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protein receptor (BMPR) in the osteogenic differentiation of rat bone marrow
stromal cells in osteogenic medium (OM) with or without BMP-2. Materials and
Methods: BMSCs were harvested from rats and cultured in OM containing dexa-
methasone, 3-glycerophosphate, and ascorbic acid, with or without BMP-2 in order
to induce osteogenic differentiation. The alkaline phosphatase (ALP) activity assay
and von kossa staining were used to assess the osteogenic differentiation of the

*These authors contributed equally to this BMSCs. BMPR mRNA expression was assessed using reverse transcription-

work. polymerase chain reaction (RT-PCR). Results: The BMSCs that underwent osteo-

genic differentiation in OM showed a higher level of ALP activity and matrix mine-
- The authors have no financial conflicts of ralization. BMP-2 alone induced a low level of ALP activity and matrix mineraliza-
interest. tion in BMSCs, but enhanced the osteogenic differentiation of BMSCs when com-

bined with OM. The OM significantly induced the expression of type IA receptor of
BMPR (BMPRIA) and type II receptor of BMPR (BMPRII) in BMSCs after three
days of stimulation, while BMP-2 significantly induced BMPRIA and BMPRII in
BMSCs after nine or six days of stimulation, respectively. Conclusion: BMSCs
commit to osteoblastic differentiation in OM, which is enhanced by BMP-2. In
addition, BMP signaling through BMPRIA and BMPRII regulates the osteogenic
differentiation of rat BMSCs in OM with or without BMP-2.
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INTRODUCTION

Successful outcomes for bone fracture repair, alveolar ridge augmentation, dental
© Copyright: implants, and craniofacial surgery require formation of new bone. Efficient bone
Yolns_e' University 00”89? of Mefj'c'”e 2010 formation in adults relies on the recruitment of osteoblast precursors to the site,
This is an Open Access article distributed under the g1} 1e by osteoblast maturation, matrix deposition, and mineralization. A mul-
terms of the Creative Commons Attribution Non- ) )

Commercial License (http://creativecommons.org/  titude of studies have shown that bone marrow stromal stem cells (BMSCs) have
licenses/by-nc/3.0) which permits unrestricted non-  the potential to differentiate into osteogenic lineages by the addition of various

commercial use, distribution, and reproduction in any X . K . i . .
medium, provided the original work is properly cited.  induction factors to their growth medium.'* Dexamethasone, ascorbic acid, and -
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glycerophosphate are the most popular induction factors.'?
Other agents, such as bone morphogenetic protein-2 (BMP-
2), are also known to play an important role in the bone
healing process and in enhancing therapeutic efficacy.””

Several signaling pathways have been shown to regulate
the lineage commitment and terminal differentiation of
BMSCs. It is important to understand the molecular mecha-
nism of BMSC differentiation, as this knowledge could aid
in our understanding of the pathogenesis of skeletal
diseases and may lead to the development of strategies for
regenerative medicine.* BMP signaling is initiated by the
binding of extracellular BMPs to heterodimeric BMP
receptors (BMPR), resulting in BMPR type II receptor
(BMPRII)-mediated activation of the BMPR type I recep-
tor (BMPRI), which, in turn, causes the phos-phorylation
and activation of intracellular Smad signaling molecules.’
Accumulating evidence suggests that specific signaling
through BMPR type IA receptors (BMPRIA) has impor-
tant effects on the process of skeletogenesis both in vitro
and in vivo."""* Kaps, et al.” found that BMPR-IA is res-
ponsible for the initiation of the osteogenic, as well as the
chondrogenic, development in mesenchymal progenitors
C3H10T1/2. Furthermore, BMPR-IA mRNA was highly
expressed in the BMP-induced bone forming tissues in a
study performed by Takeda, et al.*

In order to determine the role of BMPR in the osteogenic
differentiation of BMSCs, BMSCs were harvested from rats
and were cultured in osteogenic medium containing dexa-
methasone, [-glycerophosphate, and ascorbic acid, with or
without BMP-2, in order to induce osteogenic differen-
tiation. The alkaline phosphatase activity assay and von
kossa staining were used to assess the differentiation of the
BMSCs. BMPR mRNA expression was assessed using
reverse transcription-polymerase chain reaction (RT-PCR).

MATERIALS AND METHODS

Bone marrow stromal cell isolation

BMSCs were harvested from the femurs and tibias of 6-
week-old male Wistar rats, using protocols approved by
the Ethics Committee for Animal Experiments of Sun Yat-
sen University. Briefly, bones were aseptically excised
from the hind limbs of the rats. The bone marrow was then
flushed from the shaft and spun down at 800 rpm for 5
min. The pellet was resuspended in fresh control medium
(CM) and then seeded into dishes. On the third day after
seeding, the cells were rinsed with phosphate buffer saline
(PBS) (pH 7.2-7.4), and adherent cells were replated. These
first passage cultures were used for all experiments and
cultured in four different media conditions, including CM,
10 ng/mL BMP-2 (Peprotech, Rocky Hill, NJ, USA) (ac-

cording to the concentration reported by Weston, et al.”),
osteogenic medium (OM), or OM with BMP-2. The
medium was changed every two days. CM consisted of
aMEM supplemented with 10% fetal calf serum (Hyclone,
Logan, UT, USA), 100 U/mL penicillin, 100 U/mL strep-
tomycin, and 100 U/mL amphotericin B (Sigma, St. Louis,
MO, USA). OM was identical to CM, but was supple-
mented with 10 mM f-glycerophosphate, 50 mg/mL L-
ascorbic acid, and 0.1 uM dexamethasone (Sigma, St.
Louis, MO, USA) (according to the concentration reported
by Deliloglu-Gurhan, et al.'). We added osteogenic sup-
plements to marrow-derived cells early in the culture, a
time which had been shown to not inhibit proliferation and
to greatly enhance the osteoblastic phenotype of cells in a
rat model."”

Proliferation assay

To determine proliferation, BMSCs were plated at 2,000
cells per well (6-well) in triplicate and treated as indicated
above. The medium was changed every two days. Cells
were counted every other day using a Coulter counter (Beck-
manCoulter, Hialeah, FL, USA). The number of cells was
determined after staining with trypan blue to exclude dead
cells.

Alkaline phosphatase (ALP) activity assay

Alkaline phosphatase (ALP) assays were performed using
a Sigma-Aldrich diagnostic kit. BMSCs were cultured as
indicated above, and cells were harvested at three, six, and
nine days by trypsinization and lysed with a radio-immune
precipitation assay (RIPA) lysis buffer (Santa Cruz Bio-
technology, Santa Cruz, CA, USA). The cell lysates were
then mixed with an assay mixture containing p-nitrophenyl
phosphate and incubated at 37°C for 30 min, at which time
the reaction was stopped by the addition of 0.4 M NaOH.
After incubation, the amount of p-nitrophenol released by
the reaction was measured with a spectrophotometer at
410 nm. All values were normalized against the cell
number. Histochemical assays of ALP (Kaplow assay)
were performed after nine days of culture. Briefly, cells
were washed with PBS (pH 7.4), dried, and fixed in ice-
cold methanol at room temperature for 30 sec. Fixed cells
were incubated for 10 min at 37°C in ALP incubating
medium and then counterstained in hematoxylin for 5 min.

Von kossa staining

Mineralization of the extracellular matrices was demons-
trated at 21 days of culture by the von kossa technique.
Briefly, cell layers were washed with PBS, fixed in cold
methanol, immersed in a solution of 2% AgNO:s, and
exposed to bright sunlight for 30 min. A black color, indica-
ting the presence of phosphate, was visualized by develop-
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ing the samples in a 5% sodium thiosulfate bath for 10 min.

Isolation of total RNA and RT-PCR analysis
It has been previously reported that BMSCs differentiate
seven days after OM.'® Therefore, we detected BMP recep-
tors by RT-PCR at three, six, and nine days after OM
stimulation. Treated cells were harvested, and total RNA
was extracted using an RNeasy mini kit (Qiagen, Valencia,
CA, USA) according to the manufacturer’s instructions.
RT-PCR was performed using one-step RT-PCR assays
(Qiagen). Specific primers for detecting mRNA transcripts
of the BMPRIA, BMPRII, and glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) genes are as shown here:
BMPRIA
Forward: 5 -gtattgtcgccatgatcgtct-3'; Reverse: 5'-cttctccata
ccggectttac-3°
BMPRII
Forward: 5’ -agaaatcaaaaggggacatcaat-3'; Reverse: 5 -cat
aaggcgactatcaaaacagc-3’
GAPDH
Forward: 5’ -tgctgagtatgtcgtggagtct-3"; Reverse: 5 -acagtct
tctgagtggcagtga-3°

RT-PCR products were resolved by agarose gel electro-
phoresis. Signal intensity was quantified by image-analysis
computer software (NIH Image J, NY, USA). Transcripts
were normalized to GAPDH transcript levels, and the
relative mRNA level was depicted as the ratio of the density
of the detected genes to GAPDH at the same time point.

Statistical analysis
In all cases, experiments were replicated in triplicate. Data
were reported as mean + standard deviation (SD). Statis-
tical analyses were performed using a one-way ANOVA
(analysis of variance). A p value < 0.05 was considered sta-
tistically significant.

RESULTS

Proliferation of BMSC in osteogenic medium with or
without BMP-2

The proliferation assay was performed using four different
media conditions, including CM, BMP-2, OM, and OM +
BMP-2. Cell numbers increased six- to ten-fold under all
four conditions after two weeks of culture. Although cell
numbers for these four groups were not significantly different
(p > 0.05), the osteogenic medium with or without BMP-2
slightly inhibited the proliferation of BMSCs (Fig. 1).

ALP activity of BMSC in osteogenic medium with or
without BMIP-2
Because a high level of ALP activity is considered a hall-

mark of the osteogenic phenotype, we evaluated the ALP
activity of rat BMSCs cultures. As expected, OM-stimulated
ALP activity was time-dependent. ALP activity in the OM
group was significantly higher than that of the CM group
after more than six days of treatment (p < 0.05) (Fig. 2A).
Cells grown in OM showed a more than 11-fold increase
in ALP activity as compared to cells grown in CM after
nine days of OM stimulation. Although BMP-2 induced
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Fig. 1. Proliferation of BMSCs in osteogenic medium with or without BMP-2.
Proliferation profiles of BMISCs cultured for 14 d in the presence of OM with or
without BMP-2 were obtained. Although the cell numbers in these four groups
were not significantly different (p> 0.05), cell growth was slightly inhibited in the
presence of OM with or without BMP-2. CM, control medium; OM, osteogenic
medium; BMSCs, bone marrow stromal cells; BMP-2, bone morphogenetic
protein-2.
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Fig. 2. ALP activity of BMSCs in osteogenic medium with or without BMP-2. (A)
BMSCs were treated with CM or OM with or without BIVIP-2. ALP activity (mean
+ SD) was determined on days 3, 6, and 9. *Compared with CM at the same time
point, p < 0.05. "Compared with BMP-2 at the same time point, p < 0.05. *Com-
pared with OM at the same time point, p < 0.05. (B) A visible red-brown
precipitate indicates ALP activity in enzyme histochemistry. The activity of
cellular ALP was higher after the BMSCs were cultured in OM with or without
BMP-2 as compared to CM (x200). CM, control medium; OM, osteogenic
medium; ALP, alkaline phosphatase; BMSCs, bone marrow stromal cells; BMP-
2, bone morphogenetic protein-2.
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the expression of ALP in BMSCs, a significant difference
between BMP-2 and CM was not found until 9 days after
the initial stimulation (p < 0.05). The level of ALP was
higher after treatment with the osteogenic medium with
BMP-2 than without BMP-2, but the difference was signi-
ficant only after 9 days of stimulation (p < 0.05).

ALP activity produced a visible red-brown precipitate
when examined by enzymatic histochemistry (Fig. 2B).
The ALP activity of BMSCs was more pronounced in
cells cultured in OM with or without BMP-2 as compared
to the CM group.

Matrix mineralization of BMSCs in osteogenic
medium with or without BMP-2
BMSCs were examined for their ability to undergo matrix

BMP-2 &

mineralization when cultured in OM with or without
BMP-2 using von kossa staining (Fig. 3). BMSCs showed
a high level of matrix mineralization when cultured in the
presence of OM with or without BMP-2. BMSCs did not
show any matrix mineralization when cultured in CM, and
a low level of matrix mineralization was found in the pre-
sence of BMP-2

mRNA expression of the BMP receptor during BMSC
differentiation

Because BMP signaling has been shown to promote the
osteoblastic differentiation of BMSCs, BMP receptors
were assessed by RT-PCR during BMSC differentiation.
As shown in Fig. 4, the expression levels of BMPR-IA in
OM with or without BMP-2 were significantly higher than

Fig. 3. Matrix mineralization of BMSCs in osteogenic medium with or without BMP-2. Von kossa staining of BMISCs was performed. BMSCs
showed a high level of matrix mineralization when cultured in the presence of OM with or without BMP-2. No matrix mineralization was observed
in cells cultured in the control medium. A low level of matrix mineralization was found in cells cuttured in the presence of BMP-2 ( < 100). BMP-2,
bone morphogenetic protein-2; OM, osteogenic medium; BMSCs, bone marrow stromal cells.
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Fig. 4. mRNA expression of the BMP receptor in BMISCs. BMSCs were treated with CM or OM with or without BMP-2. mRNA was extracted from
cells on day 3, 6, and 9 and analyzed by RT-PCR. GADPH mRNA was used as an internal control to normalize the amount of RNA. The relative
expression level of MRNA was depicted as the ratio of the density of mMRNA to GADPH mRNA at the same time point. The results correspond to a
representative of three experiments. RT-PCR analysis revealed that the osteogenic medium significantly induced BMPR-IA and BMPRII expression
in BMSCs after three days of stimulation, while BMP-2 significantly induced BMPRIA and BMPRII in BMSCs after nine or six days of stimulation,
respectively. *Compared with CM at the same time point, p< 0.05. ' Compared with BMP-2 at the same time point, p< 0.05. CM, control medium; OM,
osteogenic medium; BMP-2, bone morphogenetic protein-2; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; BMPRIA, type 1A receptor of
BMPR; BMPRII, type Il receptor of BMPR; RT-PCR, reverse transcription-polymerase chain reaction; BMSCs, bone marrow stromal cells.
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CM or BMP-2 at three or six days of stimulation (p < 0.05).
No difference was found between the CM and BMP-2
groups. Nine days after stimulation, the level of BMPRIA
mRNA was continuously induced in OM with or without
BMP-2 (p < 0.05). The expression of BMPRIA signifi-
cantly increased in the BMP-2 groups as compared to the
other three groups at nine days of stimulation (p < 0.05).

BMPRII mRNA expression in BMSCs was significantly
induced in OM with or without BMP-2 as compared to
CM after more than three days of treatment. Moreover,
after more than six days of treatment, BMP-2 also signifi-
cantly induced the expression of BMPRII as compared to
CM (p <0.05).

DISCUSSION

Bone marrow-derived cells can be encouraged to follow
one of several possible lineages through the addition of
various induction factors to their growth medium. Thus,
variations in medium components have differing effects in
inducing osteogenic differentiation of mesenchymal stem
cells derived from bone marrow. Osteoblastic differentia-
tion is characterized by ALP expression and matrix mine-
ralization. The importance of ALP in bone formation
resides in its ability to regulate the mineralization of the
bone matrix."*"” ALP serves as a useful marker of early
osteogenesis and usually increases by the end of the first
week of BMSC culture.” Previous studies have proven
that media containing dexamethasone, ascorbic acid, and
[-glycerophosphate has an effect on the osteogenic dif-
ferentiation of BMSCs.'*'™' In our study, we also found
that OM-stimulated ALP activity was time-dependent and
significantly higher than that of the CM group by the end
of the first week of culture. An 11-fold increase in ALP
activity was found at nine days of OM stimulation as com-
pared to CM stimulation. Similar to other reports,*'” cells
grown in a control medium also produced a slightly ALP
activity, which may be related to cellular differentiation
occurring in the control medium. The ability of BMSCs to
undergo matrix mineralization can be detected by von
kossa staining. In our study, BMSCs showed a high level
of matrix mineralization when cultured in the presence of
OM, while BMSCs did not show any matrix mineraliza-
tion when cultured in CM.

Many studies have demonstrated that osteogenic dif-
ferentiation is regulated by a complex network of multiple
BMPs and that BMP-2 was a central regulator in this
network.” Previous studies™*** indicated that BMSCs
treated with BMP-2 or transfected with BMP-2 cDNA will
commit to osteogenic differentiation. Nishii, et al.” found
that BMP-2-stimulated ALP activity was dose- and time-

dependent in TBR31-2 cells (a bone marrow stromal cell
line). Similar to the Hu, et al.” study, which found that ALP
activity in MSCs cultured with BMP-2 for 14 and 28 days
elevated two- to five-fold, we found that BMP-2 induced
the expression of ALP in BMSCs and that ALP activity was
elevated 1.5-fold after nine days of stimulation. Although
ALP activity and matrix mineralization was lower in BMP-
2-induced cells than that of OM induced cells, we found
that the level of ALP activity and matrix mineralization was
augmented after the combination of BMP-2 with the osteo-
genic medium. Taken together, these results suggest that
the osteogenic medium has a strong effect on committing
BMSCs to osteoblastic differentiation. BMP-2-induced
BMSC differentiation was weak and slow, but BMP-2 was
able to enhance BMSC differentiation when combined with
the osteogenic medium.

BMP signaling in BMSC differentiation and prolife-
ration has been investigated in many studies.”**® Previous
studies®”® have suggested that BMP signaling through
BMPRIA promotes adipogenesis of mouse adipose-deriv-
ed adult stromal cells. Skillington, et al.* provided evidence
that BMPRIA and BMPRIB, in combination with BMPRII,
exert similar effects on the osteoblast differentiation of
BMSCs.* However, many other researchers sug- gested
that BMPRIA is responsible for the initiation of the osteo-
genic differentiation.”"*" In our study, we found that the
osteogenic medium with or without BMP-2 significantly
induced the expression of BMPRIA and BMPRII at the
early stage of differentiation (after three days of stimula-
tion), while BMP-2 induced the expression of these two
receptors in later stages. The expression of BMPRIA and
BMPRII was significantly activated by BMP-2 at nine or
six days of stimulation, respectively. This result may ex-
plain why BMP-2 weakly and slowly induced ALP activity
and matrix mineralization compared to the osteogenic
medium. From our data, we can presume that the osteo-
genic medium and BMP-2 induced the expression of
BMPRII and subsequently BMPRIA, resulting in the initia-
tion of BMP signaling and the osteogenic differentiation of
BMSCs.

In conclusion, we demonstrated that BMSCs commit to
osteoblastic differentiation in the osteogenic medium, and
this event is enhanced by BMP-2. BMP signaling through
BMPRIA and BMPRII regulates the osteogenic differen-
tiation of rat bone marrow stromal cells in the osteogenic
medium with or without BMP-2.
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