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Abstract

Elementary Mode Analysis is a useful Metabolic Pathway Analysis tool to identify the structure of
a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis
can decompose the intricate metabolic network comprised of highly interconnected reactions into
uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can
support steady state operation of cellular metabolism represent independent cellular physiological
states. Such pathway definition provides a rigorous basis to systematically characterize cellular
phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of
cell physiology and implementation of metabolic engineering strategies. This mini-review aims to
overview the development and application of elementary mode analysis as a metabolic pathway
analysis tool in studying cell physiology and as a basis of metabolic engineering.
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Introduction

Recent advances in sequencing technologies have provided gene sequences of many
different organisms (Benson et al. 2008). Bioinformatics tools have facilitated the
reconstruction of cellular metabolism of these organisms based on information encoded in
their genomes (Karp et al. 2007, Caspi et al. 2006, Kanehisa et al. 2008, Duarte et al. 2007).
To understand the phenotypic capabilities of these organisms, it is useful to characterize
cellular metabolism through quantitative analysis of pathway operations.

Computational tools to analyze cellular metabolism have been developed for more than two
decades. Such analysis involves the determination of metabolic fluxes defined by the rates
of enzyme-catalyzed reactions participating in a metabolic network. A metabolic flux vector,
also known as metabolic flux distribution, defines cellular phenotype under a given growth
condition. Depending on the goals of the analysis, these tools can be grouped into three
categories including (i) Metabolic Flux Analysis (Stephanopoulos et al. 1998, Wiechert
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2001), (ii) Flux Balance Analysis (Kauffman et al. 2003, Price et al. 2004, Edwards et al.
1999) and (iii) Metabolic Pathway Analysis (Klamt and Stelling 2003, Schuster and
Hilgetag 1994, Schilling et al. 2000). Even though differences exist in the problem
formulation, these tools are related. They are developed from the same mathematical
principle discussed in detail later in the text. In this mini-review, we focus primarily on
elementary mode analysis which is one of the metabolic pathway analysis tools.

In general, metabolic pathway analysis identifies the topology of cellular metabolism based
on only the stoichiometric structure and thermodynamic constraints of reactions where
kinetic parameters are not explicitly revealed and/or required for the calculations (Reder
1988, Schuster et al. 2002, Clarke 1988). This type of analysis has been successfully applied
to various organisms to investigate metabolic network structure, robustness, fragility,
regulation, metabolic flux vector, and rational strain design (Carlson and Srienc 2004,
Carlson and Srienc 2004, Stelling et al. 2002, Poolman et al. 2004, Price et al. 2003,
Schuster et al. 2000, Wiback et al. 2004, Trinh et al. 2006, Wlaschin et al. 2006, Klamt and
Gilles 2004, Trinh et al. 2008).

This review aims to provide an overview of the history and theory behind metabolic
pathway analysis and in particular elementary mode analysis. After a brief survey of
progress and advances in software and algorithm development for elementary mode
analysis, the interpretations and applications of elementary mode analysis relevant to
genomics, cellular physiology, and metabolic engineering with an emphasis on rational
strain design is highlighted.

History of Metabolic Pathway Analysis

Analysis of structural invariants of a (bio)chemical network has been first applied to
systematically postulate the reaction mechanisms for a system of chemical reactions (Milner
1964). This approach was further generalized for investigating the steady states and
stabilities of the general relationships of dynamical systems that are interconnected through
the reaction stoichiometry (Feinberg and Horn 1974, Clarke 1981). The Stoichiometric
Network Analysis (SNA) based on convex analysis was the pioneering work in this field to
identify “extreme currents” or unique pathways for a system of chemical reactions (Clarke
1988). Since the introduction of this concept, different related approaches with
modifications in problem formulation and with improvements of algorithm implementation
have been proposed and developed for biological systems over the past two decades. One of
the first modified approaches is Elementary Mode Analysis introduced by Schuster in 1994
(Schuster and Hilgetag 1994). Different from the original approach, elementary mode
analysis does not decompose the reversible reactions into two irreversible reactions in
calculating elementary modes (EMs) and introduces a systematic way of extracting
biologically meaningful pathways from an intricate metabolic network. An alternative
approach is Extreme Pathway Analysis (Schilling et al. 2000). This analysis can be
considered as a hybrid between stoichiometric network analysis and elementary mode
analysis. In calculating extreme pathways (ExPas), the analysis splits only the internal
reversible reactions into two irreversible reactions while not decomposing reversible
exchange reactions. A detailed discussion of differences between these two techniques will
be presented in the following theory section. In addition to convex analysis, other
approaches have also been proposed for metabolic pathway analysis to analyze and
synthesize metabolic pathways. For instance, database searching algorithms were developed
to identify pathways to link carbon-carrying metabolites (Seressiotis and Bailey 1988,
Mavrovouniotis et al. 1990). A Petri net theory was also applied to compute possible
pathways that account for the inter-conversion of metabolites in a metabolic network (Koch
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et al. 2005, Mavrovouniotis et al. 1996). A comparison of algorithm differences used in
these techniques has been summarized by Schuster et al. (Schuster et al. 2002).

Theory of analyzing a metabolic network

The theory applied to analyze metabolic networks is developed based on the first principle
of mass conservation of internal metabolites within a system (Reder 1988, Clarke 1981,
Schuster and Schuster 1993). A biological system consists usually of a single cell or a cell
compartment that contains metabolites. These metabolites can be transformed to others
through an intricate metabolic network of enzyme-catalyzed reactions (Roels 1983). For
classification purposes, reactions that transform metabolites within the system can be
considered internal reactions while reactions involving the transport of metabolites in and
out of the system can be considered to be exchange reactions (Schuster and Hilgetag 1994,
Schilling et al. 2000). The general equation to describe the mass conservation of metabolites
in a system of defined volume can be written as

(1)

where C (mol/L) is the concentration vector of m internal metabolites; r(mol/L/hr) is the

reaction rate (flux) vector of n reactions that convert metabolites; § is the stoichiometry
matrix of dimension myn whose elements sj; represents the stoichiometry coefficient of the
element i involved in reaction j; p (1/hr) is the specific dilution rate associated with the
change in volume of the system. For a biological system such as a single cell, the dilution
rate is much slower than the reaction rates that transform metabolites. Therefore, the
contribution of volume change to the concentration changes of metabolites within the
system is considered to be negligible. At steady state, there is no accumulation of internal
metabolites in the system and Equation (1) can be simplified to

- (2

Due to thermodynamic constraints, reactions have to proceed in the appropriate direction.
Some reactions are irreversible and require additional constraints on positive flux values,
that is,

r; > 0. 3)

Figure 1A demonstrates an example of how to formulate the problem for a simple metabolic
network. The network consists of 9 reactions, two of which are reversible, and of 9
metabolites, five of which are internal.

For a cellular metabolism, Equation (2) is typically an underdetermined system where the
number of metabolites is far fewer than the number of reactions. The number of metabolites
defines the number of balance equations in (2) while the number of reactions represents the
number of unknowns in (2). Depending on the invariant structure of the stoichiometric

matrix § and the knowledge of some experimentally measured fluxes (reactions), three main
techniques have been proposed to solve the system of linear equations (2) together with
inequality constraints (3) for metabolic flux vector r. These techniques include Metabolic
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Flux Analysis, Flux Balance Analysis, and Metabolic Pathway Analysis. Their differences
are briefly discussed next and demonstrated in Figure 1.

Metabolic Flux Analysis

Traditional Metabolic Flux Analysis calculates a metabolic flux vector r by solving equation
(2) as follows:

192}

—u L= gm "L )

Equation (4) is derived from Equation (2) where the flux vector is partitioned into the
unmeasurable flux vector r,, and the measurable flux vector ry,. Typically, the stoichiometric
network is simplified or more fluxes are experimentally determined so that the partitioned

matrix S, is invertible so that = —S_' *S_ "Iy can be solved (Stephanopoulos et al. 1998).
This is demonstrated in Figure 1B. Advanced metabolic flux analysis based on 13C labeling
experiments solve Equation (4) iteratively in a more complex computational scheme
(Wiechert 2001) (also see references therein). In general, metabolic flux analysis relies on
extensive experimental data to increase the number of measurable fluxes such that the
unmeasurable flux vector can be calculated. It should be noted that metabolic flux analysis
computes only a metabolic flux vector r for a particular growth condition. A change in
measured fluxes ry, in different growth conditions will result in a different metabolic flux

vector.

Flux Balance Analysis
Flux Balance Analysis is also a tool to determine a metabolic flux vector r of a cellular

physiological state when knowledge of rp, is limited and gu can not be inverted to provide a
unique solution. The approach is based on convex analysis by imposing an objective
function to determine the metabolic flux vector (Kauffman et al. 2003, Price et al. 2004)
(also see references herein) subject to several constraints such as substrate uptake rates, and/
or product secretion rates, thermodynamic constraints, metabolic regulation and so on. For
instance, Figure 1C demonstrates the determination of the metabolic flux vector of a simple
network for the case of maximizing the product P from the sole supply of substrate A. The
key of this approach is to figure out what objective functions likely represent the cellular
metabolism under a given growth condition (Schuetz et al. 2007). Flux balance analysis has
been successfully applied to predict specific growth rates by imposing the constraint that
cells function by maximizing their specific growth rates for given substrate uptake rates
(Edwards et al. 2001). Other frameworks that are also based on optimization strategies such
as MOMA have been proposed to predict metabolic flux vectors of gene knockout mutants
by imposing the constraint that mutants operate by minimizing their metabolic adjustment
with respect to the wildtype (Segre et al. 2002). It should be mentioned that flux balance
analysis identifies only one optimal solution while alternative optimal solutions or
suboptimal solutions can exist. In general, flux balance analysis can calculate metabolic flux
vectors based on limited experimental data and requires specification of objective functions
for cellular metabolism. The more fluxes can be measured, the more accurately the flux
vector can be computationally determined. However, the metabolic flux vector may not be
unique. The approach depends very much on the validity that the formulated objective
function indeed correctly represents the working system. Similar to metabolic flux analysis,
flux balance analysis identifies a single metabolic flux vector under a given growth
condition.
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Metabolic Pathway Analysis

In contrast to the above techniques, metabolic pathway analysis can identify all metabolic
flux vectors that exist in a metabolic network without requiring knowledge of any fixed flux
rates or imposing any objective function for cellular metabolism. The solutions of Equation
(2) together with the inequality (3) constitute the admissible flux space which is also known
as the convex polyhedral cone (Rockafellar 1970). The inequality (3) represents the
thermodynamic feasibility constraint or sign restriction constraint (Klamt and Stelling 2003,
Schuster and Hilgetag 1994, Schuster et al. 2002, Gagneur and Klamt 2004). The number of
these solutions is infinite. However, additional constraints on the admissible flux space such
as non-decomposability and systematic independence can form a finite set of solutions. The
application of these additional constraints results in different, but closely related techniques
for metabolic pathway analysis including elementary mode analysis (Schuster and Hilgetag
1994) and extreme pathway analysis (Schilling et al. 2000).

Elementary mode analysis calculates all solutions in the admissible flux space by solving
Equation (2) in conjunction with the thermodynamic constraint (3) and an additional non-
decomposability constraint. Each solution presents an elementary (flux) mode. The non-
decomposability constraint ensures that each elementary mode is unique up to a positive
scalar factor because removal of any reaction in an elementary mode will automatically
disrupt the entire pathway. Therefore, each elementary mode can be defined as a unique,
minimal set of enzymes (participating reactions) to support steady state operation of a
metabolic network with irreversible reactions to proceed in appropriate directions (Schuster
and Hilgetag 1994, Schuster et al. 2002, Pfeiffer et al. 1999).

Different from elementary mode analysis, extreme pathway analysis contains one additional
constraint to make all extreme pathways systematically independent (Klamt and Stelling
2003, Schilling et al. 2000, Papin et al. 2003, Papin et al. 2004). Systematic independence
implies that none of the extreme pathways can be expressed as a nonnegative combination
of at least two other extreme pathways. Even though some elementary modes are not
systematically independent, they are genetically independent due to the direct
implementation of the non-decomposability constraint. In addition, extreme pathways are a
subset of elementary modes. The two sets of extreme pathways and elementary modes are
identical when all reactions including both internal and exchange reactions are irreversible
in a metabolic network. Therefore, the identification of extreme pathways depends on the
reconfiguration of the metabolic network analyzed while the identification of elementary
modes does not. For instance, extreme pathways that are identified in a metabolic network
with each reversible exchange reaction split into two irreversible reactions may not be
extreme pathways anymore in the original metabolic network with reversible exchange
reactions not split (Klamt and Stelling 2003).

Due to the close relatedness in computing both elementary modes and extreme pathways,
Boley et al. have recently developed a simple rank/nullity test to distinguish extreme
pathways from elementary modes only by using the invariant stoichiometric matrix (Boley
et al. 2008). Furthermore, the test can also determine whether a pathway is an extreme
pathway or an elementary mode even before computing both sets of elementary modes or
extreme pathways separately. This rank/nullity test is a very useful tool for researchers to
assess the complete set of elementary modes and to be able to extract from it the subset of
extreme pathways (Figure 1D). Knowledge of types of pathways allows one to choose the
appropriate metabolic pathway analysis tool for specific applications.

Differences between elementary mode analysis and extreme pathway analysis are presented

in the example of a simple network shown in Figure 1. Figure 1D, 1F shows the complete
set of 8 elementary modes (EMs), 4 of which are also extreme pathways (ExPas). While
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metabolic flux analysis and flux balance analysis only calculate, in general, a single
metabolic flux vector under a given growth condition (Figure 1C, 1E), metabolic pathway
analysis such as elementary mode analysis can identify all metabolic flux vectors that exist
in a cellular metabolism without requiring any knowledge of some measured fluxes (Figure
1D, 1E, 1F). This characteristic allows a systematic and objective evaluation of metabolism
capabilities in terms of cellular robustness, fragility and regulation.

and software development for elementary mode analysis

Since the concept of elementary mode analysis was introduced in 1994 (Schuster and
Hilgetag 1994), there has been an ongoing effort to develop more efficient algorithms during
the last two decades. One of the improvements of the algorithm involves the reduction of the
size of the stoichiometric matrix used for calculating elementary modes. Examination of the
null space of the stoichiometric matrix can detect reactions that produce or consume
unbalanced metabolites having neither sinks nor sources. These reactions can be
automatically removed from the network for further calculation since fluxes though these
reactions are always null (Reder 1988, Schuster and Schuster 1991). The null space also
allows identification of reactions that operate in a linear pathway without branches with a
fixed flux ratio. These reactions can be lumped into one reaction and hence reduce the size
of the stoichiometric matrix used for calculating elementary modes. Some earlier versions of
the publicly available software developed for calculating elementary modes are
METATOOL (Pfeiffer et al. 1999), GEPASI and its successor COPASI (Hoops et al. 2006)
and FluxAnalyzer (Klamt et al. 2003). A similar software with a closely related algorithm
has been developed for calculating extreme pathways (ExPas) (Bell and Palsson 2005). In
all of these software, the core of computing elementary modes is written in the C language.
However, the FluxAnalyzer is also developed with a user friendly interface based on the
MATLAB environment (The Mathworks, Inc., USA) and contains additional features to
analyze the metabolic network (Klamt et al. 2003). Recent improvements in algorithm
implementation have further advanced software development to compute elementary modes
for larger metabolic networks. The original approach is to solve the equality (2) and the
inequality (3) simultaneously while the latter approach known as Null Space approach first
solves the equality (2) and then satisfies the inequality (3) while still in the null space
(Wagner 2004, Urbanczik and Wagner 2005b). The recently developed software SNA uses
the null space approach and is written in MATHEMATICA (Wolfram Research, Inc., USA)
(Urbanczik 2006). Recent METATOOL software has also incorporated this algorithm
together with an efficient rank test to check the elementarity of a mode (von Kamp and
Schuster 2006). The computation of elementary modes by the latest METATOOL has codes
written in either C language or MATLAB. YANA is also a recently developed software
based on METATOOL that has a user-friendly interface with additional built-in tools for
metabolic network analysis (Schwarz et al. 2005). A recent version, YANAsquare, further
introduces the software capability to automatically import reconstructed metabolic networks
of different microorganisms from the KEGG database (Schwarz et al. 2007). Gagneur and
Klamt further suggest that the implementation of the binary approach during computation of
elementary modes can decrease the memory demand up to 96% (Gagneur and Klamt 2004).
This approach was included in FluxAnalyzer 5.1, and later the software name was changed
to CellAnalyzer after including the analysis of signal transduction pathways (Klamt et al.
2007).

Computing all elementary modes is expensive, especially for a large metabolic network
(Klamt and Stelling 2002). However, the extremely useful feature of knowing all pathway
possibilities will continue to stimulate the development of more efficient algorithms,
computational techniques, and problem formulations that will enable also handling of
networks at a genome scale level. Encouraging results have been obtained by parallel

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2010 July 23.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Trinh et al.

Page 7

computing (Klamt et al. 2005, Samatova 2002), network decomposition (Schuster et al.
2002, Schilling and Palsson 2000, Schwartz et al. 2007), examination of only a functional
conversion flux cone encapsulated in the parent flux cone (Urbanczik and Wagner 2005a,
Song and Ramkrishna 2008), and advanced algorithm for enumerating elementary modes
using bit pattern trees (Terzer and Stelling 2008).

Yields for all genetically independent pathways

Metabolic pathway analysis based on elementary mode analysis can rigorously identify all
genetically independent pathways that are inherent in a metabolic network (Schuster et al.
2002). Since all elementary modes are unique up to scalar multiples, the fluxes in each mode
represent only relative values. The most meaningful values are fluxes of an entire pathway
that are normalized with respect to a flux of interest in a reaction such as a substrate flux or a
product flux. This pathway definition allows a systematic approach to accurately compare
molar yields of a metabolite with respect to another in multiple pathways (Pfeiffer et al.
1999). Knowledge of all possible pathways inherent in a metabolic network allows the
assessment of pathways of interest based on their molar yields and hence direct metabolic
engineering strategies (Schuster et al. 2000, Schuster et al. 1999). For instance, as shown
Figure 1D, 1F, among the complete set of 8 EMs only 6 EMs including EM*, EM3*, EMy,
EMg, EM7, and EMg utilize the substrate A. The asterisks indicate elementary modes that
are also extreme pathways. Within the subset of these 6 EMs, only 4 elementary modes
EM4, EMg, EM7, and EMg can convert the substrate A into the product P. From these 4
EMs, it is straightforward to calculate the molar yields of P on A as follows: Yp/a = ra/ry.
The result shows that EMg and EM7 achieve the highest molar yield of 2 while EMy4 and
EMg achieve the lowest molar yield of 1. Therefore, EMg and EMy are the most efficient
pathways to convert A to P while EM4 and EMg are not. It is interesting to observe in this
simple network that there is no extreme pathway to convert the substrate A into the product
P. This example demonstrates that extreme pathways have limitations for the direct
interpretation of functional pathways.

The first reported application of elementary mode analysis to a real biological system for the
purpose of metabolic engineering is the optimization of the production of 3-deoxy-D-
arabino-heptulosonate-7-phoshpate (DAHP) in Escherichia coli. DHAP is a main precursor
for the amino acid synthesis pathways of tyrosine, phenylalanine, and tryptophan. Through
the examination of flux vector of individual pathways in a simplified metabolic network of
E. coli central metabolism, the most efficient DAHP producing pathway can be identified
and optimized by over-expressing enzymes of key reaction steps, that are likely rate-
limiting, to achieve in vivo a molar yield of DHAP close to the theoretical value (Liao et al.
1996). With improvements in software development for elementary mode analysis (Pfeiffer
et al. 1999, Klamt et al. 2003, von Kamp and Schuster 2006), more complicated metabolic
networks of different microorganisms have been analyzed in silico to design efficient and
robust strains to produce desired products and followed by in vivo experiments to confirm
prediction. For instance, elementary mode analysis has also been applied to predict
anaerobic synthesis of poly-B-hydroxybutyrate (PHB) in transgenic Saccharomyces
cerevisiae (Carlson et al. 2002) and E. coli (Wlaschin et al. 2006, Carlson et al. 2005), the
optimal synthesis of recombinant proteins in E. coli (Vijayasankaran et al. 2005), the
optimal production of L-methionine in E. coli and Corynebacterium glutamicum (Kromer et
al. 2006), and the optimal production of cyanophycin in recombinant strains Psedomonas
putida and Ralstonia eutropha (Diniz et al. 2006). Elementary mode analysis was also
applied to study the physiology of the photosynthate metabolism of the chloroplast stroma
(Poolman et al. 2003) and the metabolic capabilities of Methylobacterium exorequens AM1
(\Van Dien and Lidstrom 2002) and purple nonsulfur bacteria (Klamt et al. 2002).
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Similar to elementary mode analysis, extreme pathways have also been used to examine the
metabolic capabilities of Human Red Blood Cell metabolism (Wiback and Palsson 2002),
Haemophilus influenzae Rd metabolism (Schilling and Palsson 2000, Papin et al. 2002a) and
Helicobacter pylori metabolism (Price et al. 2002).

Determination of metabolic flux vector

A metabolic flux vector is defined by the cellular physiological state of a cell under a given
growth condition and consists of a weighted average of all elementary modes that are
present. It shows what participating reactions are active and how fluxes through these
reactions describe the physiological state. Knowledge of the metabolic flux vector helps
understanding the cell physiology when perturbations such as genetic modifications and
growth conditions are imposed on cell growth. Since metabolic pathway analysis can
identify all genetically independent pathways inherent in a metabolic network, any pathway
or a non-negative linear combination of pathways such as elementary modes or extreme
pathways can describe the physiological states of cellular metabolism under different growth
conditions. However, the challenging tasks are to figure out how to assign weighting factors
to elementary modes or extreme pathways to describe a physiological state of interest and
how to determine these weighting factors when they change from one physiological state to
another in response to growth perturbations. Several different approaches using metabolic
pathway analysis have been reported with encouraging results.

By using elementary mode analysis, Carlson and Srienc identify the four most efficient
physiological states that can map the overall flux states of E. coli central metabolism as a
function of oxygen consumption rates. These flux states consist of elementary modes that
efficiently convert glucose into biomass and maintenance energy under different oxygen
supply (Carlson and Srienc 2004). By using only the experimentally determined specific
glucose uptake rates, flux vector patterns under different oxygen limitation can be calculated
and agree with experimental data (Carlson and Srienc 2004). This result implies that a
highly evolved organism evidently functions according to pathways that are highly efficient.

Another method proposed to predict the metabolic flux vector of a cellular physiological
state is to use the concept of the a-spectrum (Wiback et al. 2004, Wiback et al. 2003). The
a-spectrum defines which extreme pathways can constitute the metabolic flux vector of a
physiological state and the range of weighting factors for the corresponding extreme
pathways. The a-spectrum is considered to be a conservative technique since it only
determines the range of metabolic flux vectors rather than the exact values. The range is
calculated by minimizing and maximizing the weighting factors of extreme pathways
constrained by some experimentally determined fluxes. The range or width of the a-
spectrum becomes narrower if more experimentally determined fluxes or transcriptional
regulatory constraints (Covert and Palsson 2003) are available. It should be also noted that
due to the possible existence of multiple optimal solutions obtained from linear
programming optimization, the number and values of weighting factors assigned for extreme
pathways may not be unique. The a-spectrum approach has been applied to investigate the
E. coli central metabolism (Wiback et al. 2004) and the Human Red Blood Cell metabolism
(Wiback et al. 2003). Based on the concept of the a-spectrum, Kurata et al. further
introduced a heuristic, non-mechanistic model to determine the range of flux vectors of
mutants by incorporating into the model the enzymatic activities of the mutant relative to the
wild type and its metabolic flux vectors (Kurata et al. 2007). A closely related optimization
method based on linear programming has also been proposed to determine flux vectors of
cellular metabolism. With the objective function of maximizing the number of elementary
modes constrained by some experimentally determined exchange fluxes, Nookaew et al.
could estimate the weighting factors, also called flux regulation coefficients, of elementary
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modes. This technique has been applied to several Saccharomyces species under various
growth conditions (Nookaew et al. 2007).

Poolman et al. proposed an alternative method based the Moore-Penrose generalized inverse
to determine weighting factors for elementary modes such that the sum of all weighting
factors squared is minimized. The technique also helps to evaluate the measurement errors
for experimentally determined fluxes. The approach was applied to calculate the metabolic
flux vectors of Lactobacillus rhamnosus during batch growth and to examine the
fluctuations of weighting factors for elementary modes during the fermentation (Poolman et
al. 2004). A similar approach was also applied to identify weighting factors of elementary
modes for yeast glycolysis (Schwartz and Kanehisa 2005). Schwartz and Kenehisa further
investigated the effect of change in enzymatic kinetics on the steady state metabolic flux
vector and hence on the weighting factors of elementary modes by incorporating kinetic
modeling (Schwartz and Kanehisa 2006). First, the kinetic model was simulated to obtain
steady state metabolic flux vectors for different random perturbations of enzyme Kinetics.
These metabolic flux vectors were then decomposed to identify the weighting factors of
elementary modes. This approach facilitates the identification of the most dominant subset
of biologically active elementary modes among the complete set of elementary modes that
can be very large.

For a large metabolic network, the total number of elementary modes can reach several
millions. Wang et al. proposed a quadratic programming approach to assign weighting
factors for a smaller subset of elementary modes that are randomly chosen by minimizing
the difference between the calculated fluxes and measured fluxes. This approach can
potentially identify the dominant modes representing cellular metabolism under a given
growth condition (Wang et al. 2007). It will be interesting to see whether the subset of
identified elementary modes coincides with that of the extreme pathways since the set of
extreme pathways is typically several orders of magnitude smaller than the set of elementary
modes. This task can be easily examined by using the rank/nullity test developed by Boley
et al. (Boley et al. 2008).

Another interesting approach to calculate weighting factors comes from classical
thermodynamics (Wlaschin et al. 2006). The individual weighting factors can be formally
viewed as probabilities that a given elementary mode is used within a functioning
metabolism. In a metabolic network, as substrates are consumed the energy contained within
their chemical bonds is used by the cellular metabolism. Some of this energy is used to build
new bonds between metabolites to build larger macromolecules. Usable energy is also lost
as heat. This constant flux of products and substrates can be modeled in classical
thermodynamics as an open system in near equilibrium steady state (Qian and Beard 2005,
Qian et al. 2003). Elementary modes with the same overall stoichiometry have been grouped
into families of EMs. Each family stoichiometry is viewed as a “reaction” in classical
thermodynamics. This effectively reduced the number of weighting factors that could be
estimated from a completely determined system (WIlaschin et al. 2006). It was found that the
weighting factors correlated inversely with the corresponding entropies of reactions. The
reaction generating the least amount of entropy had the largest weighting factor. This result
is a direct validation of Prigogine’s principle of minimal entropy production in an open
irreversible system operating at steady state (Prigogine 1945).

Analysis of metabolic network properties

Network structure

Determination of the complete set of all minimal and unique pathways by metabolic
pathway analysis allows a systematic evaluation of basic structures of a metabolic network
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such as pathway lengths, reaction participation in a pathway, and the correlated subsets of
reactions. Papin et al. reported a simple implementation of linear algebra on the extreme
pathway matrix to form the symmetric Pathway Length Matrix and Reaction Participation
Matrix and to extract from these matrices useful characteristics demonstrated for cellular
metabolisms of Helicobacter pylori and Haemophilus influenza (Papin et al. 2002b). The
diagonal elements of the pathway length matrix define how many reactions participate in an
extreme pathway while the off-diagonal elements represent the number of reactions shared
by two different extreme pathways. Similarly, the diagonal elements of the reaction
participation matrix represent how many extreme pathways utilize a particular reaction
while the off-diagonal elements define the number of extreme pathways shared by two
different reactions. This analysis is useful to classify groups of reactions that always,
sometimes, or never contribute to the synthesis of a desired product. Even though the
technique is demonstrated for the extreme pathway matrix, it is completely applicable also
for the elementary mode matrix. It should be noted that the method of detecting correlated
reaction subsets can also be implemented by analyzing the null space of the stoichiometric
matrix without using the extreme pathway matrix or elementary mode matrix (Pfeiffer et al.
1999, Poolman et al. 2007).

Network robustness

Decomposition of a complex cellular metabolism by metabolic pathway analysis into a
complete set of genetically independent pathways reveals detailed information of
interrelationships between metabolic network structure and cellular functionality such as
cellular robustness and regulation. In the context of cellular metabolism, robustness is
defined as the ability of cells to achieve the optimal performance even under perturbations
imposed by a gene knockout (Stelling et al. 2002, Barkai and Leibler 1997, Edwards and
Palsson 2000, Edwards and Palsson 2000, Stelling et al. 2004). By analyzing the entire set of
elementary modes of E. coli metabolism, Stelling et al. reported that the network is highly
robust and maintains high biomass yield in cells containing single gene knockouts (Stelling
et al. 2002). The robustness of cellular metabolism is mainly due to the redundancy of
pathway options that the wild type can choose from to function to achieve similar
performance. Such a high redundancy is also observed in Haemophilus influenza (Papin et
al. 2002a) and Helicobacter pylori (Price et al. 2002).

Network regulation

Metabolic pathway analysis can also be applied to reveal the regulation pattern based on the
structure of a metabolic network. The functional operation of pathways under a given
growth condition is a result of complex interactions of cellular phenotype and genotype that
can be quantified though metabolic fluxes and expression transcripts. To approach the
problem, Stelling et al. introduced a technique to calculate the control-effective fluxes from
the set of elementary modes. The resulting fluxes are weight-averaged values that are taken
into account for both network flexibility and network efficiency (Stelling et al. 2002). In the
paper, Stelling et al. defined that the network flexibility reflects the ability of cellular
metabolism to adjust with different growth environments while network efficiency
represents the ability of cellular metabolism to achieve maximal outcomes such maximal
growth yield by utilizing minimal resources such as investments to produce enzymes. The
technique allows direct calculation of flux ratios for each reaction in a pathway and provides
a basis for direct comparison with expression transcripts under perturbations. By analyzing
the central metabolism of E. coli, Stelling et al. found that there is strong correlation of
control-effective flux ratios and corresponding expression transcript ratios for growth on
glucose and on acetate (Stelling et al. 2002). Cakir et al. also used the same approach to
investigate in yeast Saccharomyces the correlation of control-effective flux ratios and
corresponding expression transcript ratios for growth on glucose and on galactose (Cakir et
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al. 2004) and for shifts from a fermentative carbon source to a non-fermentative carbon
source such as ethanol, acetate, and lactate during fermentation (Cakir et al. 2007).

Price et al. suggested a very interesting approach that the single value decomposition on the
extreme pathway matrix can be applied to identify the key branch points of the metabolic
network. This information is useful for designing strategies to redirect carbon flow to
desired pathways (Price et al. 2002).

Carlson has recently reported a very interesting approach based on elementary mode
analysis to investigate the principal design of cellular metabolism through cost-benefit
analysis (Carlson 2007). This analysis reveals an interesting correlation between synthesis
requirements for cellular operation (investment cost) and thermodynamic efficiency
(operating cost) under growth conditions of nutrient sufficiency, scarcity, and excess. Due to
the high robustness of cellular metabolism afforded by isozymes and parallel pathways, cells
can switch on and off pathways to modulate their metabolism to accommodate the nutrient
availability. Interestingly, the study reported that the efficient pathways require high cost of
cellular synthesis for thermodynamic efficiency, but cells trade off to utilize the inefficient
pathways under growth conditions of nutrient scarcity or excess such as “overflow
metabolism”.

Network fragility

In complete contrast to the structural robustness of the cellular metabolism, fragility is also
an important concept to help understand the network functionality. The concept of a
Minimal Cut Set has been introduced to determine the minimal set of reactions whose
deletion completely blocks a target (Klamt and Gilles 2004, Klamt 2006). The identification
of a minimal cut set is useful in metabolic engineering and in the identification of drug
targets (Klamt and Gilles 2004). Several techniques have been proposed to measure the
fragility of the metabolic network (Klamt and Gilles 2004, Wilhelm et al. 2004, Behre et al.
2008).

Rational design of efficient host strains

Knowledge of all unique pathways existing in a metabolic network allows a rational in silico
design of efficient host strains with specialized metabolic functionalities. By eliminating
inefficient pathways, host strains can be forced to function only according to efficient
pathways. Furthermore, host strains can be constrained such that the operation of efficient
pathways and cell growth are coupled. With this strategy of strain design, the host strains
can be used also to select and evolve foreign pathways of interest that has related function to
the native efficient pathway.

Three main steps are involved in designing the novel host strains as shown in Figure 2. Step
1 is pathway identification. By applying elementary mode analysis, all unique pathways
existing in a metabolic network can be identified. It should be emphasized that this step of
pathway identification may not be done by using extreme pathway analysis. The main
reason is that extreme pathways are only a subset of elementary modes. A simple example in
Figure 1F demonstrates that no extreme pathway can be identified to convert A to P at the
highest molar yield of 2. From Figure 2, the efficient pathway shown in blue can be easily
selected among other inefficient pathways shown in green since knowledge of entire sets of
possible pathways can be achieved by elementary mode analysis. Under a given growth
condition, cells can select any combination of pathways to operate to maximize their fitness.
Due to the existence of multiple pathway options, deletion of the efficient pathway will not
affect cell growth since cells can use other pathways to function. The second step is pathway
selection. In order to enforce cells to function only according to the efficient pathway by
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deleting inefficient ones, the strain can be designed such that growth and operation of the
efficient pathway are complemented. The third step is pathway evolution. This step is
optional. The strain designed in step 2 can be further utilized for pathway evolution. Due to
the complementation of cell growth and operation of the efficient pathway, it is possible to
replace an enzymatic reaction of the efficient pathway with a potential candidate that has
similar enzymatic activities from a library of mutated enzymes and evolve this enzyme.

The concept of strain design can be demonstrated through the analysis of a simple metabolic
network shown in Figure 1. For the sake of simplicity, cell growth is not incorporated into
the analysis of this simple network (see Trinh et al. for this topic (Trinh et al. 2008)). In this
example, it is of particular interest to identify the most efficient pathway that produces the
product P from the substrate A and to enforce the operation of this pathway. We start by
applying elementary mode analysis on the simple network. We can identify 6 EMs (EM*,
EM3*, EMy, EMg, EM>, and EMg) out of 8 EMs that can utilize the substrate A and only 4
EMs (EMy4, EMg, EM7, and EMg) that can convert the substrate A into the product P (Figure
1D, 1F). EM7 and EMg are the two most efficient pathways that can convert the substrate A
into the product P at the maximal molar yield of 2 (Cmole/Cmole). In step 2 of pathway
selection, we are interested in identifying multiple reaction deletions such that only the
operation of either EM7; or EMg is feasible. The trivial solution is to remove all null fluxes in
either EM7 or EMg. However, due to the coupling of reactions in a pathway and of pathways
in the network, it is not necessary to remove the complete set of null fluxes in the efficient
pathways of interest. Instead, only a minimal subset of the null fluxes can accomplish this.
This approach requires multiple sequential rounds of reaction deletions that follow three
basic rules (Trinh et al. 2008). First, to identify a selection target, the effect of elimination of
individual reactions on the number of EMs is evaluated. For instance, Figure 3A-D
demonstrates the effect of single reaction deletion on the fraction of remaining elementary
modes. In these figures, the deleted reactions are sorted according to the increasing number
of fraction of remaining elementary modes. Second, the maximum and minimum yields of
desired products are also evaluated among the set of remaining elementary modes when a
reaction is deleted as shown in Figure 3A-D. Third, the reaction with the smallest fraction of
remaining elementary modes that still support maximum yields of desired products is chosen
for elimination. For example, the first round of reaction deletion is demonstrated in Figure
3A. The choice of deleting R7 is not optimal because it reduces the maximal possible yield
of P while deletion of either R1 or R4 is obviously detrimental to the feasible operation of
the efficient pathways of interest. The most efficient possible choice is any of reactions R2,
R5, and R6r. In the next rounds of reaction deletion as shown in Figure 3B-D, we choose
R2 as the first reaction deletion for the purpose of demonstration. Other choices of R5 and
R6r are presented in Figure 3F. We continue sequential steps of single reaction deletion until
no further improvement can be achieved. As shown in Figure 3D, since only one EM
remains and operates according to the most efficient pathway to convert the substrate A to
the product P, no further deletion is necessary. However, in Figure 2B, if there is no
continuation of sequential reaction deletion after the first round of eliminating R2,
inefficient pathways for converting the substrate A into the product P still exist. In Figure
3B-D, the deletion of a reaction that results in the mode fractions of 1 indicates that all
elementary modes analyzed at the round of deletion have null flux through this particular
reaction. For instance, in the round 3 of deletion as shown in Figure 3C, deletion of R2 and
R3 automatically eliminates R6r and R9. Figure 3E summarizes the effect of sequential
reaction deletion on the total number of elementary modes as well as the yield range of
desired product P. The approach here ensures identification of a minimal set of reactions that
should be deleted to enforce the operation of pathways of interest. However, such a set is not
unique. As shown in Figure 3F, alternative sets of deleted reactions are {R2, Rér, R8r} and
{R3, R5, R8r}. The sets {R2, R3, R8r} and {R2, R6r, R8r} support the operation of EM6
while {R3, R5, R8r} supports the functioning of EM7.
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This approach has been successfully applied to design and construct minimal cells with
efficient metabolic functionalities for biomass production (Trinh et al. 2006) and for ethanol
production (Trinh et al. 2008). The characterization of the most efficient biomass producing
E. coli TCS062 containing 6 genetic knockouts was conducted in chemostats under different
dilution rates. The result showed that the mutant TCS062 achieved approximately 30%
improvement in growth yield when directly compared to the wildtype under identical growth
conditions (Trinh et al. 2006). The mutant performance closely matched the theoretical
prediction. Trinh et al. also applied a similar strategy to design a minimal E. coli cell with
efficient functionality for ethanol production. The designed mutant TCS083/pLO1297
containing 8 genetic knockouts was constructed and characterized in controlled batch
bioreactors. The mutant was able to efficiently convert hexoses and pentoses to ethanol
close to the theoretical limit in a simultaneous manner without glucose catabolite repression
(Trinh et al. 2008). In addition, in this strain cell growth and ethanol production are highly
coupled as predicted by the model. These two examples further demonstrate the feasibility
of the approach for rational design of most efficient organisms with minimized metabolic
functionalities tailored for specific applications.

Conclusion

Elementary mode analysis is a useful metabolic pathway analysis tool to characterize
cellular metabolism. It provides insights into cellular physiology, robustness and regulation.
The application covers many key aspects of metabolic engineering strategies such as
identifying key regulatory branch points of a metabolic pathway, designing minimal cells
with minimized but efficient metabolic functionalities tailored for specific applications, and
identifying key enzyme targets for drug design. It can also be used as a systems biology tool
to elucidate the interaction of cellular genotypes and phenotypes by the analysis of flux
ratios and transcript ratios and interpreting the principal design of cellular metabolism. Since
metabolic pathway analysis is the analysis of structural invariants without introduction of
kinetic parameters to describe dynamic interaction of cellular metabolisms, it can only
predict discrete states of cellular metabolisms. Therefore, introduction of dynamic features
into structural modeling can offer a potential adventure to understand the dynamics of
cellular metabolism. Furthermore, current techniques of determining the exact physiological
state are still semi empirical because some fluxes need to be measured experimentally and
used for calculation. Therefore, developing more robust techniques to accurately extract
cellular physiological states with the least amount of experimental data is useful to predict
cellular metabolism. This approach promises to become practical if intelligent design of
operational rules based on the transcriptomic, proteomic, and metabolomic data can be
developed and incorporated into the model.

Acknowledgments

We thank NIH for supporting this work (GM077529).

References

Barkai N, Leibler S. Robustness in simple biochemical networks. Nature 1997;387:913-917.
[PubMed: 9202124]

Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S. Structural robustness of metabolic networks
with respect to multiple knockouts. J Theor Biol 2008;252:433-441. [PubMed: 18023456]

Bell SL, Palsson BO. Expa: a program for calculating extreme pathways in biochemical reaction
networks. Bioinformatics 2005;21:1739-1740. [PubMed: 15613397]

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res
2008;36:D25-30. [PubMed: 18073190]

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2010 July 23.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Trinh et al.

Page 14

Boley, D.; Jevremovic, D.; Srienc, F.; Trinh, CT. A Simple Rank Test to Distinguish Extreme
Pathways from Elementary Flux Modes in Metabolic Networks. 2008. (submitted)

Cakir T, Kirdar B, Onsan ZI, Ulgen KO, Nielsen J. Effect of carbon source perturbations on
transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. BMC Syst Biol
2007;1:18. [PubMed: 17408508]

Cakir T, Kirdar B, Ulgen KO. Metabolic pathway analysis of yeast strengthens the bridge between
transcriptomics and metabolic networks. Biotechnol Bioeng 2004;86:251-260. [PubMed:
15083505]

Carlson R, Srienc F. Fundamental Escherichia coli Biochemical Pathways for Biomass and Energy
Production: Identification of Reactions. Biotech Bioeng 2004;85:1-18.

Carlson R, Fell D, Srienc F. Metabolic pathway analysis of a recombinant yeast for rational strain
development. Biotechnol Bioeng 2002;79:121-134. [PubMed: 12115428]

Carlson R, Srienc F. Fundamental Escherichia coli biochemical pathways for biomass and energy
production: creation of overall flux states. Biotechnol Bioeng 2004;86:149-162. [PubMed:
15052634]

Carlson R, Wlaschin A, Srienc F. Kinetic studies and biochemical pathway analysis of anaerobic poly-
(R)-3-hydroxybutyric acid synthesis in Escherichia coli. Appl Environ Microbiol 2005;71:713-
720. [PubMed: 15691921]

Carlson RP. Metabolic systems cost-benefit analysis for interpreting network structure and regulation.
Bioinformatics 2007;23:1258-1264. [PubMed: 17344237]

Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick
J, Rhee SY, Tissier C, Zhang P, Karp PD. MetaCyc: a multiorganism database of metabolic
pathways and enzymes. Nucl Acids Res 2006;34:D511-516. [PubMed: 16381923]

Clarke BL. Stoichiometric network analysis. Cell Biophys 1988;12:237. [PubMed: 2453282]

Clarke BL. Complete set of steady states for the general stoichiometric dynamical system. J Chem
Phys 1981;75:4970-4979.

Covert MW, Palsson BO. Constraints-based models: Regulation of Gene Expression Reduces the
Steady-state Solution Space. Journal of Theoretical Biology 2003;221:309-325. [PubMed:
12642111]

Diniz SC, Voss IV, Steinbuchel A. Optimization of cyanophycin production in recombinant strains of
Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical
experimental design. Biotechnol Bioeng 2006;93:698-717. [PubMed: 16435401]

Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO. Global
reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl
Acad Sci U S A 2007;104:1777-1782. [PubMed: 17267599]

Edwards JS, Palsson BO. Robustness Analysis of the Escherichia coli Metabolic Network. Biotechnol
Prog 2000;16:927. [PubMed: 11101318]

Edwards, JS.; Ramakrishna, R.; Schilling, CH.; Palsson, BO. Metabolic Flux Balance Analysis. Lee,
SY.; Papoutsakis, ET., editors. Metabolic Engineering. Marcel Dekker, Inc; New York: 1999. p.
13-57.

Edwards JS, Palsson BO. The Escherichia coli MG1655 in silico metabolic genotype: its definition,
characteristics, and capabilities. Proc Natl Acad Sci U S A 2000;97:5528-5533. [PubMed:
10805808]

Edwards JS, Ibarra RU, Palsson BO. In silico predictions of Escherichia coli metabolic capabilities are
consistent with experimental data. Nat Biotech 2001;19:125-130.

Feinberg M, Horn FJM. Dynamics of open chemical systems and the algebraic structure of the
underlying reaction network. Chemical Engineering Science 1974;29:775-787.

Gagneur J, Klamt S. Computation of elementary modes: a unifying framework and the new binary
approach. BMC Bioinformatics 2004;5:175. [PubMed: 15527509]

Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U.
COPASI--a COmplex PAthway Simulator. Bioinformatics 2006;22:3067-3074. [PubMed:
17032683]

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2010 July 23.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Trinh et al.

Page 15

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S,
Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic
Acids Res 2008;36:D480-4. [PubMed: 18077471]

Karp PD, Keseler IM, Shearer A, Latendresse M, Krummenacker M, Paley SM, Paulsen I, Collado-
Vides J, Gama-Castro S, Peralta-Gil M, Santos-Zavaleta A, Penaloza-Spinola MI, Bonavides-
Martinez C, Ingraham J. Multidimensional annotation of the Escherichia coli K-12 genome.
Nucleic Acids Res 2007;35:7577-7590. [PubMed: 17940092]

Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance analysis. Curr Opin Biotechnol
2003;14:491-496. [PubMed: 14580578]

Klamt S, Schuster S, Gilles ED. Calculability Analysis in Underdetermined Metabolic Networks
Illustrated by a Model of the Central Metabolism in Purple Nonsulfur Bacteria. Biotechnol Bioeng
2002;77:734-751. [PubMed: 11835134]

Klamt S. Generalized concept of minimal cut sets in biochemical networks. BioSystems 2006;83:233—
247. [PubMed: 16303240]

Klamt S, Gagneur J, von Kamp A. Algorithmic approaches for computing elementary modes in large
biochemical reaction networks. Syst Biol (Stevenage) 2005;152:249-255. [PubMed: 16986267]

Klamt S, Saez-Rodriguez J, Gilles ED. Structural and functional analysis of cellular networks with
CellNetAnalyzer. BMC Syst Biol 2007;1:2. [PubMed: 17408509]

Klamt S, Stelling J. Combinatorial complexity of pathway analysis in metabolic networks. Mol Biol
Rep 2002;29:233-236. [PubMed: 12241063]

Klamt S, Gilles ED. Minimal cut sets in biochemical reaction networks. Bioinformatics 2004;20:226—
234. [PubMed: 14734314]

Klamt S, Stelling J. Two approaches for metabolic pathway analysis? Trends Biotechnol 2003;21:64—
69. [PubMed: 12573854]

Klamt S, Stelling J, Ginkel M, Gilles ED. FluxAnalyzer: exploring structure, pathways, and flux
distributions in metabolic networks on interactive flux maps. Bioinformatics 2003;19:261-269.
[PubMed: 12538248]

Koch I, Junker BH, Heiner M. Application of Petri net theory for modelling and validation of the
sucrose breakdown pathway in the potato tuber. Bioinformatics 2005;21:1219-1226. [PubMed:
15546934]

Kromer JO, Wittmann C, Schroder H, Heinzle E. Metabolic pathway analysis for rational design of L-
methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng
2006;8:353-369. [PubMed: 16621639]

Kurata H, Zhao Q, Okuda R, Shimizu K. Integration of enzyme activities into metabolic flux
distributions by elementary mode analysis. BMC Systems Biology 2007;1:31. [PubMed:
17640350]

Liao JC, Hou SY, Chao YP. Pathway Analysis, Engineering, and Physiological Considerations for
Redirecting Central Metabolism. Biotechnol Bioeng 1996;52:129-140. [PubMed: 18629859]

Mavrovouniotis ML, Stephanopoulos G, Stephanopoulos G. Qualitative analysis of biochemical
reaction systems. Computers in Biology and Medicine 1996;26:9-24. [PubMed: 8654057]

Mavrovouniotis ML, Stephanopoulos G, Stephanopoulos G. Computer-aided synthesis of biochemical
pathways. Biotechnol Bioeng 1990;36:1119-1132. [PubMed: 18595053]

Milner PC. The Possible Mechanisms of Complex Reactions Involving Consecutive Steps. J
Electrochem Soc 1964;111:228.

Nookaew I, Meechai A, Thammarongtham C, Laoteng K, Ruanglek V, Cheevadhanarak S, Nielsen J,
Bhumiratana S. ldentification of flux regulation coefficients from elementary flux modes: A
systems biology tool for analysis of metabolic networks. Biotechnol Bioeng 2007;97:1535-1549.
[PubMed: 17238207]

Papin JA, Price ND, Edwards JS, Palsson BBO. The genome-scale metabolic extreme pathway
structure in Haemophilus influenzae shows significant network redundancy. J Theor Biol 2002a;
215:67-82. [PubMed: 12051985]

Papin JA, Price ND, Palsson BO. Extreme pathway lengths and reaction participation in genome-scale
metabolic networks. Genome Res 2002b;12:1889-1900. [PubMed: 12466293]

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2010 July 23.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Trinh et al.

Page 16

Papin JA, Price ND, Wiback SJ, Fell DA, Palsson BO. Metabolic pathways in the post-genome era.
Trends Biochem Sci 2003;28:250-258. [PubMed: 12765837]

Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO. Comparison of network-based
pathway analysis methods. Trends Biotechnol 2004;22:400-405. [PubMed: 15283984]

Pfeiffer T, Sanchez-Valdenebro I, Nuno J, Montero F, Schuster S. METATOOL.: for studying
metabolic networks. Bioinformatics 1999;15:251-257. [PubMed: 10222413]

Poolman MG, Venkatesh KV, Pidcock MK, Fell DA. A method for the determination of flux in
elementary modes, and its application to Lactobacillus rhamnosus. Biotechnol Bioeng
2004;88:601-612. [PubMed: 15470705]

Poolman MG, Fell DA, Raines CA. Elementary modes analysis of photosynthate metabolism in the
chloroplast stroma. Eur J Biochem 2003;270:430-439. [PubMed: 12542693]

Poolman MG, Sebu C, Pidcock MK, Fell DA. Modular decomposition of metabolic systems via null-
space analysis. J Theor Biol 2007;249:691-705. [PubMed: 17949756]

Price ND, Papin JA, Palsson BO. Determination of redundancy and systems properties of the
metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. Genome
Res 2002;12:760-769. [PubMed: 11997342]

Price ND, Reed JL, Palsson BO. Genome-scale models of microbial cells: evaluating the consequences
of constraints. Nat Rev Microbiol 2004;2:886-897. [PubMed: 15494745]

Price ND, Reed JL, Papin JA, Famili I, Palsson BO. Analysis of metabolic capabilities using singular
value decomposition of extreme pathway matrices. Biophys J 2003;84:794-804. [PubMed:
12547764]

Prigogine I. Modération et transformations irréversibles des systémes ouverts. Bull Acad Roy Belg Cl
Sci 1945;31:600-606.

Qian H, Beard DA. Thermodynamics of stoichiometric biochemical networks in living systems far
from equilibrium. Biophys Chem 2005;114:213-220. [PubMed: 15829355]

Qian H, Beard DA, Liang S. Stoichiometric network theory for nonequilibrium biochemical systems.
European Journal of Biochemistry 2003;270:415-421. [PubMed: 12542691]

Reder C. Metabolic control theory: a structural approach. J Theor Biol 1988;135:175-201. [PubMed:
3267767]

Rockafellar, RT. Convex analysis. Princeton University Press; Princeton, N.J: 1970.

Roels, JA. Energetics and kinetics in biotechnology. Elsevier Biomedical Press; Amsterdam; New
York: 1983.

Samatova, NF. Parallel out-of-core algorithm for genome-scale enumeration of metabolic systemic
pathways. Parallel and Distributed Processing Symposium, Proceedings International, IPDPS;
2002; 2002. Abstracts and CD-ROM 185-192

Schilling CH, Letscher D, Palsson BO. Theory for the systemic definition of metabolic pathways and
their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol
2000;203:229-248. [PubMed: 10716907]

Schilling CH, Palsson BO. Assessment of the metabolic capabilities of Haemophilus influenzae Rd
through a genome-scale pathway analysis. J Theor Biol 2000;203:249-283. [PubMed: 10716908]

Schuetz R, Kuepfer L, Sauer U. Systematic evaluation of objective functions for predicting
intracellular fluxes in Escherichia coli. Mol Syst Biol 2007;3

Schuster R, Schuster S. Refined Algorithm and Computer Program Calculating All Non-Negative
Fluxes Admissible in Steady States of Biochemical Reaction Systems with and without Some
Fluxes Rates Fixed. CABIOS 1993;9:79-85. [PubMed: 8435772]

Schuster S, Fell DA, Dandekar T. A General Definition of Metabolic Pathways Useful for Systematic
Organization and Analysis of Complex Metabolic Networks. Nat Biotechnol 2000;18:326-332.
[PubMed: 10700151]

Schuster S, Hilgetag C, Woods JH, Fell DA. Reaction routes in biochemical reaction systems:
Algebraic properties, validated calculation procedure and example from nucleotide metabolism. J
Math Biol 2002;45:153-181. [PubMed: 12181603]

Schuster S, Hilgetag S. On Elementary Flux Modes in Biochemical Reaction Systems At Steady State.
J Biol Syst 1994;2:165-182.

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2010 July 23.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Trinh et al.

Page 17

Schuster S, Dandekar T, Fell DA. Detection of elementary flux modes in biochemical networks: a
promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 1999;17:53-
60. [PubMed: 10087604]

Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T. Exploring the pathway structure of
metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae.
Bioinformatics 2002;18:351-361. [PubMed: 11847093]

Schuster S, Schuster R. Detecting strictly detailed balanced subnetworks in open chemical reaction
networks. Journal of Mathematical Chemistry 1991;6:17-40.

Schwartz JM, Gaugain C, Nacher JC, de Daruvar A, Kanehisa M. Observing metabolic functions at the
genome scale. Genome Biol 2007;8:R123. [PubMed: 17594483]

Schwartz J, Kanehisa M. Quantitative elementary mode analysis of metabolic pathways: the example
of yeast glycolysis. BMC Bioinformatics 2006;7:186. [PubMed: 16584566]

Schwartz J, Kanehisa M. A quadratic programming approach for decomposing steady-state metabolic
flux distributions onto elementary modes. Bioinformatics 2005;21:ii204—205. [PubMed:
16204104]

Schwarz R, Liang C, Kaleta C, Kuhnel M, Hoffmann E, Kuznetsov S, Hecker M, Griffiths G, Schuster
S, Dandekar T. Integrated network reconstruction, visualization and analysis using YANAsquare.
BMC Bioinformatics 2007;8:313. [PubMed: 17725829]

Schwarz R, Musch P, von Kamp A, Engels B, Schirmer H, Schuster S, Dandekar T. YANA - a
software tool for analyzing flux modes, gene-expression and enzyme activities. BMC
Bioinformatics 2005;6:135. [PubMed: 15929789]

Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks.
PNAS 2002;99:15112-15117. [PubMed: 12415116]

Seressiotis A, Bailey JE. MPS: An artificially intelligent software system for the analysis and synthesis
of metabolic pathways. Biotechnol Bioeng 1988;31:587-602. [PubMed: 18584649]

Song HS, Ramkrishna D. Reduction of a set of elementary modes using yield analysis. Biotechnol
Bioeng. 2008 (Epub ahead of print).

Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED. Metabolic network structure determines key
aspects of functionality and regulation. Nature 2002;420:190-193. [PubMed: 12432396]

Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J. Robustness of cellular functions. Cell
2004;118:675-685. [PubMed: 15369668]

Stephanopoulos, G.; Aristidou, AA.; Nielsen, JH. Metabolic engineering: principles and
methodologies. Academic Press; San Diego: 1998.

Terzer M, Stelling J. Large scale computation of elementary flux modes with bit pattern trees.
Bioinformatics. 2008 (Epub ahead of print).

Trinh CT, Unrean P, Srienc F. Minimal Escherichia coli cell for the most efficient production of
ethanol from hexoses and pentoses. Appl Environ Microbiol 2008;74:3634-3643. [PubMed:
18424547]

Trinh CT, Carlson R, Wlaschin A, Srienc F. Design, construction and performance of the most
efficient biomass producing E. coli bacterium. Metab Eng 2006;8:628-638. [PubMed: 16997589]

Urbanczik R. SNA--a toolbox for the stoichiometric analysis of metabolic networks. BMC
Bioinformatics 2006;7:129. [PubMed: 16533403]

Urbanczik R, Wagner C. Functional stoichiometric analysis of metabolic networks. Bioinformatics
2005a;21:4176-4180. [PubMed: 16188931]

Urbanczik R, Wagner C. An improved algorithm for stoichiometric network analysis: theory and
applications. Bioinformatics 2005b;21:1203-1210. [PubMed: 15539452]

Van Dien SJ, Lidstrom ME. Stoichiometric model for evaluating the metabolic capabilities of the
facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of
C3 and C4 metabolism. Biotechnol Bioeng 2002;78:296-312. [PubMed: 11920446]

Vijayasankaran N, Carlson R, Srienc F. Metabolic pathway structures for recombinant protein
synthesis in Escherichia coli. Appl Microbiol Biotechnol 2005;68:737-746. [PubMed: 15739064]

von Kamp A, Schuster S. Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics.
2006

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2010 July 23.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Trinh et al.

Page 18

Wagner C. Nullspace Approach to Determine the Elementary Modes of Chemical Reaction Systems. J
Phys Chem B 2004;108:2425-2431.

Wang Q, Yang Y, Ma H, Zhao X. Metabolic network properties help assign weights to elementary
modes to understand physiological flux distributions. Bioinformatics 2007;23:1049-1052.
[PubMed: 17341495]

Wiback SJ, Mahadevan R, Palsson BO. Using metabolic flux data to further constrain the metabolic
solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol Bioeng
2004,86:317-331. [PubMed: 15083512]

Wiback SJ, Mahadevan R, Palsson BO. Reconstructing metabolic flux vectors from extreme pathways:
defining the alpha-spectrum. J Theor Biol 2003;224:313-324. [PubMed: 12941590]

Wiback SJ, Palsson BO. Extreme pathway analysis of human red blood cell metabolism. Biophys J
2002;83:808-818. [PubMed: 12124266]

Wiechert W. 13C Metabolic Flux Analysis. Metabolic Engineering 2001;3:195-206. [PubMed:
11461141]

Wilhelm T, Behre J, Schuster S. Analysis of structural robustness of metabolic networks. Syst Biol
(Stevenage) 2004;1:114-120. [PubMed: 17052121]

Wilaschin AP, Trinh CT, Carlson R, Srienc F. The fractional contributions of elementary modes to the

metabolism of Escherichia coli and their estimation from reaction entropies. Metab Eng
2006;8:338-352. [PubMed: 16581276]

Appl Microbiol Biotechnol. Author manuscript; available in PMC 2010 July 23.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Trinh et al.

Page 19
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Figure 1.

Analysis of a simple metabolic network. A. Problem statement. The system is confined by
the dashed line and consisted of internal metabolites A, B, C, D, and P that are linked
through internal reactions ry, r3, Is, rg, 7. External metabolites Aeyt, Bext, Dext, and Peyt Can
either enter or exit the system by exchange reactions rq, rg;, r4, rg, respectively. Two
reversible reactions rg, and rg, allow the reactions to proceed in either forward or backward
directions. By definition reversible reactions can have either positive or negative fluxes but
irreversible reactions only have non-negative fluxes. From the stoichiometric reactions, a

stoichiometric matrix § for internal metabolites can be set up where rows correspond to
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internal metabolites and columns represent reactions. Each element s;; represents the
stoichiometric coefficient of a metabolite i in reaction j. The coefficient is positive if the
metabolite (product) is produced and negative if the metabolite (reactant) is consumed. B.

Metabolic Flux Analysis. The stoichiometric matrix Sis partitioned into[ S S, ]and r

u

is partitioned into[ L, Iy ]Where subscripts u, m are referred to “unmeasured” and
“measured”, respectively. The calculation of r, is feasible if and only if ry, is known. C.
Flux Balance Analysis. The objective function is to maximize flux through the secretion of
desired product P when only A is considered the only substrate with rq = 1 unit. D.
Metabolic Pathway Analysis. By using METATOOL, elementary mode analysis identifies

8 unique elementary modes listed in the matrix form EM \\here rows correspond to
reactions and columns represent elementary modes. The asterisks indicate that these
elementary modes are also extreme pathways. E. Geometric interpretation. The admissible
flux cone represents all possible pathways that can exist. The cone is spanned by four
extreme pathways that represent the edge of the cone. Some elementary modes lie on the
face and inside the cone. Metabolic Flux Analysis identifies only a pathway that lies
anywhere in the cone (star in purple). For instance, metabolic flux vector in B can be
expressed as a nonnegative linear combination of extreme pathways or elementary modes in
D as follows: r = 0.3 EM™; + 0.75 EM™, + 0.7 EM"3 + 0.25 EM™5 (the asterisks refer to
elementary modes that are also extreme pathways) or r = 0.2169 EM,4 + 0.1669 EMg +
0.0831 EM7 + 0.5331 EMg. Similarly, Flux Balance Analysis represents only a pathway that
lies anywhere in the cone (triangle in orange) and satisfies the defined objective function.
For instance, metabolic flux vector in C can be expressed as a non-negative linear
combination of extreme pathways or elementary modes in D as follows: r = 0.35 EM™; +
0.65 EM™3 + 1.0 EM™5 or r = 0.65 EMg + 0.35 EM7. Metabolic Pathway Analysis identifies
all genetically independent pathways with extreme pathways shown in blue circle and with
elementary modes shown in red square. F. Graphical representation of extreme pathways
and elementary modes for the simple metabolic network.
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Step 1. Pathway Identification

(e m—py =P
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Step 2. Pathway selection
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Step 3. Pathway evolution
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Strategy for rational design of cells with the most efficient minimized metabolic
functionalities. In Step 1, arrows shown in blue constitute the efficient pathway of interest to
convert S to P while arrows shown in green represent the inefficient pathway for conversion
of S to P. The dashed X implies the proposed disruption of a reaction in the efficient
pathway to block its operation. The blockage of the efficient pathway does not affect cellular
function since cells can choose other inefficient pathways to function. In Step 2, the dashed
arrows of the inefficient pathways represent their inactivation. The blockage of the efficient
pathway in this step inhibits cellular function because the strain is designed to couple cell
growth and the operation of the efficient pathway. In Step 3, the circles represent the
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plasmids carrying a library of mutated genes encoding corresponding mutated enzymes that
may complement the enzyme activity of the reaction disrupted in the efficient pathway.
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Implementation of multiple reaction deletion to rationally design the most efficient pathways
for converting the substrate A into the product P. A-D. Evaluation of sequential reaction
deletion. E. Summary of the effect of multiple reaction deletion on the total number of
elementary modes as well as the yield range of the desired product P. F. Alternative sets of
reaction deletion to achieve the most efficient pathways to convert the substrate A into the



