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CD28 costimulation regulates a wide range of cellular processes, from proliferation and
survival to promoting the differentiation of specialized T-cell subsets. Since first being ident-
ified over 20 years ago, CD28 has remained a subject of intense study because of its profound
consequences on T cell function and its potential for therapeutic manipulation. In this review
we highlight the signaling cascades initiated by the major signaling motifs in CD28, focusing
on PI-3 kinase-dependent and -independent pathways and how these are linked to specific
cellular outcomes. Recent studies using gene targeted knockin mice have clarified the rela-
tive importance of these motifs on in vivo immune responses; however, much remains to be
elucidated. Understanding the mechanism behind costimulation holds great potential for
development of new clinically relevant reagents, a fact beginning to be realized with the
advent of drugs that prevent CD28 ligation and signaling.

OVERVIEW OF CD28-MEDIATED
COSTIMULATION

A critical component of the immunological
response to foreign protein is the activation

of T lymphocytes. T-cell receptor (TCR) reco-
gnition of peptide loaded MHC molecules
provides antigen specificity and initiates the
required steps for T-cell activation, although
additional signals are needed for complete
T-cell activation. A two signal model for lym-
phocyte activation was first proposed by Bret-
scher and Cohn in 1970 as a mechanism for
self:nonself discrimination in B cells (Bretscher
and Cohn 1970) and was subsequently exp-
anded to incorporate CD8 T-cell activation
by Lafferty et al (Lafferty and Cunningham
1975). Using T-cell clones, Schwartz and Jen-
kins showed that engagement of the TCR by

peptide loaded MHC in the absence of other
signals is insufficient to activate the T cell, and
in fact may render it unresponsive to further
antigenic stimulation, a condition termed an-
ergy (Quill and Schwartz 1987; Mueller et al.
1989; Schwartz et al. 1989; Jenkins et al. 1990;
Linsley and Ledbetter 1993). They further
showed that provision of additional, non-MHC
restricted signals provided by professional APC,
resulted in the T cell becoming fully activated
leading to clonal expansion and development
of effector function. Thus, the two-signal
model, where signal one is defined as the bind-
ing of peptide/MHC complexes and signal two
refers to the additional, costimulatory signal(s),
provided a potential mechanism for peripheral
tolerance (June et al. 1990; June et al. 1994;
Bluestone 1995). The most studied and well
characterized costimulatory receptor/ligand
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complex is the CD28/B7 interaction (as re-
viewed in Rudd and Schneider 2003; Miller
et al. 2009; Paterson et al. 2009; Rudd et al.
2009; Sharpe 2009).

CD28 was first identified by antibodies rec-
ognizing a 44 kDa protein on the surface of
human T cells that synergized with PHA in
the induction of a proliferative response (Han-
sen et al. 1980; Gmünder and Lesslauer 1984).
The cDNA was expression cloned in 1987 by
Aruffo and Seed and shown to encode a 23 kD
type 1 transmembrane protein (Aruffo and
Seed 1987). CD28 is expressed on the cell sur-
face as a glycosylated, disulfide-linked ho-
modimer (Aruffo and Seed 1987). In humans,
CD28 is expressed on approximately 80% of
CD4þ T cells and 50% of CD8þ T cells and
has been detected on plasma cells, neutrophils,
and eosinophils, although the function in these
latter cell types is unclear (Lee et al. 1990; Ven-
uprasad et al. 2001; Woerly et al. 2002). In
contrast to humans, in mouse 100% of both
CD4 and CD8 T cells express CD28 (Gross et al.
1990).

Most important in the initial activation of
naı̈ve T cells, ligation of CD28 on CD4þ T cells
has diverse and profound consequences. CD28
signaling increases the sensitivity of the T cell
to antigen receptor engagement, and as a result
proliferation is induced at otherwise submi-
togenic concentrations of antigen (Gmünder
and Lesslauer 1984; Damle et al. 1988; Damle
and Doyle 1989; Shahinian et al. 1993b; Bach-
mann et al. 1996; Bachmann et al. 1997). Cyto-
kine production is greatly increased, most
significantly IL-2. CD28 costimulation results
in a 50-fold increase in IL-2 secretion by both
transcriptional and posttranscriptional regula-
tion of expression (Lindsten et al. 1989; Fraser
et al. 1991). Interestingly, under some con-
ditions, this has been found to be resistant to
suppression by cyclosporine, suggesting enga-
gement of a novel signal transduction cascade
(Thompson et al. 1989; Ledbetter et al. 1990).
In addition, cell survival is enhanced by CD28
costimulation, in part by inducing expression
of anti-apoptotic proteins including Bcl-XL

(Boise et al. 1995; Radvanyi et al. 1996; Sperling
et al. 1996). Thus, by a variety of mechanisms,

CD28 mediated costimulation greatly enhances
the T cells effector response to antigen

Whether CD28 can activate signaling inde-
pendent of TCR engagement or function only
in a TCR dependent manner has been contro-
versial. The ability of certain “superagonistic”
anti-CD28 antibodies to independently activate
T cells suggests that in some circumstances
CD28 can function in the absence of a TCR
derived signal (Tacke et al. 1997; Luhder et al.
2003). Furthermore, microarray analysis of T
cells stimulated only through CD28 supported
TCR independent signaling; however, this
effect appeared to be relatively short lived (Riley
et al. 2002; Marinari et al. 2004). Importantly,
the existence of both TCR dependent and
independent pathways is not mutually exclu-
sive, and it is likely that both are operative and
important.

CD28 is the founding member of the
immunoglobulin (Ig) family of costimulatory
receptors (Hansen et al. 1980; Gmünder
and Lesslauer 1984), that now includes the
receptors: cytotoxic T lymphocyte-associated
antigen 4 (CTLA-4, CD152) (Dariavach et al.
1988), inducible costimulator (ICOS) (Hutloff
et al. 1999; Tezuka et al. 2000), programmed
death receptor 1 (PD-1) (Ishida et al. 1992),
and B- and T-lymphocyte attenuator (BTLA)
(Watanabe et al. 2003). Although CD28 and
CTLA-4 both bind the ligands B7-1 (CD80)
and B7-2 (CD86) (Freeman et al. 1989; Balzano
et al. 1992; Azuma et al. 1993; Freeman et al.
1993) and are located on human chromosome
2q33 (Naluai et al. 2000) (mouse chromosome
1 (Gross et al. 1990; Howard et al. 1991)),
CTLA-4 forms bivalent homodimers between
CD80 molecules which contributes to its higher
affinity for CD80 (12 compared to a 200 nM
Kda value for CD28) (van der Merwe et al.
1997; Evans et al. 2005). CD28 and ICOS pre-
dominately enhance T-cell activation unlike
CTLA-4, PD-1 and BTLA which are inhibitory
(Rudd and Schneider 2003; Miller et al. 2009;
Paterson et al. 2009; Rudd et al. 2009; Sharpe
2009). This review will cover the diverse func-
tions of the CD28-B7 interaction highlighting
the complex signaling events that define CD28
function.
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THE MOTIFS BEHIND CD28 SIGNALING

The extracellular domain of CD28 binds to B7
proteins using a MYPPPY motif and this inter-
action initiates the costimulatory signal trans-
duction cascade (Freeman et al. 1989; Balzano
et al. 1992; Azuma et al. 1993; Freeman et al.
1993; Rudd and Schneider 2003). CD28 has a
highly conserved, relatively short cytoplasmic
tail (41 aa in human, 38 aa in mouse) that has
no intrinsic enzymatic activity. However, several
motifs have been identified including: four
tyrosine residues, four serine and two threonine
residues, two PxxP motifs, and two lysine resi-
dues each of which may be important in func-
tion (Rudd and Schneider 2003; Rudd et al.
2009). Phosphorylation of the tyrosine residues
provides docking sites for src homology-2 (SH2)
domain containing proteins whereas the
proline-rich motifs can bind src homology-3
(SH3) domain containing proteins. The serine
and threonine residues can also be phosphory-
lated and finally the lysine residues provide
potential sites for ubiquitination. Interestingly
CD28, CTLA-4, and ICOS share an YxxM motif
(Rudd and Schneider 2003) a consensus binding
site for the p85 subunit of the lipid kinase
phosphatidyl-inositol 3-kinase (PI3K) (August
and Dupont 1994; Pagès et al. 1994; Prasad
et al. 1994). CD28 contains the sequence
YMNM, where the Asn residue in the þ2 posi-
tion confers additional specificity for Grb2/

GADS binding (Songyang et al. 1993; Schneider
et al. 1995b), whereas the methionine at the þ3
position confers p85 specificity (Takeda et al.
2008). The ability to bind Grb2 is absent from
both ICOS and CTLA-4, which may in part
explain the signaling and functional differences
between these coreceptors (Rudd and Schneider
2003; Rudd et al. 2009). Early work has shown
that the cytoplasmic tail of CD28 is tyrosine
phosphorylated presumably by the Src family
kinases Fyn and Lck (Raab et al. 1995; King
et al. 1997), as well as phosphorylated on serine/
threonine residues (Hutchcroft and Bierer 1994;
Hutchcroft et al. 1996; Parry et al. 1997a). These
events initiate specific protein–protein interac-
tions and subsequent activation of downstream
signaling cascades that define the costimulatory
functions of CD28.

Motif Specific Protein–Protein Interactions

In the simplest format, CD28 signaling is initi-
ated by activation of two dominant signaling
cascades, one that requires phosphorylation of
a tyrosine residue within the membrane proxi-
mal YMNM motif and subsequent binding of
the p85 subunit of PI3K whereas another path-
way is initiated by the more distal proline-rich
regions (Rudd and Schneider 2003; Miller
et al. 2009; Paterson et al. 2009; Rudd et al.
2009; Sharpe 2009) (Fig. 1). Each of these
bind distinct sets of proteins, although there is

APC 
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CD86
CD28

T Cell 

p110 

p85 Itk Lck FilaminA 

Grb2 Grb2/ 
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......... YMNMTPRRP ................PYAP ........

Figure 1. Motif specific protein:protein interactions with the cytoplasmic tail of CD28. Engagement of CD28 by
CD80 or CD86 expressed on the antigen presenting cell (APC), initiates signal transduction cascades
dependent on specific association of proteins with the cytoplasmic tail of CD28. The proximal YMNM motif
when phosphorylated via Src family kinases binds the SH2 containing (indicated in red) proteins p85, a
subunit of PI3K, and Grb2 or GADS via their SH2 domain. The distal proline-rich motifs bind the SH3
containing (indicated in blue) proteins Itk, at the sequence PRRP, and Grb2 (via its SH3 domain), filamin-A
and Lck at the sequence PYAP.
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significant overlap and potential for interaction.
The observation that PI3K activation was en-
hanced via CD28 signaling led to the discovery
that the p85 subunit of PI3K directly binds the
YMNM motif via an SH2 interaction following
phosphorylation of the tyrosine residue (Pagès
et al. 1994; Truitt et al. 1994; Cai et al. 1995;
Raab et al. 1995). Although PI3K-dependent
signaling is likely the major pathway initiated
by the proximal motif, its relative importance
in CD28 function has been highly controversial.
Initial in vitro CD28 signaling results should be
interpreted with caution as the Jurkat T-cell line
lacks both the PTEN and SHIP-1 phosphatases
that function to inactivate the products of
PI3K; therefore, the threshold to fully activate
PI3K is reduced (Shan et al. 2000; Freeburn
et al. 2002). Other proteins that can bind this
region include Grb2 and GADS via their SH2
domain (Raab et al. 1995; Schneider et al.
1995a; Kim et al. 1998; Ellis et al. 2000). Com-
petition between Grb2, GADS and PI3K for
binding to the YMNM motif may be important
in determining downstream CD28-dependent
signaling events

Signaling by the distal PYAP motif is likely
initiated by binding and activation of the Src
family kinase Lck (King et al. 1997; Holdorf
et al. 1999) although Fyn, Grb2, and GADS
(via their SH3 domains) can also bind this
region (Okkenhaug and Rottapel 1998; Ellis
et al. 2000). The association of IL-2-inducible
T-cell kinase (Itk) directly with the proximal
proline-rich region (PRRP) of CD28 via its
SH3 domain (Marengere et al. 1997) has been
shown; however, if this event requires PI3K-
dependent production of D3-lipids remains
poorly understood. The PYAP motif also associ-
ates with filamin-A, an actin binding protein
that functions as a scaffold for lipid raft forma-
tion (Tavano et al. 2006).

The generation of two specific knockin mice
by our laboratory, the CD28 Y170F and CD28
AYAA mice, has clarified the role(s) of these
two motifs in CD28 function (Friend et al.
2006; Dodson et al. 2009). Mutation of the
proximal YMNM motif, although abrogating
PI3K binding and subsequent protein kinase
B (PKB)/Akt activation has no discernible in

vivo effect (Dodson et al. 2009). On the other
hand, mutation of the distal proline motif
(PYAP) resulted in impaired CD28-dependent
functions that included proliferation, IL-2 and
other cytokine secretion, and adaptive immune
system defects (Friend et al. 2006; Dodson et al.
2009). These data provide evidence that the dis-
tal proline motif initiates a critical, nonredun-
dant signaling pathway required for CD28
function, whereas the proximal tyrosine based
motif may be dispensable.

PI3K-DEPENDENT SIGNALING PATHWAYS

Activation of PI3K induces the production
of the D3-lipids, phosphatidylinositol (3,4)-
bisphosphate (PIP2) and phosphatidylinositol
(3,4,5)-triphosphate (PIP3) where PIP3 is the
main TCR/CD28 induced D3-lipid (Sasaki
et al. 2000; Wang and Rudd 2008) (Fig. 2).
These D3-lipids recruit pleckstrin homology
(PH) domain containing proteins including
phosphoinositide-dependent kinase 1 (PDK1),
PKB/Akt, and possibly Wiskott Aldrich Syn-
drome Protein (WASP), a sorting nexin (SNX9),
Itk and Vav (Parry et al. 1997b; Costello et al.
2002; Harriague and Bismuth 2002; Badour
et al. 2007). PKB can be phosphorylated and
activated by PDK1 and is a particularly impor-
tant PI3K-dependent effector protein in CD28
signaling (Vanhaesebroeck and Alessi 2000).
Downstream targets of PKB are diverse and
include glycogen synthase kinase 3 (GSK3),
mTOR, cAMP responsive element binding
protein-1 (CREB), Bcl-2 antagonist of cell death
(BAD), Bcl-XL, FOXO family of transcription
factors, and inhibitor of nuclear factor-kB
(IkB) (Vanhaesebroeck and Alessi 2000).
Thus, the PI3K-dependent signaling pathway
has the ability to regulate a diverse array of
CD28 functions that include cell cycle progres-
sion, apoptosis, cellular metabolism, and IL-2
transcription.

SIGNALING PATHWAYS INITIATED BY
BINDING OF ADAPTOR PROTEINS

In addition to the PI3K-dependent pathway,
binding of adaptor proteins (i.e., Grb2 or
GADS) to the proximal motif can initiate
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signaling (Fig. 3). Grb2 recruits Son of Sevenless
(Sos), a guanine nucleotide exchange factor and
activator of GTPase p21ras, and Vav, also an
exchange factor (Schneider et al. 1995a;
Collins et al. 1997; Bustelo 2000). A mechanism
by which CD28 via Grb2 binding to the PxxP
motif mediates JNK activation is plausible
where Grb2 recruits Sos and Vav which in
turn phosphorylate and activate Ras-related
C3 botulinum toxin substrate (Rac1), PKCu
and cell division cycle 42 (CDC42) (Collins
et al. 1997; Bustelo 2000). Rac1 and CDC42
activate the MEK4/MEK7 to MEKK1 signaling
cascade culminating in JNK activation (Su et al.
1994). In support of this model, CD28 induces a
GTP-RAC complex, possibly through the phos-
phorylation of Vav by ZAP-70 (Salojin et al.
1999), and activates MEKK1 in a Vav-dependent
manner (Marinari et al. 2002). CD28-depen-
dent activation of JNK (Su et al. 1994) is
inhibited by mutant forms of Vav that lack

functional GTP-GDP exchange activity and a
dominant negative mutant of MEKK1 (Mari-
nari et al. 2002; Wood et al. 2006). GADS poten-
tially interacts with SLP76 and LAT in a
signaling complex thereby providing CD28 a
means to modulate TCR mediated signaling
(Rudd and Schneider 2003; Rudd et al. 2009).
Although these studies imply Grb2/GADS,
Vav, PKCu, and downstream MAPK signaling
are linked to the PxxP motifs in CD28, this cas-
cade has yet to be fully defined.

REGULATION OF IL-2 PRODUCTION
BY CD28

Transcriptional Regulation of the IL-2
Gene by CD28

The regulation of IL-2 by CD28 is complex
involving both increased gene transcription
and post-transcriptional stabilization of mRNA
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Figure 2. PI3K dependent signal pathway. Tyrosine phosphorylation of the YMNM motif via Src family kinases
initiates the binding of the p85 subunit of PI3K. PI3K activity leads to the production of D-3 lipids, which recruit
proteins via their pleckstrin homology domain (PH), including PDK1 and PKB/Akt. Once PKB is
phosphorylated by PDK1, PKB phosphorylates its downstream targets including mTOR, IkB, GSK3b and
Bad. Active mTOR and IkB result in increased NF-kB transcriptional activity whereas the phosphorylation
of Bad and GSK3b results in increased survival and NFAT transcriptional regulation, respectively. The
activation of NF-kB and NFAT (indicated by the dotted lines) induces the transcription of both Bcl-XL, a
prosurvival factor, and IL-2, an important T-cell cytokine required for proliferation as well as other genes.
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(Lindsten et al. 1989; Bohjanen et al. 1992). The
IL-2 promoter has binding elements for mem-
bers of the NFAT, NF-kB, Oct-1, and AP-1
(c-fos/Jun) families of transcription factors
and CD28 regulates the expression and activity
of NFAT, NF-kB, and AP-1 (Fraser et al. 1991;

Granelli-Piperno and Nolan 1991; Shapiro
et al. 1997; Miller et al. 2009). Research pione-
ered by the Weiss laboratory identified a specific
region in the IL-2 promoter, termed the CD28-
response element (CD28RE) that binds tran-
scription factors in a CD28-dependent manner
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Figure 3. Adaptor protein intiated signaling events. The binding of the adaptor protein Grb2 to CD28 occurs
via its SH2 domain at the proximal YMNM motif or its SH3 domain at the distal PYAP motif. Grb2 through
an SH3 interaction may subsequently bind Vav which has the potential to initiate two signaling complexes.
The Vav-Sos complex results in cdc42/Rac1 activation an initiator of cytoskeletal rearrangement and
downstream MAPK activation (JNK) that induces the formation of the AP1 transcriptional complex. Vav
also binds the SLP-76-LAT complex, which activates PLCg1 a kinase that increases intracellular Ca2þ,
through IP3 production, and activates PKCu via DAG. The increase in intracellular Ca2þ results in
calcineurin activation, a phosphatase that acts on NFAT allowing for its nuclear translocation. PKCu
activation leads to the formation of a multi-protein complex with Bcl10, MALT1 and CARMA-1 that induces
NF-kB transcriptional activation. The distal PYAP motif also binds Lck a Src kinase that phosphorylates
PDK1 which phosphorylates and activates PKCu and subsequently inactivates GSK3b via phosphorylation
resulting in enhanced transcription of NFAT–dependent genes. Stabilization of cytokine mRNA is also
dependent on signals originating at the PYAP through a mechanism that may involve Lck binding (indicated
via the dotted arrow) or an unknown protein whereas cytoskeletal rearrangement at the PYAP motif is
filamin-A (FLNA) dependent.
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thus providing a site for signal integration
(Fraser et al. 1991; Shapiro et al. 1997). Analyses
of the CD28RE/AP-1 complex determined that
CD28 signaling activated both IkBa and IkBb
resulting in increased transcription of IL-2,
which was inhibited by dominant negative
mutants of these IkB proteins (Lai and Tan
1994; Harhaj et al. 1996; Harhaj and Sun
1998; Zhou et al. 2002). The phosphorylation
of the IkB complex, which targets IkB for deg-
radation through ubiquitination, via upstream
serine/threonine kinases called the IkB kinases
(IKKs), results in NF-kB translocation to the
nucleus (Lai and Tan 1994; Harhaj et al. 1996;
Harhaj and Sun 1998). CD28-dependent IKK
activation was inhibited by a dominant negative
MEKK1 and IKK deficient cells have defective
IL-2 production implicating CD28 as an
upstream mediator of the IKK complex and
NF-kB activation (Harhaj et al. 2000; Tuosto
et al. 2000). Through a mutational screen,
mice identified as defective in antigen receptor
activation of JNK and NF-kB were subsequently
determined to also be defective in caspase re-
cruitment domain-containing membrane asso-
ciated guanylate kinase protein-1 (CARMA-1)
activation (Jun et al. 2003). CARMA-1 binds
Bcl10 via CARD-CARD binding domains
and activation of CARMA-1 is enhanced by
PKCu phosphorylation (Gaide et al. 2002;
Takeda et al. 2008). Bcl10 deficient T cells also
show impaired NF-kB activation; therefore, a
CD28-dependent signaling cascade can be
predicted for NF-kB that includes PKCu,
Bcl10 and CARMA-1 proteins (Gaide et al.
2002; Takeda et al. 2008). The series of events
that initiate this complex is not well under-
stood, but the oligimerization of the CARMA-1
protein through its coiled-coil domain (CC2)
and its localization via its CC1 domain are
involved (Tanner et al. 2007) along with a ly-
sine residue at 808 of CARMA-1 (Wang et al.
2004).

Analyses using CD28 deficient T cells deter-
mined that CD28 is required for proper segrega-
tion of PKCu into the immunological synapse
and the failure to localize PKCu correctly results
in poor activation of NF-kB and IL-2 gene tran-
scription (Huang et al. 2002; Sanchez-Lockhart

et al. 2004; Sanchez-Lockhart and Miller 2006).
Mice or T cell lines deficient in PKCu have
a pronounced defect in NF-kB activation
through TCR-CD28 signals (Sun et al. 2000;
Matsumoto et al. 2005). In Jurkat T cells Vav
has been shown to bind PKCu and acts syner-
gistically to enhance CD28-dependent activa-
tion of NF-kB (Coudronniere et al. 2000;
Dienz et al. 2000; Hehner et al. 2000a; Hehner
et al. 2000b; Villalba et al. 2000a). Results indi-
cate the CARMA-1, Bcl10, and mucosa-associ-
ated lymphoid tissue (MALT) lymphoma
translocation gene 1 (MALT1) complex is
dependent on CD28-dependent PKCu translo-
cation and activation, possibly through Vav
and Grb2, to regulate NF-kB activation (Wang
et al. 2002; Hara et al. 2003; Jun et al. 2003;
Wang et al. 2004; Tanner et al. 2007). CD28 acti-
vation of NF-kB may involve RIP-2, a CARD
containing adaptor also called CARDIAK or
RICK, as RIP-2 deficient T cells have impaired
IL-2 production, proliferation, and NF-kB tran-
scription (Kobayashi et al. 2002). CD28 medi-
ated activation of NF-kB may include the role
of PKB, NIK, and Cot; however, this remains
unclear as these experiments used overexpres-
sion of mutant proteins or resulted in partial
inhibition of CD28 functions (Kane et al.
1999; Lin et al. 1999; Hehner et al. 2000b;
Yamada et al. 2000; Bauer et al. 2001).

Regulation of NFAT by CD28 is another
costimulatory pathway that augments IL-2 ex-
pression (Fraser et al. 1991). TCR and CD28-
dependent signaling pathways cooperate in the
activation of PLCg-1 leading to increased intra-
cellular calcium levels, PKC phosphorylation
and activation of calcineurin (Ca2þ-dependent
Ser/Thr phosphatase, CaN), which then dep-
hosphorylates NFAT enhancing its nuclear
translocation (Fraser et al. 1991). The immuno-
suppressant drugs cyclosporine and tacrolimus
block CaN activation and thereby prevent NFAT
translocation (Fraser et al. 1991). In contrast,
CD28 derived signals induce the phosphoryla-
tion and inactivation of GSK3b, a kinase that
promotes the nuclear export of NFAT (Diehn
et al. 2002; Pan et al. 2007). By this mechanism,
CD28 leads to NFAT nuclear trapping and in-
creased transcription of NFAT-dependent genes,
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including IL-2 (Diehn et al. 2002; Pan et al.
2007).

Postranscriptional Regulation of IL-2
mRNA Expression

In addition to transcriptional control of the
IL-2 gene, CD28 regulates the stability of IL-2
and other cytokine mRNA (Lindsten et al.
1989; Miller et al. 2009). Specific AUUA sequen-
ces in the 30 untranslated region destabilize the
message (Bohjanen et al. 1992). Briefly, there
are two general models of mRNA stability 1)
microRNA and 2) AU-rich elements (ARE)
within the 30 UTR of the mRNA that affect deg-
radation of the RNA especially that of cytokine
genes including IL-2 (Lindsten et al. 1989). In
unstimulated cells AU-binding proteins bind
the 30 UTR and recruit a multicomponent exo-
some that deadenylates and digests the 30 UTR
of the mRNA via exonucleases (Ogilvie et al.
2005). T-cell stimulation induces TTP activa-
tion, an AU-binding protein, and subsequent
binding to the ARE within the 30 UTR of IL-2
mRNA that induces degradation (Ogilvie et al.
2005). The absence of TTP results in increased
IL-2 expression after T-cell activation (Ogilvie
et al. 2005). To counter TTP induced degrada-
tion, a CD28-dependent mechanism may req-
uire HuR translocation to the cytoplasm (Seko
et al. 2004) and/or elements of MAPK activa-
tion (i.e., JNK and p38) (Chen et al. 1998;
Winzen et al. 1999; Chen et al. 2000). As CD28
regulates JNK activation (Su et al. 1994; Mari-
nari et al. 2002; Wood et al. 2006), YB-1 and
nucleolin, JNK induced proteins, stabilize the
IL-2 transcript at the 50 end; however, these pro-
teins are not sufficient and may require another
protein that binds to the 30 UTR (Chen et al.
2000). One possible candidate, NF90, a tran-
scription factor associated with NFAT and IL-2
activation (Corthesy and Kao 1994), has been
shown to compete with TTP for binding at the
ARE of IL-2 mRNA (Shim et al. 2002). NF90
knockout T cells have decreased IL-2 secretion
but whether this effect is on the regulation of
IL-2 transcription or mRNA stability, as well
as, how CD28 signaling affects NF90 function
is unclear (Shi et al. 2007). T-cell activation

shuttles NF90 from the nucleus to the cytoplasm
that dissociates TTP from the ARE and results
in IL-2 mRNA stabilization (Shim et al. 2002;
Shi et al. 2007).

Attempts to dissect the signaling pathway
from CD28 to IL-2 using a mutational approach
have yielded inconsistent results. Early experi-
ments in Jurkat cells showed an association
of PI3K with CD28 but the dependency of
IL-2 secretion on this association were conflict-
ing (Stein et al. 1994; Truitt et al. 1994; Crooks
et al. 1995; Lu et al. 1995; Truitt et al. 1996; Sadra
et al. 1999). A role for the YMNM motif in IL-2
secretion was suggested using murine cell lines
but whether this was mediated through Grb2
or PI3K was not clear (Pagès et al. 1994; Cai
et al. 1995; Kim et al. 1998; Watanabe et al.
2006). The role of the YMNM motif in IL-2 sec-
retion remained unclear from studies in trans-
genic mice or retroviral reconstitution on the
CD28-deficient background (Burr et al. 2001b;
Harada et al. 2001; Okkenhaug et al. 2001;
Andres et al. 2004b). These data showed either
no effect on proliferation and IL-2 secretion
(Okkenhaug et al. 2001; Andres et al. 2004b),
a partial inhibition (Burr et al. 2001b), or inhib-
ition of proliferation and IL-2 secretion at early
time points (Harada et al. 2001). A caveat of
these experiments is that CD28 expression is
not under endogenous control but that of a het-
erologous promoter.

Recent data has supported the PYAP motif
as the dominant signaling motif determining
the net output of IL-2 following CD28 costimu-
lation. In a retroviral reconstitution system, the
proline to alanine mutation within the PYAP
motif resulted in either decreased CD28-depen-
dent proliferation and IL-2 production (Burr
et al. 2001b) or no effect unless this mutation
is combined with the tyrosine mutation in the
YMNM motif (Andres et al. 2004b). In trans-
genic mice, the PYAP motif had impaired
CD28-dependent proliferation whereas the Itk
binding proline motif (PRRP) did not (Gogish-
vili et al. 2008). Interestingly, in a PI3K mutant
mouse (p110dD910A/D910A) CD28-dependent
proliferation was maintained whereas Vav defi-
cient primary T cells had defective proliferation
(Gogishvili et al. 2008). These results predict
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that the PYAP motif mediates CD28-dependent
proliferation through Vav and Lck independ-
ently of PI3K, although the role of Grb2 or
GADS (Watanabe et al. 2006) was not directly
addressed.

We directly tested the relative importance of
the YMNM and the PYAP motifs in regulating
CD28-dependent IL-2 production using gene
targeted knockin mice. This approach benefits
from the study of truly naı̈ve T cells in which
CD28 expression is controlled by endogenous
elements. Under these conditions the PYAP
motif has a critical role in CD28 mediated pro-
liferation and IL-2 secretion (Friend et al. 2006;
Dodson et al. 2009). Importantly, these studies
also showed that CD28 expression level is an
important determinant of the outcome of
engagement as mice with a single AYAA allele
had greater impairment in both proliferation
and IL-2 secretion than mice with two AYAA
alleles. In contrast, the Y170F mutation had lit-
tle appreciable effect independent of gene dos-
age (Dodson et al. 2009). There is segregation
of transcriptional control of IL-2 expression
and regulation of mRNA stability by the
YMNM and PYAP motifs. The Y170F mutation
impairs IL-2 transcription but has little effect
on net IL-2 secretion and no effect on mRNA
stability whereas mutation of the PYAP motif
has the reciprocal effect (Sanchez-Lockhart
et al. 2004; Miller et al. 2009) (X. Wang, J. Green
and J. Miller, unpublished data). The PYAP
motif can mediate Grb2 binding and down-
stream JNK activation; therefore, these data
give credence to the theory that CD28-depend-
ent JNK activation is the dominant pathway
resulting in IL-2 mRNA stability.

The CD28 knockin mice also provided an
opportunity for us to directly examine compo-
nents of the signaling cascade leading to IL-2
production in naı̈ve, primary T cells. Previous
studies showed that the YMNM motif was
required for CD28-dependent activation of
PKB, which in turn led to phosphorylation
and inactivation of GSK3b resulting in en-
hanced IL-2 gene transcription (Ohteki et al.
2000; Appleman et al. 2002; Diehn et al. 2002;
Wood et al. 2006). However, data from the
knockin mice showed the phosphorylation of

both PKCu and GSK3b were dependent on
the PYAP and not the YMNM motif (Dodson
et al. 2009). An alternative mechanism of the
phosphorylation of GSK3b has been proposed
where PKC isoforms directly phosphorylate
GSK3b possibly through Vav or PDK1 (Lee
et al. 2005) independent of PKB (Goode et al.
1992; Fang et al. 2002; Vilimek and Duronio
2006), a model supported by the knockin data.

CD28 SIGNALING AND THE
IMMUNOLOGICAL SYNAPSE

The organization of specific proteins within the
contact site of the APC and T cell during T-cell
activation is referred to as the immunological
synapse (Grakoui et al. 1999; Dustin and Chan
2000; van der Merwe 2002). Proteins segre-
gate into supramolecular activation clusters
(SMAC), which contain three distinct domains:
the cSMAC (“c” indicates central), enriched in
TCR, CD4, CD28, and signaling components
such as PKCu and Lck, the pSMAC (“p” indi-
cates peripheral), enriched in LFA-1 and other
cytoskeletal components and an outer region
that contains mostly CD45 (Grakoui et al.
1999; Bromley et al. 2001; Bunnell et al. 2002;
Freiberg et al. 2002). Initially, TCR and CD4
form small microclusters that also contain
CD28 within the cSMAC whereas LFA-1 moves
into the pSMAC (Grakoui et al. 1999; Krummel
et al. 2000; Andres et al. 2004a). Although how
the activation of Lck and its role in CD28 signal-
ing is poorly understood, the colocalization of
CD45, a phosphatase that activates Lck by re-
moving an inhibitory phosphate (Y505), with
CD4 associated Lck and CD28 in these micro-
clusters provides a possible model of Lck activa-
tion and association with CD28 (Johnson et al.
2000; Freiberg et al. 2002).

CD28 is required for the localization of
PKCu to the immunologic synapse (Monks
et al. 1998; Bromley et al. 2001; Andres et al.
2004a). Mutational analysis mapped this re-
quirement to the YMNM motif, suggesting a
PI3K-dependent mechanism (Sanchez-Lock-
hart et al. 2004; Sanchez-Lockhart and Mil-
ler 2006; Yokosuka et al. 2008). In recent
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experiments, the ability of CD28 to recruit
PKCu to the immunological synapse was subse-
quently determined to be independent of PIP3
generation (Garcon et al. 2008). Interestingly
PKCu colocalizes with filamin-A, and when
filamin-A is knocked down via siRNA, PKCu
activity, as well as, NF-kB, NFAT/AP-1, and
IL-2 transcription are reduced (Hayashi and
Altman 2006). As CD28 has the ability to mod-
ulate the cytoskeletal components, Rho (Kaga
et al. 1998) SLP76, Rac1 (Michel et al. 2000;
Raab et al. 2001), and PKCu (Villalba et al.
2000a) in a Vav-dependent mechanism (Villalba
et al. 2000b) and Vav has been shown to enable
the TCR/CD3 complex to cluster (Fischer et al.
1998; Holsinger et al. 1998; Krawczyk et al.
2002), a CD28-dependent molecular signaling
scaffold may be postulated at the immunologi-
cal synapse. CD28 is tethered to the lipid raft
via binding of filamin-A (Tavano et al. 2006)
where CD28, through the YMNM motif,
recruits PKCu via PI3K activation (Sanchez-
Lockhart et al. 2008). Thus, CD28 actin rear-
rangement functions through the binding of
filamin-A, the downstream activation of Vav
and PKCu and the Vav effectors CDC42 and
Rho-GTPases (Tavano et al. 2006). These data
predict the movement of CD28 to the immuno-
logical synapse occurs before the majority of
signaling events, through its PYAP motif, and
is critical for CD28’s ability to function.

After the PYAP motif has recruited CD28
to the immunological synapse, the binding of
PI3K to the YMNM motif also modulates
CD28 receptor mediated endocytosis. CD28
undergoes internalization, an event that requires
the YMNM motif and binding of PI3K, which
results in degradation via the lysosome or a recy-
cling back to the cell surface (Cefai et al. 1998).
CD28 internalization also requires the recruit-
ment of WASP, via its SH3 domain, and a sort-
ing nexin (SNX9) (Snapper and Rosen 1999;
Badour et al. 2007). An SNX9 mutant that lacks
the phagocyte oxidase homology (PX) domain
that interacts with the p85 subunit of PI3K and
PIP3 failed to induce CD28 internalization
and NFAT transcription, whereas the overex-
pression of SNX9 increased these processes
(Badour et al. 2007). These results indicate that

CD28 recruitment and signaling is functionally
linked to the active signaling environment of the
immunological synapse.

CD28 ENHANCES T-CELL SURVIVAL

A major consequence of CD28 signaling is pro-
tection from cell death (Boise et al. 1995; Noel
et al. 1996; Radvanyi et al. 1996; Sperling et al.
1996). The two dominant pathways of apopto-
sis in T cells are (1) receptor mediated (i.e.,
TNF family) or (2) mitochondrial-associated
proteins (i.e., the Bcl family) both of which
are modulated via CD28 signaling (Rudd et al.
2009). CD28 costimulation prevents activation
induced cell death (AICD) by inhibiting the
expression of CD95L expression (cis mediated
death) on the T cell and by decreasing the for-
mation of the death inducing signaling complex
(DISC) (Kirchhoff et al. 2000). CD28 stimula-
tion increases the protein expression of c-FLIPs
which compete with procaspase 8 for binding to
the death domains of CD95 and FADD thereby
preventing the conversion of procaspase 8 to
active caspase 8 and the induction of cell death
(Kirchhoff et al. 2000). CD28-deficient cells are
more sensitive to Fas-mediated cell death, which
could be reversed by the overexpression of PKB
(Jones et al. 2002). The overexpression of PKB
prevented the binding and downstream conver-
sion of procaspase 8 to caspase 8 through inhib-
ition of the DISC complex (Jones et al. 2002).
CD28 also enhances targets of glycolysis, inclu-
ding Glut1 expression and glucose uptake, all
required for increased metabolism during cellu-
lar proliferation through the activation of PKB
(Frauwirth et al. 2002).

CD28 stimulation also induces the up-regu-
lation of antiapoptotic factors including Bcl-XL

(Boise et al. 1995). The overexpression of Bcl-XL

in CD28-deficient mice restores cellular survival
but not proliferation (Dahl et al. 2000); thereby,
separating these two CD28-dependent func-
tions. Bcl-XL, an NF-kB inducible gene, requi-
res CD28-dependent IKK activation through
the activation of PKCu and formation of the
CARMA-1, Bcl10, and MALT1 complex (Wang
et al. 2002; Hara et al. 2003; Jun et al. 2003;
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Wang et al. 2004; Tanner et al. 2007; Takeda et al.
2008). CD28-deficient mice reconstituted with a
disrupted YMNM motif failed to induce Bcl-XL

whereas CD28-deficient mice reconstituted
with disrupted proline rich motifs of CD28
retained the capacity to induce Bcl-XL (Burr
et al. 2001b; Harada et al. 2001; Okkenhaug
et al. 2001). The overexpression of PKB led to
constitutively elevated amounts of Bcl-XL pro-
tein and inhibited FAS mediated apoptosis
(Jones et al. 2000; Jones et al. 2002). These
data suggested a central role for the YMNM
motif, via PKB activation, in the regulation of
cell survival by CD28. These results held true
until the generation and analysis of CD28 kno-
ckin mice, which surprisingly indicated that nei-
ther mutation in the YMNM or PYAP motifs
alone prevented CD28-dependent up-regula-
tion of Bcl-XL (Dodson et al. 2009). However,
the expression of Bcl-XL is dependent on both
PKCu and NF-kB activation, events that are
regulated by CD28 and may not be exclusively
downstream of the YMNM motif (Khoshnan
et al. 2000; Marinari et al. 2004; Li et al. 2005;
Manicassamy et al. 2006).

CD28 REGULATES T-CELL SUBTYPE
DEVELOPMENT AND DIFFERENTIATION

Although the peripheral T-cell repertoire is not
markedly altered in the absence of CD28, a role
in negative selection has been suggested (Shahi-
nian et al. 1993b; Lucas et al. 1995; Sperling et al.
1996; Noel et al. 1998). However a more dra-
matic phenotype has been uncovered with the
identification of regulatory T cells (Tregs)
(Boden et al. 2003; Tang et al. 2003; Tai et al.
2005; Guo et al. 2008). CD28-deficient mice
have drastically reduced numbers of thymically
derived Tregs (Salomon et al. 2000; Tang et al.
2003; Lohr et al. 2004; Tai et al. 2005). CD28
could contribute to Treg development enhanc-
ing IL-2 production (Guo et al. 2008) or by a
cell intrinsic mechanism (Tai et al. 2005; Tao
et al. 2005). However, the failure of wild-type
cells to support the generation of CD28-defi-
cient Tregs suggests that exogenous IL-2 is
not sufficient in the absence of other CD28-

dependent signals (Tai et al. 2005). Additional
data recently obtained using the knockin mice
supports that CD28, partially via the distal
carboxy-terminal proline motif, provides an
intrinsic signal necessary for the generation of
cytokine responsive Treg precursors (C Lio, C
Hsieh, and J Green, unpublished data).

As the differentiation of T cells into distinc-
tive populations (TH0, TFh, TH1, TH2, and
TH17) are defined in part by their cytokine
secretion profiles, a role for CD28 in the gener-
ation and maintenance of these populations has
been implicated. Although CD28 regulates mu-
ltiple cytokines, it is neither absolutely required
nor sufficient for the generation of any distinct
T-cell subset. CD28 is important for TH2 gener-
ation but not the secretion of TH2 cytokines
(King et al. 1995; Rulifson et al. 1997); however,
TH1 generation does not require CD28 but the
secretion of IL-2 by these cells requires CD28
(Shahinian et al. 1993a; Lucas et al. 1995; Ville-
gas et al. 1999). Transgenic overexpression of
PKB in CD28-deficient mice restored the pro-
duction of IL-2 and IFN-g but not IL-4 and
IL-5 the cytokines required for the generation
of TH2 cells (Kane et al. 2001). CD28-deficient
mice show a defect in IL-4 production on recep-
tor stimulation, which is partially restored
by the overexpression of PDK1 (Andres et al.
2004b; Nirula et al. 2006). Although PDK1 is
an upstream activator of PKB, in this case
PDK1 was determined to be dependent on
PKA and NFAT (Nirula et al. 2006). CD28-defi-
cient and IL-4 deficient mice fail to induce ger-
minal center formation and upregulation of
CD40L in an Ova model of stimulation (Reiter
and Pfeffer 2002). Interestingly, AYAA knockin
mice also have defects in IL-4 production, ger-
minal center formation, and decreased activa-
tion of PDK1 (Friend et al. 2006; Dodson
et al. 2009). These data illustrate the complex
role of the YMNM and PYAP motifs in the acti-
vation of PKB and PKA in TH2 type T cells and
in the secondary immune response.

The development of a specialized cell type
called NKT cells, as characterized by the ex-
pression of both a T-cell marker, invariant
TCR (Va14-Jb18), and an NK marker (NK1.1)
that respond to glycolipid a-galactosylceramide
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when presented by CD1d, is also dependent on
CD28 signals (Williams et al. 2008). Through
the use of CD28-deficient and B7-deficient
mice, a distinctive role of CD28 in the thymic
generation of these NKT cells was identified,
as the absence of either CD28 or its ligand B7
resulted in severely decreased numbers of
NKT cells (Williams et al. 2008). Paradoxically,
the overexpression of B71 in the thymus of
transgenic mice also resulted in decreased
NKT cells (Williams et al. 2008). These results
suggest that not only the presence of CD28
but the strength of signaling through CD28
coordinate in the development and differentia-
tion of cell types.

THE ROLE OF CD28 COSTIMULATION
IN DISEASE

Perhaps surprisingly, mutations in CD28 have
not been identified as the genetic basis for any
human disease. However, mouse models of dis-
ease have been shown to depend on CD28 func-
tion. The use of CD28- and B7-deficient cells
has implicated this pathway in the generation
of a TH2 response required for the destruction
of islet cells (autoimmune diabetes in the
NOD mouse model) (Lenschow et al. 1996)
and in the activation of newly recruited T cells
responsible for epitope spreading (relapsing
EAE in the EAE mouse model) (Miller et al.
1995). CD28 has been shown to be required in
a model of allergic airway inflammation (Harris
et al. 1997a; Harris et al. 1997b; Keane-Myers
et al. 1997; Mathur et al. 1999; Burr et al.
2001a). A variety of transplantation studies
showed that a lack of CD28 could prolong graft
acceptance, but in most cases the organs were
eventually rejected (Turka et al. 1992; Sayegh
and Turka 1998; Harada et al. 2001). However,
when combined with blockade of CD40:CD40L
interactions, indefinite graft acceptance was
achieved (Larsen et al. 1996).

Examination of the role for the specific
motifs of CD28 in disease models are limited;
however, the PYAP motif was important in a
model of autoimmune disease using CTLA-4-
deficient mice (Tai et al. 2007), a functional

YMNM motif is needed to generate a graft ver-
sus host response (Harada et al. 2001) whereas
disease severity in experimental allergic ence-
phalomyelitis is reduced in CD28-deficient
mice and the CD28-AYAA knockin mice, but
not the CD28-Y170F knockin mice (Friend
et al. 2006; Dodson et al. 2009). In the absence
of CD28 or in the CD28-AYAA knockin mice,
antibody production and germinal center for-
mation is markedly reduced (Friend et al.
2006; Dodson et al. 2009). Thus, in a number
of model systems, CD28 plays a critical role.

An understanding of costimulation, and
the mechanism by which it regulates immune
responses provides new avenues for the devel-
opment of therapeutics. As CD28 decreases
the threshold required to activate naı̈ve T cells,
as well as increasing the survival of activated T
cells, one can envision development of drugs
that either potentiate or down-regulate an im-
mune response. Although global inhibition of
CD28 function would be anticipated to pro-
foundly inhibit T-cell function, more specific
targeting of specific regions of the extracellular
or intracellular regions of CD28 (i.e., the B7
binding domain or the signaling motifs
YMNM or PYAP) via antibodies, small mole-
cule mimetics or siRNAs could potentially alter
some aspects of CD28 effects whereas leaving
others intact. This is beginning to be realized
with the approval and marketing of a hu-
manized version of CTLA4Ig (abatacept,
OrenciaTM) for the treatment of rheumatoid
arthritis in adults and Stills disease in children
(Genovese et al. 2005) and is being explored
for other conditions (Linsley and Nadler 2009;
Podojil and Miller 2009). Second generation
agents have shown promise in the prevention
of transplant rejection (Vincenti et al. 2005).
The potential for the manipulation of costimu-
latory signals as an approach for cancer immu-
notherapy is currently an area of active study
(Waldmann and Morris 2006). Although the
exact mechanism of action of CTLA4Ig and
related compounds is not fully understood these
agents have promise for providing greater spe-
cificity in the manipulation of the immune
response with less toxicity than many currently
used drugs.
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