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Abstract

Multiple sequence alignment (MSA) is the basis for a wide range of comparative sequence analyses from molecular
phylogenetics to 3D structure prediction. Sophisticated algorithms have been developed for sequence alignment, but in
practice, many errors can be expected and extensive portions of the MSA are unreliable. Hence, it is imperative to
understand and characterize the various sources of errors in MSAs and to quantify site-specific alignment confidence. In
this paper, we show that uncertainties in the guide tree used by progressive alignment methods are a major source of
alignment uncertainty. We use this insight to develop a novel method for quantifying the robustness of each alignment
column to guide tree uncertainty. We build on the widely used bootstrap method for perturbing the phylogenetic tree.
Specifically, we generate a collection of trees and use each as a guide tree in the alignment algorithm, thus producing a set
of MSAs. We next test the consistency of every column of the MSA obtained from the unperturbed guide tree with respect
to the set of MSAs. We name this measure the ‘‘GUIDe tree based AligNment ConfidencE’’ (GUIDANCE) score. Using the
Benchmark Alignment data BASE benchmark as well as simulation studies, we show that GUIDANCE scores accurately
identify errors in MSAs. Additionally, we compare our results with the previously published Heads-or-Tails score and show
that the GUIDANCE score is a better predictor of unreliably aligned regions.

Key words: multiple sequence alignment, guide tree, phylogeny, bootstrap, alignment confidence.

Introduction
Multiple sequence alignment (MSA) is a fundamental task
in molecular biology. An MSA is a prerequisite for virtually
all comparative sequence analyses, including phylogeny re-
construction, functional motif or domain characterization,
sequence-based structural alignment, inference of positive
selection, and profile-based homology searches. All such
analyses take the MSA input for granted, regardless of un-
certainties in the alignment. Because errors in upstream
methodology tend to cascade downstream, alignment er-
rors are an important concern in molecular data analysis.

In the last decade, considerable efforts have been made
to improve alignment accuracy (e.g., Notredame et al. 2000;
Edgar 2004; Katoh et al. 2005; Loytynoja and Goldman
2008). Nevertheless, benchmark studies show that obtain-
ing accurate alignments remains a challenging task. In such
studies, a reference MSA is assumed to be the ‘‘true’’ align-
ment, the sequences are realigned using theMSA algorithm
of interest, and the reconstructed MSA is compared with
the reference MSA. In the Benchmark Alignment dataBASE
(BAliBASE) benchmark database, for example, the reference
alignment is based on superimposition of protein struc-
tures (Thompson et al. 2005). Alternatively, simulations
of sequence evolution can provide a set of sequences with
a known history of insertions and deletions along a known
evolutionary tree (e.g., Nuin et al. 2006). The most widely

used measures for the agreement of a reconstructed MSA
with the reference are the column score (CS), which is the
percentage of alignment columns in the reference align-
ment that were accurately reconstructed, and the sum-
of-pairs score (SP), which is the percentage of pairs of
aligned residues in the reference MSA that are similarly
aligned in the reconstructed MSA (Carrillo and Lipman
1988; Thompson et al. 1999). A recent evaluation of SPs
across the BAliBASE benchmark concluded that the best
alignment programs to date achieve only 76% average ac-
curacy, that is, a quarter of all residue pairs are incorrectly
aligned (Nuin et al. 2006).

There are several possible sources for errors in sequence
alignment. To begin with, all MSA programs use heuristic
methods. In contrast to pairwise sequence alignment that
can be optimally solved under a given scoring scheme, find-
ing the optimal MSA is computationally prohibitive. Thus,
MSA programs usually produce a suboptimal alignment.
Furthermore, even with optimal algorithms for pairwise
sequence alignment, there are often several co-optimal sol-
utions, that is, different alignments with the same maximal
score. This issue affects all state-of-the-art MSA algorithms
that are based on the ‘‘progressive alignment approach’’
(Feng and Doolittle 1987) because they use an optimal pair-
wise alignment algorithm for iteratively adding sequences
to the MSA. Notably, although progressive alignment
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approaches differ in the manner according to which post-
alignment corrections and refinements are made, the pro-
gressive alignment step is a critical component in all of
them. Landan and Graur (2007, 2008) investigated this
source of error and concluded that 80–90% of the columns
and 40–50% of aligned residue pairs in a typical MSA are
affected by uncertainty due to co-optimal solutions.

An additional point of concern is that the objective
functions, which alignment algorithms attempt to maxi-
mize, are based on simplified models of the process of mo-
lecular sequence evolution. Such approximations may yield
high scores for unrealistic alignments. Therefore, even if we
had unlimited computational power to find the set of
MSAs with the optimal score, we cannot be confident that
it includes the true alignment because the true alignment
may actually be suboptimal. Additionally, the stochastic
nature of sequence evolution introduces noise on top of
the signal, and thus, the true evolutionary history will often
score less than the highest scoring alignment even if a
perfect scoring function were available.

Finally, the alignment may be sensitive to errors in the
guide tree, which is used for choosing the order in which
the sequences are added to the growing MSA in the pro-
gressive alignment approach. Indeed, estimates of guide
tree accuracy show that, on average, more than 10% of tree
branches are topologically incorrect for data sets of 25 taxa,
and this proportion increases with the number of taxa
(Nelesen et al. 2008). Several studies measured alignment
accuracy in terms of the percentage of correctly aligned
residues by comparing a reconstructed MSA with a refer-
ence benchmark MSA (e.g., Nelesen et al. 2008; Landan and
Graur 2009). These studies concluded that the accuracy of
the guide tree has a negligible effect on the accuracy score
of the alignment. However, as we will show here, perturba-
tions in the tree affect significant portions of the alignment,
shifting residues one way or the other, even though the
overall accuracy score does not change significantly. There-
fore, we argue that guide tree uncertainty is an important
source of alignment uncertainty.

All the above factors contribute to substantial errors in
alignments produced by state-of-the-art MSA algorithms.
Equally troubling is the fact that, with the notable excep-
tion of T-COFFEE (Notredame et al. 2000), most of the
widely used MSA programs do not provide information re-
garding the reliability of different regions in the alignment,
for example, ClustalW, MUSCLE, MAFFT, and PRANK
(Thompson et al. 1994; Edgar 2004; Katoh et al. 2005;
Loytynoja and Goldman 2008). Distinguishing between ac-
curate and noisy alignment regions is important for MSA-
dependent analyses, which should try to avoid alignment
regions of low quality. Only a few confidence measures for
alignments have been published. In phylogeny reconstruc-
tion, it is common practice to remove alignment blocks
suspect of low quality using the Gblocks program, which
defines various cutoffs on the number of gapped sequences
in an alignment column (Talavera and Castresana 2007).
However, these criteria may excessively filter out regions
with insertion/deletion events that can be aligned reliably.

A few alignment algorithms output site-specific scores that
allow the selection of high-confidence regions. Such a ser-
vice was first offered by the SOAP program (Loytynoja and
Milinkovitch 2001), which tests the robustness of each col-
umn to perturbation in the parameters of the popular
alignment program ClustalW. The T-COFFEE Web server
(Poirot et al. 2003) uses a library of alignments in the con-
struction of the final MSA, and its output MSA is colored
according to confidence scores that reflect the agreement
between different alignments in the library regarding each
aligned residue. Another alignment program that can out-
put an MSA with confidence scores is FSA (Bradley et al.
2009), which uses a statistical model that allows calculation
of the uncertainty in the alignment. Similarly, the Heads-or-
Tails (HoT) score can be used as a measure of site-specific
alignment uncertainty due to the co-optimal solutions
problem mentioned above (Landan and Graur 2007,
2008). However, none of these confidence measures
account for uncertainties in the guide tree.

Perhaps the most statistically justified approach to assess
alignment uncertainty is the use of probabilistic evolutionary
models accounting jointly for phylogeny and alignment, as in
the programs BEAST and BAli-Phy (Lunter et al. 2005;
Redelings and Suchard 2005). These methods use a Bayesian
approach that allows calculation of posterior probabilities of
the estimated phylogeny and alignment, which is a measure
of the confidence in these estimates across the whole solution
space. In comparison, in the approach presented here and the
previously published HoT score, perturbations are made to
the input of deterministic alignment algorithms, such as
ClustalW, which were not designed to consider suboptimal
solutions. Therefore, in theory, we should prefer the Bayesian
approach. However, in practice, the Bayesian approach is in-
feasible for all but the smallest data sets. For example, the
README page of the BAli-Phy Web site recommends ‘‘using
12 or fewer taxa in order to limit the time required . . . .’’ Even
for data sets of few taxa, when genome-wide analyses are con-
cerned, the computational burden of Bayesian algorithms
may not be affordable. At least in the near future, it is unlikely
that the Bayesian approach will be used in more than a small
fraction of comparative genetic research.

In this paper, we show that uncertainties in the guide
tree have a considerable effect on the robustness of the
MSA. Subsequently, we develop a measure quantifying
this effect as a confidence score for each column and
for each residue in the alignment based on the robustness
of their alignment with respect to perturbations in the
guide tree. Our measure is based on the bootstrap (BP)
method, which is widely used for assigning confidence
scores to branches in reconstructed phylogenetic trees.
Benchmark studies with BAliBASE as well as with simu-
lated sequences show that our alignment confidence
scores are a good predictor of alignment accuracy, signif-
icantly improving on the HoT scores. Therefore, we con-
clude that guide tree uncertainty is an important source
of error in sequence alignment and that MSA-based anal-
yses should take into account site-specific confidence
scores in order to avoid artifacts.
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Methods

Construction of Perturbed MSAs
We begin with a standardMSA generated by any progressive
alignment program, hereby termed ‘‘base MSA.’’ Similar to
the common practice in phylogeny reconstruction, we use
the BP approach (Felsenstein 1985) to obtain a set of trees
that can be used as a proxy to a confidence interval around
the inferred tree. These trees are obtained using the neighbor
joining (NJ) algorithm (Saitou and Nei 1987). The pairwise
distances used as input to the NJ algorithm are maximum
likelihood estimates computed using the Jones, Taylor, and
Thornton amino acid replacement matrix (Jones et al. 1992).
Next, each BP tree is given as an input guide tree to the align-
ment program. The resulting set of perturbed MSAs is used
for estimating the confidence level of the base MSA. As in
the BP test for tree branches, the larger the number of per-
turbed guide trees, the more accurate is the estimated con-
fidence score. In all our analyses, we used 100 BP replicates.
The flow of the algorithm is shown in figure 1.

GUIDANCE Confidence Score Calculation
Themain goal of our method is to assign a confidence score
for each column of the base MSA, which we name ‘‘GUIDe
tree–based AligNment ConfidencE’’ (GUIDANCE) scores.

To this end, we define a set of distances that measure
the dissimilarity between a specific perturbed MSA and
the base MSA. Specifically, three widely used distances
are computed:

1. CS: Each column of the base MSA that is identically
aligned in the perturbed MSA is given a score of 1; all
other columns are given the score 0.

2. SP: Each pair of residues in the base MSA that is identically
aligned in the perturbed MSA is given a score of 1; all
other residue pairs are given the score 0.

3. Sum-of-pairs column score (SPC): The score of each
column is simply the average of the SPs over all pairs in it.

The CS cannot distinguish between a column with one
error and a column with many errors. In contrast, the
SPC can better quantify the difference between a column
in the base MSA and a column in the perturbed MSA.
Subsequently, unless stated otherwise, we only use SP
and SPC.

Each residue pair in the base MSA can have a score of 1
or 0 in each of the perturbed MSAs. The average score over
all perturbed MSAs is a measure of the confidence in align-
ing these two residues and is termed here the GUIDANCE
residue pair score. The average SPC over all perturbed
MSAs is termed here the GUIDANCE CS.

FIG. 1. The ‘‘GUIDANCE’’ measure. A base MSA is produced by any progressive alignment method. Bootstrap NJ trees are reconstructed and
given as guide trees to the progressive alignment program, producing a set of perturbed MSAs. Sum-of-pairs scores are then calculated by
comparing each perturbed MSA with the base MSA and are color coded on each residue in the alignment.
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Furthermore, we define a confidence score for a specific
residue in a specific alignment column, the GUIDANCE
residue score. This score is calculated by averaging the
GUIDANCE residue pair scores over all pairs that include
the residue in question. This score reflects the confidence
of aligning this specific residue in this column.

Benchmark Data
The BAliBASE benchmark database (Thompson et al. 2005)
consists of MSAs that are based on structural alignments
and are specifically designed for the evaluation and
comparison of MSA programs. The database is categorized
into several reference sets according to types of alignment
problems. Here, we use BAliBASE reference sets 1–5, which
include 218 data sets.

We applied the GUIDANCE method to each data set,
using the MAFFT alignment program (version 6.711), gen-
erating GUIDANCE residue pair scores for each pair of
aligned residues in the base MSA. We then used the
BAliBASE reference alignments in order to assess the pre-
dictive power of the GUIDANCE score to identify align-
ment errors. Each aligned residue pair in the MAFFT
base MSA was classified as correct/incorrect by comparing
it with the reference MSA. A receiver operating character-
istic (ROC) analysis (Green and Swets 1966; Fawcett 2006)
was conducted using the R package ROCR (Sing et al. 2005)
to evaluate the specificity and sensitivity of the GUIDANCE
confidence measure. The performance of the GUIDANCE
predictor was measured by the area under the ROC curve
(AUC). The BAliBASE reference provides annotations of
alignment regions for which the alignment is verified by
superposition of protein structures, named core blocks.
Therefore, we limited all the BAliBASE analyses to columns
belonging to these core blocks only.

Simulations
The advantage of simulation is that the evolutionary his-
tory of insertion and deletion events is absolutely known.
We used the ROSE program (Stoye et al. 1998) to simulate
protein alignments based on BAliBASE data sets. Each
data set of genuine protein sequences was used to recon-
struct a phylogenetic tree using NJ. Site-specific evolu-
tionary rates were estimated using rate4site (Pupko
et al. 2002). We fed the tree and the rates as input to
ROSE, thereby producing a simulated data set for each
of the original BAliBASE data sets, mimicking the biolog-
ical characteristics of these proteins. These simulated data
sets were used to conduct the ROC analysis as described
above, except that here all columns in the reference
alignment were used.

To supplement these simulations in an independent ap-
proach that is not based on the BAliBASE data, we also used
the INDELible program (Fletcher andYang 2009) to simulate
100 protein data sets of 50 sequences using a root sequence
length of 300, random trees, a power lawmodel of indel dis-
tribution with indelrate 5 0.1, gamma-distributed among-
site rate variation (a5 1), and the LG replacement matrix.

Comparison with the HoT Confidence Measure
We compared the performance of the GUIDANCEmeasure
with the HoT score, as described in Landan and Graur
(2008), using the same MAFFT version (6.711). ROC
analysis was performed as described above.

Results

Most Alignment Columns Are Sensitive to Guide
Tree Uncertainty
We applied the GUIDANCE method, using both MAFFT
(Katoh et al. 2005) and ClustalW (Thompson et al.
1994), to an exemplary protein data set consisting of
130 homologous chemoreceptors from Drosophila mela-
nogaster (Robertson et al. 2003). The purpose of this anal-
ysis was to study the effect of the guide tree on the resulting
MSA for a typical alignment problem. Figure 2 shows the
level of agreement between the perturbedMSAs, generated
by the GUIDANCE method, and the base MSA, generated
by either ClustalW or MAFFT, using either CS or SP. For
ClustalW, the CS vary between 0.029 and 0.11, with a me-
dian of 0.053 (fig. 2A). That is, in a typical perturbed MSA,
less than 6% of the columns are identically aligned as in the
base MSA. For MAFFT alignments, the median is 11%.
Taken together, these results suggest that alignment col-
umns are highly sensitive to uncertainties in the guide tree.
We next tested the sensitivity of aligned residue pairs
in terms of the average SP of each perturbed MSA
(fig. 2B). For ClustalW, the SPs vary between 0.28 and
0.36, with a median of 0.31. For MAFFT, the SPs vary be-
tween 0.31 and 0.43, with a median of 0.38. These results
imply that in any perturbed MSA, less than 50% of residue
pairs are aligned as in the base MSA.

GUIDANCE Scores Can Identify Alignment
Errors
Because uncertainty in the guide tree results in alignment un-
certainty (as shown above), we hypothesized that alignment
errors can be detected by searching for those alignment re-
gions that are sensitive to guide tree perturbations. To this
end, we used a continuous range of cutoffs for the GUID-
ANCE scores. The cutoff was used as a classification criterion
to separate columns or residue pairs into reliable and unreli-
able. In order to test how well this classification correctly de-
tects actual alignment errors, the columns and residue pairs
of the inferred alignment should be compared with a known
true one. Such comparisonwill reveal the proportions of true-
positive (correctly aligned residues that are marked as reliable
by the GUIDANCE classifier) and false-positive (erroneously
aligned residues that are marked as reliable by the GUID-
ANCE classifier) predictions. Because, in most cases, the true
alignment is unknown, two approaches were used here to
test the performance of the GUIDANCE classifier: 1) compar-
ison against a reference benchmark of curated MSAs and
2) simulation studies. In addition, we compare the perfor-
mance of the GUIDANCE classifier with the previously pub-
lished HoT score, which was shown to be a highly accurate
predictor of alignment errors (Landan and Graur 2008).
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BAliBASE Benchmark
We applied the GUIDANCEmeasure, using theMAFFT align-
ment algorithm, to the BAliBASE benchmark (Thompson
et al. 2005), which is based on structural homology of protein
families. We used BAliBASE reference sets 1–5, consisting of
218 protein sequence alignments. Figure 3A presents a ROC
analysis of GUIDANCE scores and HoT scores for residue
pairs, as classifiers of alignment errors relative to the BAli-
BASE reference. Both methods accurately identified align-
ment errors, with an advantage to GUIDANCE over HoT,
giving an AUC of 94.0% and 89.7%, respectively.

Simulation Benchmark
Simulation studies provide further support for the higher
accuracy of GUIDANCE scores compared with HoT (fig.
3B). As opposed to real protein benchmarks, in which
one can never be absolutely sure of the true alignment,
the exact locations of gaps are known with certainty in
alignments of sequences generated by simulation. How-
ever, one has to make sure that the simulation settings re-
flect as much as possible true evolutionary dynamics. To
this end, our simulations were based on the BAliBASE ref-
erence MSAs. That is, we simulated a reference alignment
based on the phylogenetic tree and site-specific evolution-

ary rates inferred for each of the 218 data sets in BAliBASE
in order to replicate the natural evolutionary dynamics of
protein families. The GUIDANCE classifier accurately iden-
tified alignment errors with an AUC of 96.5%, improving on
the 92.8% of the HoT classifier. An example demonstrating
the difference between GUIDANCE and HoT is given in fig-
ure 4, which plots the distribution of GUIDANCE and HoT
CS compared with the actual alignment accuracy in the
first 260 columns of a typical alignment of 11 simulated
sequences. Both GUIDANCE and HoT scores correlate with
the actual alignment errors, giving Pearson correlation co-
efficients of 0.81 and 0.50, respectively.

Independent simulations of 100 data sets using the IN-
DELible program (Fletcher and Yang 2009), which were not
based on BAliBASE data, gave comparable results—an AUC
of 90.1% for GUIDANCE and 88.4% for HoT. To summarize,
the results obtained for the simulated data are in line with
those obtained for the BAliBASE benchmark.

A Combined GUIDANCE–HoT Score
One would expect that GUIDANCE and HoT identify dif-
ferent types of alignment errors. We thus tried to combine
the two scores in order to produce an even more powerful
predictor. We investigated several approaches in

FIG. 2. Agreement between MSAs built based on perturbed bootstrap trees and the base MSA for MAFFT and ClustalW alignments of
Drosophila melanogaster chemoreceptor sequences. Box plots summarize medians, quartiles, and range of (A) column scores and (B) sum-
of-pairs scores.

FIG. 3. Accuracy of GUIDANCE scores in identifying alignment errors. ROC curves for HoT scores (red) and GUIDANCE scores (blue) of aligned
residue pairs relative to the BAliBASE benchmark (A) and the simulation benchmark (B).
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combining the two scores, including weighted average and
a minimum function. However, they all produced similar
ROC performance as the GUIDANCE measure alone.

Comparison with Gblocks
Figure 5 summarizes the overlap between alignment errors
that were detected by GUIDANCE and HoT scores as
a Venn diagram. A total of 1,914,804 incorrectly aligned res-
idue pairs in the MAFFT reconstruction of the BAliBASE
benchmark were classified as detected by either method
if their confidence score was less than 1. Almost 10% of
the alignment errors were detected by GUIDANCE and
not by HoT. In contrast, less than 1% of alignment errors
were detected by HoT and not by GUIDANCE. Only 2.8% of
alignment errors were not detected by either method.

The Gblocks program (Castresana 2000) is designed
to eliminate poorly aligned regions of the MSA, effectively
giving a binary score for every column. To compare the
performance of Gblocks and our method, we ran Gblocks
on the simulation benchmark using two sets of param-
eters, ‘‘stringent’’ and ‘‘relaxed,’’ as defined in Talavera
and Castresana (2007). Figure 6 presents the false-positive
and the true-positive rates of Gblocks together with a ROC

analysis of GUIDANCE CS. The results show that for the
same proportion of false-positives, GUIDANCE provides
more true-positives for both the stringent and the relaxed
conditions.

Visualization of Alignment Uncertainty
To facilitate examination of a specific MSA of interest, we
suggest a graphic visualization of alignment uncertainty
by coloring the MSA according to the GUIDANCE scores,
similar to the coloring of the output MSA given by the
T-COFFEE web server (Poirot et al. 2003). As an example,
figure 7 shows a colored portion of the same MSA of
chemoreceptor sequences that was used in figure 2 above.
The GUIDANCE residue scores are color coded on the MSA.
This is a convenient way to inspect the implications of low-
confidence regions on subsequent analysis. Magenta-colored
residues can be considered reliable, whereas blue-colored
residues should be avoided. In addition, a plot of the
GUIDANCE CS is presented.

As expected, wide gapless blocks such as the first from
the left score close to 100% certainty. Note the alignment is
confident, even though the sequences are variable. Down-
stream, the second and third blocks score significantly
lower, even though they similarly appear to be solid blocks.
Furthermore, the GUIDANCE residue scores discriminate
between the majority of sequences in the third block that
are reliably aligned and two sequences that stand out in
unreliable blue. Such a case of a divergent badly aligned
sequence can be easily discovered using GUIDANCE.

FIG. 4. An example from the simulation benchmark. Distribution of GUIDANCE column scores (blue) compared with HoT scores (red) and the
actual alignment accuracy (green) in the first 260 columns of a typical simulated alignment.

FIG. 6. Comparison with Gblocks. The false-positive and true-
positive rates of Gblocks ‘‘stringent’’ (red) and ‘‘relaxed’’ (green)
parameter sets in comparison with a ROC curve for GUIDANCE
column scores (blue) for the simulation benchmark.

FIG. 5. Venn diagram of alignment error detection by the
GUIDANCE and HoT scores. A total of 1,914,804 incorrectly aligned
residue pairs in the BAliBASE benchmark were classified as detected
by either method if their confidence score was less than 1.
GUIDANCE detected 95.9% of the errors, whereas HoT detected less
than 87%, and the HoT-detected errors are nearly a subset of the
GUIDANCE-detected errors.
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Discussion
In this paper, we demonstrated that alignment reliability is
dramatically affected by uncertainties in the guide tree.
Based on this observation, we devised a new measure
for alignment confidence, which uses BP trees to test
the robustness of the alignment to perturbations in the
guide tree. This methodology produces confidence GUID-
ANCE scores for each alignment column and each aligned
residue. Thereby, any MSA-based analysis can now take in-
to consideration the alignment reliability of every residue.

The use of BP trees as guide trees for progressive se-
quence alignment may seem ill advised. The BP sampling
technique deliberately introduces noise into the recon-
struction of the tree, creating trees with some errors in
the branching order of the internal nodes. When the pro-
cess of progressive alignment reaches an erroneously re-
constructed internal node, the alignment effectively
represents an ancestral sequence that did not exist in
the true evolutionary history. However, the fundamental

assumption of our approach is that the conventionally
used guide tree most often contains numerous errors
(Nelesen et al. 2008). Therefore, the BP sampling of per-
turbed trees provides a statistically justified representation
of the level of error in the guide tree.

Ideally, alignment and tree should be reconstructed
simultaneously taking into account uncertainties in all
related parameters: tree topology, branch lengths, indel
probabilities, substitution models, and so forth. In Bayesian
methods (see Introduction) that use the Markov Chain
Monte Carlo (MCMC) approach, a by-product of the
method may be a confidence measure in terms of the pos-
terior probabilities of each alignment column. Our
approach can be viewed as related to this MCMC
approach, except only uncertainty in tree topology is
accounted for (and all other parameters are fixed). In
our method, the set of BP trees is a sample from the space
of possible tree topologies. A trivial extension of our
method would be to consider a set of MCMC trees with
their associated posterior probabilities as the set of guide

FIG. 7. Color-coded GUIDANCE scores for Drosophila melanogaster chemoreceptor sequences. A portion of the MSA is presented (columns
757–875 of 32 sequences). Confidently aligned residues are colored in shades of magenta and pink, whereas uncertain residues are colored in
shades of blue. GUIDANCE column scores are plotted below the alignment.
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trees instead of the BP trees used here. Although this will
clearly be more accurate, it is likely to prohibit the use of
our method for large data sets.

Another point worth noting is that the GUIDANCE con-
fidence score is absolutely dependent on uncertainty in the
guide tree. In principle, it is possible to have 100% BP sup-
port for the guide tree, in which case the GUIDANCE sup-
port will be 100% for every alignment column. However, in
practice, one rarely sees 100% support for all tree branches.
Indeed, this does not happen in any of the 218 data sets in
the BAliBASE benchmark, even though many of them con-
tain fewer than ten taxa.

A practical consideration with our approach is the
increased running time required for (typically 100) BP
repeats, reconstructing many guide trees and MSAs. How-
ever, because we use simple NJ BP trees, and the relatively
fast MAFFT alignment algorithm, this increased running
time will often be negligible in comparison with the run-
ning time of downstream analysis, such as Bayesian phylog-
eny reconstruction or positive selection inference.

We evaluated the predictive power of GUIDANCE scores
to identify alignment errors both for the BAliBASE bench-
mark of real protein alignments and for simulated align-
ments. We also compared the new GUIDANCE measure
with the previously published HoT score, which is ameasure
of alignment unreliability due to the co-optimal solutions
problem (Landan and Graur 2007, 2008). Notably, the HoT
score was previously shown to be highly successful in pre-
dicting residue pairs that are erroneously aligned, and in
this paper, we report an AUC of 89.7% for HoT scores ap-
plied to the BAliBASE benchmark. The GUIDANCE scores
make a substantial improvement on top of that, reaching
an AUC value of 94.0%. Simply put, if we pick a point along
the ROC plot in figure 3A, we could use GUIDANCE
scores to identify 80% of the correctly aligned residues
in an average MSA while ‘‘suffering’’ from only a 5% rate
of false-positives.

Interestingly, an average or a minimum of the two scores
does not improve the AUC any further. This is surprising
because one could expect some alignment columns that
are uncertain in terms of co-optimal solutions but not
in terms of the robustness to the guide tree. If such col-
umns existed in sufficient numbers, then the combination
of HoT and GUIDANCE measures should improve the pre-
diction accuracy relative to the GUIDANCE measure alone.
Because this is not the case, we conclude that most col-
umns affected by the co-optimality issue are also affected
by uncertainty in the guide tree. This does appear to be the
case because less than 1% of alignment errors were de-
tected by the HoT score and not by the GUIDANCE score
(fig. 5). Clearly, while GUIDANCE focuses only on the effect
of guide tree on alignment uncertainty, research on other
sources of errors beside the guide tree can lead to better
detection and quantification of alignment errors.

We conclude that the new alignment confidencemeasure
is a highly accurate predictor for the correctness of specific
MSA columns. As such, it is valuable for any MSA-based
analysis. We encourage researchers to use the GUIDANCE

confidence measure before any downstream analysis rather
than to rely on alignments as unqualified truths.
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