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Abstract
Sensorimotor deficits affecting voice and swallowing ability can have a devastating impact on the
quality of life of people with Parkinson disease (PD). Recent scientific findings in animal models
of PD pinpoint targeted exercise therapy as a potential treatment to reduce neurochemical loss and
decrease parkinsonian symptoms. Although there may be beneficial effects, targeted exercise
therapy is not a standard component of therapy for the cranial sensiromotor deficits seen in PD. In
this paper we review the scientific evidence for targeted training for voice and swallowing deficits.
The literature search revealed 19 publications that included targeted training for voice and only
one publication that included targeted training for swallowing. We summarize 3 main findings: 1)
targeted training may be associated with lasting changes in voice behavior, 2) targeted training of
sensorimotor actions with anatomical or functional overlap with voice and swallowing may
improve voice and swallowing to some degree, but it is unknown whether these effects endure
over time, and 3) evidence regarding cranial sensorimotor interventions for Parkinson disease is
sparse. We concluded that targeted training for voice and swallow is a promising but under-
studied intervention for cranial sensorimotor deficits associated with PD and posit that animal
models can be useful in designing empirically based studies that further the science on targeted
training.

Targeted Physical Exercise and Parkinson Disease
The concept of using physical exercise to treat Parkinson disease (PD) is not new. However,
interest in exercise on both research and consumer levels has recently escalated because of
promising new findings from clinical and animal research (Chen et al.,2005; Fisher et al.,
2008; Kurtais et al.,2008; O’Dell et al.,2007; Protas et al.,2005; Toole et al.,2005). In the
animal research arena, rodent models of Parkinson disease have been created using
neurotoxins such as 6-OHDA (6-hydroxydopamine) and MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine). These animal models allow preclinical manipulation of neural and
behavioral signs of PD, as well as environmental and treatment variables in a systematic
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fashion. This review will cover the findings of studies of targeted physical exercise in
human populations for Parkinson disease and discuss clinical implications from animal
models.

We define targeted physical exercise, or targeted training, as the systematic, repeated and
controlled activation of particular groups of muscles for particular sequences of goal-
directed actions. The elicited behavior should closely represent the desired movement
sequence. In other words, if improved motor function is the training goal, then targeted
training may optimally involve activation of muscle groups for the particular movement
sequences required for that function. For Parkinson disease, where a primary neural
substrate is dopamine deficiency within the basal ganglia, the theoretical basis for targeted
training is clear. First and foremost, there is evidence that the basal ganglia are
somatotopically organized, as evidenced by segregation of leg, arm and face areas
(Alexander and DeLong,1985a; Alexander and DeLong,1985b; Crutcher and Delong,1984;
DeLong et al.,1986; Gerardin et al.,2003; Miyachi et al.,2006; Romanelli et al.,2005). As
such, there may be limited expectation that exercise training of muscle groups uninvolved in
the target action will generalize to improved sensorimotor control of the target movement
sequence. Second, the classic motor deficits found in patients with Parkinson disease, such
as poverty of movement, are manifested to different degrees within a particular patient based
on the task performed (Connor and Abbs,1991; Gordon,1998). That is, the context of the
movement matters, even within a prescribed set of muscle activations. If degree of motor
impairment is variable based on task, as has been shown empirically, (Connor and Abbs,
1991) it follows that a particular task should be used in therapy to encourage improved
performance of that task.

Importantly, animal studies have suggested that use of targeted training may reverse or slow
disease progression (Anstrom et al.,2007; Cohen et al.,2003; Smith and Zigmond,2003;
Tillerson et al.,2001). For example, in unilateral 6-OHDA models, rats show deficits in
forelimb use (Allred et al.,2008; Calne and Zigmond,1991; Schallert et al.,2000) but forced
use of an impaired forelimb yields behavioral sparing of that limb and may prevent the
degeneration of dopaminergic neurons when training is initiated before or early enough after
introduction of the neurotoxin (Anstrom et al.,2007; Cohen et al.,2003; Tillerson et al.,
2001). However, if initiation of intervention is delayed by 7 days, then the effect is not
apparent or as robust (Tillerson et al.,2001; Tillerson et al.,2002). Thus, since this behavior
(forelimb use) is vulnerable to altering dopaminergic synaptic transmission and is rescued
by targeted training, it seems reasonable that targeted training may involve enhanced activity
of dopamine or related systems.

The benefit of targeted training has been demonstrated in the appendicular system of
humans. (Dibble et al.,2006; Farley and Koshland,2005) These training regiments
incorporated multiple repetitions, a focus on intensity of movement, and complexity of
tasks, as these elements contribute to neuroplasticity and brain reorganization in animal
models of PD. (Fisher et al.,2004) Specifically, Farley and Koshland, 2005 found that multi-
repetition, high amplitude reach training increased arm reach amplitude and speed in PD
subjects. This evidence suggests that targeted training is a promising treatment of Parkinson
disease in humans.

In general, exercise has been shown to improve motor performance (Miyai et al.,2000;
Sunvisson et al.,1997), to increase daily activity (Miyai et al.,2000), and to decrease
mortality.(Kuroda et al.,1992) Regular exercise may even delay the appearance of
parkinsonian features in people diagnosed with PD(de Goede et al.,2001; Tsai et al.,2002).
However, given the potentially beneficial effects of regular exercise on PD, it may seem
surprising that exercise is not a standard component of therapy for PD. Of course, controlled
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studies should be carried out to confirm and determine optimal treatment strategies. Studies
have shown that persons with PD actually reduce their level of physical activity, and only
12-15% of diagnosed individuals with PD are referred to physical therapy for an exercise
intervention (Goodwin et al.,2008; Thacker et al.,2008). Further, deficits involving the
cranial sensorimotor system (i.e.,. swallowing, facial expression, voice, and/or speech
production) have a devastating impact on quality of life, yet only 3-4% of people with PD
receive treatment from a speech-language pathologist (Trail et al.,2005). Perhaps this is
because specifics on how to exercise the cranial sensorimotor systems to treat the myriad of
symptoms affecting voice and swallow with PD is under-studied. Accordingly, in this paper
we review the scientific evidence for targeted training in the cranial sensorimotor system
with regard to treatment of voice and swallow deficits.

Systematic Review of the Clinical Literature Concerning Targeted Therapy
To identify relevant articles for inclusion in this review, a comprehensive search was
undertaken involving four electronic databases: Pubmed (1980 to June 2009); Cinahl (1982
to June 2009); Web of Knowledge (1965 to June 2009); and Cochrane Library (1980- to
June 2009). The following keywords were used in combinations: Parkinson’s disease,
Parkinson’s disorder, swallowing, deglutition, dysphagia, therapy, exercise, exercise
therapy, voice, voice disorder, task-specific, targeted-training, dopamine. Abstracts were
reviewed and papers in English language were retrieved that reported primary research
involving exercise as a treatment intervention of voice and swallow of people with PD. No
restrictions were placed on study design. There were no limitations on disease duration or
disease severity. In addition subjects of all ages were included. As papers were read,
ancestral searching was used by examining reference lists for relevant studies.

A study was included if it met the following criteria: (1) The target population was people
with PD; (2) The effects of an exercise/physical activity on voice and swallow were
evaluated. Examples include Lee Silverman Voice training (LSVT) and swallowing
exercises; (3) The outcomes included at least one of the following measures: phonation time,
vocal intensity, vocal quality, swallow, swallow reflex, and aspiration; and (4) The paper
was available in English. A study was excluded if: (1) The study included other treatment
strategies such as deep brain stimulation and cueing strategies, and (2) The study included
patients with neurological diseases other than PD.

General Findings
The search process identified 20 research articles concerning training therapy for voice and
swallow in PD (Table 1). The following data were summarized: the number, sex and age of
the patients, the state of the disease, the measures used, the kind of intervention used, and
the study’s outcomes. Nineteen of the twenty articles included targeted training therapy for
voice, while five of the nineteen articles also included a non-targeted therapy (i.e.,
respiratory exercise therapy) as a control for voice. However, three articles were identified
as using targeted training therapy for voice and included a swallowing parameter as one the
outcomes (therefore was considered targeted therapy related to swallowing). There was only
one article identified with targeted training for swallowing. Finally, there was one article
that is included in Table 1 that used expiratory muscle training to improve swallowing
outcomes that is also related to swallow training.

Voice Training
Most targeted training in the voice literature pertained to LSVT, with 13 of the 20 articles
using this type of intervention (Baumgartner et al.,2001; Cannito et al.,2008; de Swart et al.,
2003; El Sharkawi et al.,2002; Liotti et al.,2003; Narayana et al.,2009; Ramig et al.,1995;
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Ramig et al.,1996; Ramig et al.,2001a; Ramig et al.,2001b; Sapir et al.,2002; Sapir et al.,
2007; Spielman et al.,2007). Seven of the publications that comprised the 13 total LSVT
articles were based upon two larger studies (Baumgartner et al.,2001; Ramig et al.,1995;
Ramig et al.,1996; Ramig et al.,2001a; Ramig et al.,2001b; Sapir et al.,2002; Sapir et al.,
2007). LSVT uses targeted training of the voice and an intensive therapy paradigm with
multiple repetitions, a focus on intensity of movement, and sensory recalibration of effort of
movement. LSVT leads to increased vocal intensity and improved vocal fold adduction and
measures of respiration (Ramig et al.,1995). Follow-ups to this study demonstrated that
vocal intensity was sustained at 12 and 24-months post treatment (Ramig et al.,1996; Ramig
et al.,2001a). Cerebral blood flow measures show that LSVT causes a shift in cortical
activity to the right hemisphere and which is more representative of a healthy state (Liotti et
al.,2003; Narayana et al.,2009).

Two studies focused on training control of respiration and pitch variations that resulted in
increased vocal intensity (Johnson and Pring,1990), and improvements in vocal quality,
articulation, and intelligibility (Robertson and Thomson,1984). One targeted training
method used a pushing technique to increase effort and therefore increase glottal closure to
produce a louder more resonant voice (de Angelis et al.,1997). This training was effective in
improving laryngeal airflow, valving and increasing vocal intensity during phonation (de
Angelis et al.,1997). However, none of these studies measured functional voice changes or
the duration that therapeutic effects lasted after treatment. From these studies it is unknown
whether the specific targeted training techniques led to functional and long-term
improvement to voice.

Investigations into music therapy, which we considered to be related to voice targeted
training, have found improvements in vocal intensity, maximal sustained phonation, and
intelligibility (Di Benedetto et al.,2009; Haneishi,2001). Voice choral singing therapy
(VCST) increased measures of respiratory volumes and pressures and reduced vocal fatigue
but no significant improvements in functional measures of vocal quality were found.
Therefore, although singing therapy improved respiratory parameters, there was a lack of
transference to improvements in vocal quality. Long-term effects of this type of treatment
were not evaluated.

Respiratory exercise therapy (RET) was the most widely identified targeted training
approach for a subsystem related to voice.(Baumgartner et al.,2001; Ramig et al.,1995;
Ramig et al.,1996; Ramig et al.,2001a; Sapir et al.,2002) Treatment was found to increase
vocal intensity, and maximal sustained vowel phonation.(Ramig et al.,1995) However, the
treatments were not sustained during follow-up at 12 and 24 months.(Ramig et al.,1996;
Ramig et al.,2001a) In addition, RET did not improve functional vocal quality (Baumgartner
et al.,2001; Sapir et al.,2002).

Swallow Training
Studies to determine the effects of swallowing training in patients with PD are sparse (El
Sharkawi et al.,2002; Nagaya et al.,2000; Pitts et al.,2009; Robertson and Thomson,1984).
Specifically, only one article attempted targeted training of swallowing in PD by training
patients for one 20 minute session of 5 different swallow-related exercises and measuring
the duration of time from a visual cue to swallow to the first detected change in muscle
activity in the submental region (Nagaya et al.,2000). A significant decrease in duration was
observed after swallowing training. However, this study did not examine transference of the
behavior to functional tasks or how long the treatment effects lasted.

Three specific methods of targeted training for systems related to swallowing including
respiration, speech and/or voice have been shown to benefit swallowing. Expiratory muscle
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strength training (EMST) improved cough function and measures of airway compromise
(Pitts et al.,2009). Intensive voice treatment (LSVT) led to improvement in oral tongue and
tongue base movement during the swallowing that resulted in improvement in measures of
swallow efficiency (El Sharkawi et al.,2002). In addition, intensive speech therapy led to
improved swallow response time to solid food and liquid (Robertson and Thomson,1984).
Although these treatments targeted different aspects of physiology and did not directly target
swallowing, per se, they recruit many of the same muscles that are involved in swallowing.
Therefore, the positive outcomes can likely be contributed to the recruitment of similar
central and peripheral neural control elements during training. However, it is unknown
whether these related training regimens provide any long-term beneficial effects for
swallowing in PD patients.

Discussion
Our literature search of targeted training for parkinsonian voice and swallow deficits
revealed 3 main findings: 1) targeted training is associated with lasting changes in voice
behavior, 2) targeted training to systems that are related to (subserve or share similar
muscles and nerves) voice and swallowing may improve voice and swallowing to some
degree, but it is unknown whether these effects endure over time, and 3) evidence regarding
cranial sensorimotor interventions for Parkinson disease is sparse. A commonality to the
successful therapeutic interventions found in the review is that they employed task-specific
training in an intensive manner to systems that serve or are related to voice and swallowing.

Targeted training is defined as the activation of a particular group of muscles in a task that
closely represents the desired movement. For voice, training such as LSVT/LOUD employs
voice-targeted tasks which may mediate beneficial transference and long-term carry-over for
improved communication (Ramig et al.,1996; Ramig et al.,2001a). It is likely that the
therapy that most closely resembles the desired behavioral outcome has a greater chance of
transferring to that behavior. For example, when treating a swallowing disorder the most
benefit may occur if the treatment involves targeted training of swallowing rather than an
associated behavior, such as voicing. This concept was demonstrated in a study of
electromyographic signals within a muscle that protects the airway during swallowing (i.e.,
the thyroarytenoid muscle in the larynx) during various tasks: voicing, valsalva, and
swallowing (McCulloch et al.,1996). It is important to note, however, that evaluation of
laryngeal muscle behavior during swallowing was performed in healthy participants and not
part of a training paradigm. The magnitude of thyroarytenoid muscle contraction was the
greatest for swallowing. Thus, the behavior that elicits the most functional closure of the
airway during a swallow, therefore, is a swallow. Perhaps the task-specific target of speech
and voice in LSVT leads to long-term functional changes in communication.

On the other hand, training voice and respiratory muscles also leads to improved swallow
outcomes (Baumgartner et al.,2001; Pitts et al.,2009; Ramig et al.,1996). These findings may
be explained by a “cross-systems” view (McFarland and Tremblay,2006). Muscles of voice
and swallowing share many similar central and peripheral neural control elements as well as
a cross-system interaction with respiratory functions (Kawasaki et al.,1964; McFarland and
Lund,1993) that may interact with the target behavior. The idea of cross-system interactions
is further supported by evidence for the co-occurrence of swallowing and voice/speech
disorders within individuals (Martin and Corlew,1990; Nishio and Niimi,2004). Therefore,
any training that would target one element of an oral-facial-laryngeal system may
theoretically manifest beneficial effects across the entire cranial sensorimotor system. It is
possible that the effects would be more robust if a targeted training paradigm was employed
for swallow-specific tasks. Nevertheless, the findings demonstrate that target-specific
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training to voice, swallowing and/or systems that share or subserve the voice and swallow
sensorimotor systems may be beneficial to parkinsonian deficits.

A question that remains unanswered from this review is how specific does the task need to
be in order to show a positive behavioral change? That is, can exercise be employed in a
general manner or does it need to be task specific? This has been partially addressed in the
limbs with rodent models. In these models, there is some discrepancy as to the benefits on
both brain function and behavioral outcomes with general exercise, such as treadmill
running and environmental enrichment. Some studies show treadmill or wheel running leads
to neurogenesis, angiogenesis, increased neurotrophic factors, and increased levels of
nigrostriatal dopamine (Cohen et al.,2003; Faherty et al.,2005; Mabandla et al.,2004; O’Dell
et al.,2007; Swain et al.,2003; Tillerson et al.,2003; van Praag et al.,2005), improves limb
deficits and can protect against striatal dopamine loss following 6-OHDA lesions. (Cohen et
al.,2003; Smith and Zigmond,2003; Tillerson et al.,2001). However, voluntary running and
combinations of forced and voluntary running have not always shown apparent sparing of
dopamine terminals or nigral tyrosine hydroxylase immunoreactivity even though behavioral
recovery occurred (O’Dell et al.,2007). Thus, exercise can lead to behavioral recovery
without neuroprotection in some instances. Inversely, treadmill running has also been shown
to attenuate dopamine loss in the striatum, while not alleviating the locomotor deficits
(Poulton and Muir,2005). Some of these discrepancies in the literature could be due to
methodological differences, such as the amount and timing of exercise (Gerecke et al.,2010),
but this controversy raises an important point. Perhaps with goal-directed and skilled
movements, targeted training of dopamine-dependent movement may be required for
consistent neuroprotective and positive behavioral outcomes and this may be true for the
cranial sensorimotor system as well.

The body of animal research on exercise and neuroprotective effects suggests that animal
models are an excellent way to examine the effects of targeted training on brain and
behavior outcomes in PD. These models have the potential to be expanded to the
vocalization and swallowing sensorimotor systems. Models of oromotor function have been
used to study limb and oromotor skills in terms of feeding behavior among rat species
(Whishaw et al.,1998) and in a rat model of stroke (Gonzalez and Kolb,2003). Oral and
pharyngeal dysphagia have been assessed in murine models of amyotrophic lateral sclerosis
(Lever et al.,2009). Tongue function associated with aging (Connor et al.,2009) and during
altered dopaminergic synaptic transmission have been examined in rats (Ciucci and Connor,
2009; Fowler and Mortell,1992; Fowler and Das,1994). Unilateral infusions of 6-OHDA to
the medial forebrain bundle leads to deficits in 50-kHz ultrasonic vocalizations (Ciucci et
al.,2007; Clucci et al.,2009) and in the capacity to clear excessive saliva in rats (Schallert et
al.,1978)(Tongue extension, biting strength and fine digit use also can be quantified in rats
using simple and reliable methods (Allred et al.,2008; Whishaw et al.,1981) Thus, methods
are available to test hypotheses regarding the effects of targeted training in animal models
that can be easily translated to human clinical trials given appropriate study design,
execution and careful interpretation of results.

Conclusion
A systematic review of the literature revealed that targeted training for voice and swallow is
a promising but under-studied intervention for cranial sensorimotor deficits associated with
Parkinson disease. Questions remain as to the nature of the exercise (task-specificity) and
how this leads to long-term carry-over to functional tasks. Animal models afford the
opportunity to explore some of the basic questions that remain largely unanswered in the
human literature.
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