGF-I administration decreases bacterial translocation after severe thermal injury by
maintaining intestinal integrity64,65. In addition to its effects on intestinal proliferation, IGF-
I has also been shown to attenuate intestinal epithelial apoptosis in a murine model of
NEC66 and in vitro following H2O2-induced injury67.

Both GH and IGF-1 have been used in clinical trials. Importantly, GH increased morbidity
and mortality in critically ill patients in a large prospective, randomized trial68. While GH
has recently been hypothesized to be of potential benefit in refractory critical illness69, its
utility in this setting is not proven. Long-term GH may be of benefit in patients recovering
from critical illness, as opposed to patients who are acutely critically ill. A recent
prospective, randomized trial of long-term GH in severely burned children with greater than
40% body surface burn showed improved growth and lean body mass two years after the
initial insult70. However, GH was initiated after hospital discharge in this study, so they
were no longer critically ill by the time GH was initiated.

Therapeutic use of IGF-I has been has not been possible because of adverse side effects such
as hypoglycemia, electrolyte imbalances, and cardiac arrest71,72. However, when IGF-I is
bound to its principle binding protein (IGFBP-3), it has been shown to be safe and
efficacious in humans73–76. Although IGF-1/IGFBP-3 would be expected to have
extraintestinal effects, limited preclinical data suggests it also has beneficial effects on gut
integrity. In a rat model of severe thermal injury, intravenous administration of IGF-I in
combination with IGFBP-3 stimulated small intestinal epithelial proliferation and increased
villus length, crypt depth, and cell number. In addition, IGF-I/IGFBP-3 significantly
decreased burn-induced intestinal epithelial apoptosis77. These data suggest that IGF-I/
IGFBP-3 may be a potential therapeutic agent to improve intestinal integrity in critically ill
patients.

Keratinocyte Growth Factor
KGF is a member of the fibroblast growth factor family that stimulates growth and
differentiation of epithelial cells in the gastrointestinal tract, lung, and kidney78. The
receptor for KGF has been found exclusively in the intestinal epithelium, suggesting that
KGF acts in a paracrine manner to stimulate epithelial repair in the gut. KGF expression is
markedly increased in the mucosa and submucosa of patients with inflammatory bowel
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disease, and KGF overexpression correlates with the degree of inflammation79. The fact that
KGF is upregulated following intestinal injury suggests it plays an important role in normal
tissue repair. Administration of KGF to unmanipulated rats causes a marked increase in
epithelial proliferation as well as a selective induction of mucin-producing goblet cells
throughout the gastrointestinal tract80. This induction is associated with increased
expression of intestinal trefoil factors, which also play a role in epithelial repair (discussed
in more detail below). Intraperitoneal administration of KGF also reduces the extent of
intestinal injury in several animal models of colitis81 while KGF knockout mice subjected to
DSS-induced colitis exhibit more severe colonic inflammation and delayed tissue repair than
wild-type mice subjected to the same insult82. Exogenous KGF also promotes cell survival,
as mice subjected given TPN exhibit decreased apoptosis and increased expression of anti-
apoptotic Bcl-2 proteins83.

Chemotherapy and irradiation can compromise epithelial integrity by rapidly killing
dividing cells in the mucosa, thereby impairing normal epithelial cell renewal. These
treatments are often associated with mucositis, a condition which is characterized by
mucosal atrophy, ulceration, barrier dysfunction, and infection84. KGF has been successfully
used as a pretreatment in animal models of gastrointestinal injury induced by radiation85,86,
chemotherapy86, or a combination of both86. In these models, KGF increases intestinal
epithelial cell survival and mucosal thickness which is associated with decreased mortality.
Importantly, KGF does not effect the growth rate of epithelial tumors, suggesting it may be a
good therapeutic agent to prevent intestinal damage in patients receiving cancer therapy86.
In contrast, intravenous administration of recombinant KGF failed to induce remission in a
Phase II study of patients with active ulcerative colitis87 although the dose of KGF may
have been too low for any beneficial effect to be seen. The effects of KGF in critical illness
are unknown.

Hepatocyte Growth Factor
HGF is a mesenchymal-derived pleiotropic protein that regulates cell proliferation, cell
survival, motility, morphogenesis, anti-inflammation, and angiogenesis in a wide variety of
cells, including gastrointestinal epithelial cells88,89. HGF has been shown to accelerate
epithelial remodeling after injury by stimulating intestinal epithelial proliferation90.
Administration of HGF increases mucosal mass and enhances intestinal substrate absorption
in rats following small bowel resection91. Similarly, HGF stimulates intestinal proliferation
leading to preserved villus structure in an animal model of severe thermal injury92. The
effect of HGF on apoptosis is more variable. HGF administration inhibits intestinal
epithelial apoptosis during ischemia-reperfusion injury93, but has no effect on burn-induced
intestinal apoptosis92.

Several studies have demonstrated that HGF promotes colonic mucosal repair in animal
models of colitis. However, the mechanisms underlying protection vary depending on the
model and route of HGF treatment. In rats subjected to DSS-induced colitis, continuous
intraperitoneal administration of recombinant human HGF reduces colitis-associated weight
loss, colonic shortening, and improved colonic erosions, and this is associated with
enhanced epithelial regeneration and cellular proliferation 94. Similarly, daily intravenous
administration of recombinant human HGF to rats with TNBS-induced colitis causes a
significant reduction in colonic ulcer coverage and colonic shortening, and this is associated
with increased epithelial proliferation and decreased inflammatory cell infiltrate in the
inflamed colon 95. The improvements noted with intraperitoneal administration of
recombinant human HGF in these models is associated with inhibition of intestinal epithelial
apoptosis rather than stimulation of proliferation 96. Several studies have reported that colitis
can also be ameliorated when adenoviral-mediated, liposome-formulated, or naked HGF
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gene is administered intrarectally, intramuscularly, or intravenously 97–100. A potential
roadbloack towards using HGF in clinical trials is the observation that it may be a
carcinogen since transgenic mouse strains that overexpress HGF exhibit increased rates of
benign and malignant liver and mammary gland tumors101. The benefits and/or risks of short
term usage of HGF in critically ill patients remains to be determined.

Heparin-binding EGF-like Growth Factor
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) was first identified
as a 22-kDa glycoprotein in the conditioned medium of cultured human macrophages102. A
member of the EGF family, HB-EGF is a potent mitogen for a number of cell types,
including epithelial cells, fibroblasts, smooth muscle cells, keratinocytes, and renal tubule
cells103. Expression of endogenous HB-EGF is significantly increased in response to tissue
damage, hypoxia, oxidative stress, and during wound healing and regeneration104. In cell
culture, HB-EGF has been shown to protect intestinal epithelial cells from pro-inflammatory
cytokine-induced apoptosis105. Pretreatment of intestinal epithelial cells with HB-EGF in
vitro leads to decreased necrosis, preserved cytoskeletal structure, higher adenosine
triphosphate levels, and improved proliferative capacity during recovery from hypoxia106.
HB-EGF decreases the generation of reactive oxygen species in intestinal epithelial cells
after ischemia-reperfusion injury107. HB-EGF also preserves the crypt proliferative response
and decreases bacterial translocation across intestinal epithelial cell monolayers after
ischemia-reperfusion injury, indicating preservation of epithelial integrity108.

HB-EGF has also been shown to protect the intestine in vivo. In a neonatal rat model of
NEC, HB-EGF treatment caused increased intestinal proliferation and migration as well as
preservation of intestinal epithelial barrier function when compared with untreated
animals109. Further, in a neonatal hemorrhagic shock model, HB-EGF treatment resulted in
increased intestinal blood flow and microcirculatory flow to levels greater than basal pre-
shock levels110. While these findings are encouraging, the mechanisms for the beneficial
effects of HB-EGF remain to be elucidated and its effects in adult models of critical illness
have yet to be determined.

Glucagon-like Peptide-2
GLP-2 is a 33 amino acid peptide that is secreted from intestinal endocrine cells in response
to nutrient ingestion, which acts as a potent growth factor for the small intestinal epithelium
and, to a lesser extent, the large intestinal epithelium 111. GLP-2 administration significantly
improves morbidity and enhances epithelial repair in a diverse number of intestinal injury
models, including small bowel resection112,113, colitis114,115, and enteritis116. The
protective effects of GLP-2 are thought to be due to its ability to stimulate crypt cell
proliferation, prevent epithelial apoptosis, enhance epithelial barrier function, and reduce
intestinal permeability117–119.

Administration of GLP-2 or a degradation-resistant analogue h[Gly2]GLP-2 has been shown
to attenuate intestinal injury in a number of preclinical models of acute disease, including
necrotizing pancreatitis119, burn injury120, and ischemia-reperfusion injury121. In addition, it
has been shown to be beneficial in inflammatory bowel disease114,116,122. Mice treated with
h[Gly2]GLP-2 have preserved mucosal integrity with an increase in intestinal mass as a
result of increased proliferation in DSS-induced colitis122. Additionally, in a murine model
of indomethacin-induced enteritis, h[Gly2]GLP-2 not only stimulated proliferation but also
reduced intestinal epithelial apoptosis116. Treatment was also associated with decreased
mucosal cytokine expression, decreased myeloperoxidase activity, and a marked diminution
in bacterial translocation116. The trophic and anti-apoptotic activities of GLP-2 have also
been demonstrated in rodents and pigs following withdrawal of enteral nutrition where

Dominguez and Coopersmith Page 7

Crit Care Clin. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



GLP-2 infusion prevents the development of mucosal atrophy, reduces proteolysis, and
decreases crypt cell apoptosis in the small intestine123,124.

In contrast to the significant amount of evidence supporting GLP-2’s usage in preclinical
models of gut injury, very limited information is available about its safety and efficacy in
humans. In a small pilot study, patients with intestinal failure secondary to short bowel
syndrome treated with GLP-2 had improved nutrient absorption, increased body weight, and
delayed gastric emptying125. Further clinical evaluation of GLP-2 in humans is needed to
determine if GLP-2 is effective in reducing intestinal injury or enhancing gut repair in
critically ill patients.

Intestinal trefoil factor
The trefoil factor family (TFF) is a group of small protease-resistant peptides that are
expressed in mucus-secreting epithelial cells, especially in the gastrointestinal tract. To date,
three mammalian TFF members have been identified: TFF1, expressed by surface and pit
mucus cells in the stomach; TFF2, expressed by mucus neck and glandular mucus cells of
the stomach and Brunner’s glands of the proximal duodenum; and TFF3 (also called
intestinal trefoil factor, ITF), expressed by goblet cells of the intestine and colon126.

The trefoil factors have been shown to play an important role in the protection and repair of
the gastrointestinal mucosa. Oral administration of TFF2 protects against ethanol-,
indomethacin-, and aspirin-induced gastric injury in rats127,128 and accelerates healing and
reduces inflammation in a rat model of inflammatory bowel disease129. ITF also promotes
epithelial cell migration and inhibits intestinal epithelial apoptosis130,131. Mice deficient in
ITF are extremely sensitive to mucosal injury and fail to undergo any epithelial repair132.
Increased ITF expression has been observed in proximity to sites of injury in the
gastrointestinal tract, including peptic ulcers and active inflammatory bowel disease. Oral
and subcutaneous administration of ITF has also been shown to protect the intestinal
epithelium from a variety of insults including ethanol, nonsteroidal anti-inflammatory drugs,
and restraint stress. In addition, administration of ITF ameliorates the severity of intestinal
injury in a rat model of NEC133. Further, ITF has been shown to be effective in both
prevention of and healing from acute DSS-induced colitis134. ITF also plays a role in
protection against and recovery from intestinal mucositis induced by radiation and
chemotherapy135. Finally, oral administration of either TFF2 or ITF has been shown to
significantly reduce mucosal lesions following severe thermal injury136,137. These studies
show the trefoil factors are important regulators of intestinal epithelial repair in preclinical
studies but these have not been translated into clinical findings at the bedside.

Synergism between growth factors
There is some evidence that growth factors may act synergistically to prevent gut injury.
When given in isolation, both EGF and growth hormone releasing peptide (GHRP)-6 have
beneficial effects in animal models of intestinal injury and repair. However, this effect is
additive when EGF and GHRP-6 are given together in an ischemia-reperfusion injury
model138. In addition, combining glutamine with either GH, IGF-1, or EGF has been
demonstrated to have additive or synergistic effects on intestinal growth and adaptation139–
142. Whether a combination of growth factors listed above will be more effective than a
single growth factor in isolation in critical illness has yet to be determined.

Conclusions
In critical illness, the gut functions as the “motor” of the systemic inflammatory response,
and maintaining gut barrier function may be a key toward preventing multiple organ
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dysfunction syndrome. Growth factors have been shown to play a central role in protecting
the gut against injury under both basal conditions and in chronic disease, and increasing
evidence suggests they may play a role in acute critical illness as well. Although many of the
agents described above have potential therapeutic benefits, EGF is the best studied and may
be the most attractive candidate for clinical trials. A synergistic approach combining growth
factors may also have significant utility. A more complete understanding of the mechanisms
through which growth factors protect the gut is needed, as are strategies for translating
preclinical findings to the bedside.
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Figure 1.
A simplified model of epithelial injury and restitution. Following epithelial injury, cells
depolarize, dedifferentiate, and migrate to cover the denuded area (restitution). Once the
epithelial defect is sealed, epithelial cell proliferation is stimulated to replace the cell pool.
Epithelial cells then differentiate and mature to become an intact epithelial layer again.
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Figure 2.
Several growth factors are involved in preventing or enhancing intestinal epithelial repair.
HGF, hepatocyte growth factor; EGF, epidermal growth factor; IGF, insulin-like growth
factor; HB-EGF, heparin binding EGF-like growth factor; KGF, keratinocyte growth factor;
GLP-2, glucagon-like peptide-2; TFF, trefoil factor family; ITF, intestinal trefoil factor
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