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Motivated by a developmental gas embolotherapy technique for selective occlusion of blood flow to
tumors, we examined the transport of a pressure-driven semi-infinite bubble through a liquid-filled
bifurcating channel. Homogeneity of bubble splitting as the bubble passes through a vessel
bifurcation affects the degree to which the vascular network near the tumor can be uniformly
occluded. The homogeneity of bubble splitting was found to increase with bubble driving pressure
and to decrease with increased bifurcation angle. Viscous losses at the bifurcation were observed to
affect the bubble speed significantly. The potential for oscillating bubble interfaces to induce flow
recirculation and impart high stresses on the vessel endothelium was also observed.
© 2010 American Institute of Physics. �doi:10.1063/1.3442829�

I. INTRODUCTION

This work is primarily motivated by a novel concept of
gas embolotherapy to treat tumors.1–12 In this potential treat-
ment modality, transvascular perfluorocarbon �PFC� droplets
�6 �m in diameter� are selectively vaporized using high in-
tensity ultrasound �acoustic droplet vaporization �ADV�� at a
desired location near or in the tumor microcirculation to
form substantially larger gas bubbles ��150 times volume
expansion� which then occlude blood flow and induce tumor
infarction. ADV in small vessels has the potential to induce a
range of bioeffects, but vaporizing droplets too far from the
tumor may lead to undesired collateral infarction of healthy
tissue. Consequently, understanding the transport of bubbles,
which are long compared to microvessel diameters, is essen-
tial to designing treatment strategies. We anticipate that the
following sequence of events occurs after ADV in order for a
bubble to occlude blood flow. �a� The bubble, which initially
does not contact the vessel wall, is transported along by the
blood flow. These bubbles are typically long compared to the
vessel diameter �2–10 times the vessel diameter�, especially
near their ultimate lodging location. �b� After traveling
through constrictions, bifurcations, or due to other mecha-
nisms such as gravity or chemical effects, the bubble comes
close enough to the vessel wall that it may contact the en-
dothelium and form a contact line which is dominated by
surface tension forces. In this step, the bubble may continue
to slide along the vessel wall or may become immobilized
immediately. �c� The bubble becomes immobilized or lodged
when the driving pressure cannot overcome the surface ten-
sion resisting the motion of the bubble.

The homogeneity of bubble delivery is expected to de-
termine the uniformity of tumor infarction. Previous studies
have used bench top experiments to investigate the splitting

and lodging behavior of bubbles as they travel through bifur-
cations at arterial, arteriolar, and capillary levels.3–5 Theoret-
ical quasisteady models were presented to explain bubble
splitting and lodging,3,4 but these models do not provide in-
formation regarding the stress and velocity fields as the
bubbles travel through bifurcations. In previous work, we
examined the dynamics of rapidly expanding bubbles during
ADV and the associated flow field and wall stresses, in rigid
and flexible tubes, using a cut-cell finite-volume method.11,12

In other work, we studied sticking and sliding of a small
�compared to vessel diameter� bubble along a microvessel
wall using the boundary element method �BEM�.6,13,14

Previous experiments have shown that a bubble can ei-
ther travel through a bifurcation without contacting the wall
or move in a “stick and slip” or continuous motion while
contacting the wall.3 In our microchannel experiments we
observed that bubbles usually contacted the wall, especially
at low pressures, and we investigated a hysteresis region in
which the bubble did not split evenly even with no effect of
gravity.4 We concluded that at low pressures or low bubble
speeds the film thickness disappears and the bubble can con-
tact the wall. Previous studies have demonstrated that a film
develops between the bubble and the channel wall, but this
film decreases in thickness as the bubble speed or capillary
number decreases.15–17

Transport of microbubbles is also relevant to air
embolism18–21 where bubble entrapment is undesirable. Ad-
vancements in microfluidic devices necessitate an improved
understanding of the dynamics of bubbles traveling through
bifurcations since bifurcations are used in microchannel mix-
ing devices where bubble entrapment becomes an important
issue. Recently bubbles in nano- and microfluidic circuits
have attracted interest for a variety of applications,22 includ-
ing removal of bubbles from channels,23 inducing and con-
trolling flow,24–27 and in facilitating femtosecond laser
nanomachining.28 Previous fundamental fluid mechanics
studies have considered the time-dependent movement of a
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semi-infinite bubble in a channel with film thickness29 and
the steady movement of a semi-infinite bubble contacting the
channel walls.30 Others have investigated the transport of
small droplets through bifurcations.31 However, the literature
contains very little work on long bubbles moving through
bifurcations.

Consequently, this study considered the transport of a
pressure-driven semi-infinite bubble which contacts the par-
ent channel walls of a bifurcation as an initial model of long
microbubble transport through microvessel bifurcations. We
use the BEM to model a wall-contacting bubble traveling
through a bifurcation in a two-dimensional channel. This
simplified model will provide information about stresses and
velocities as the bubbles slide along the vessel wall. Using
the BEM will allow us to study a contacting bubble with
faster computing times and a precise location and shape of
the bubble interface, which is important in calculation of
pressures, stresses, and velocities in two phase flows. Even
though this model does not consider a finite bubble and
three-dimensional effects, which may be important, it pro-
vides valuable information about the stresses and velocities
near the contact line and allows us to compare computational
work to previous experimental and theoretical models. Our
aim is to better understand the bubble splitting behavior, the
corresponding velocity and pressure fields in the liquid sur-
rounding the bubble, and the shear stress along the wall.

II. MODEL

A. Governing equations

The model presented here considers the time-dependent
motion of a semi-infinite bubble through a geometrically
symmetric two-dimensional bifurcating channel �Fig. 1�. The
liquid surrounding the bubble is incompressible and Newton-
ian. Since the Reynolds numbers in the microcirculation are
low �Re�1�, Stokes flow is considered. The governing
equations are the continuity and Stokes equations. The di-
mensionless forms are

�� · u� = 0, �1�

− �p + �2u� + Boe�g = 0, �2�

where u� and p are the velocity and pressure, respectively.
Nondimensionalization has been performed using L�=half
width of the parent channel as the characteristic length scale
�Fig. 1�, U�=�� /�� as the velocity scale �a common choice
for interfacial flows, where �� is the surface tension and �� is
the dynamic viscosity�, and P�=�� /L� as the pressure scale.
Bo=rga2 /� is the Bond number, where g is the acceleration
due to gravity, and e�g is the unit vector in the direction of
gravity. Time t is nondimensionalized by L� /U�.

B. Initial and boundary conditions

The bubble interface is initially at the parent tube en-
trance �Fig. 1�. The bubble contacts the channel walls and is
driven by a constant dimensionless bubble pressure Pbub. The
top and bottom daughter channels have dimensionless outlet
pressures of Pt and Pb, respectively, which may have differ-
ent values.

The velocity of the two moving contact lines is com-
puted using Tanner’s law32,33 as follows:

ucl = − k��D − �S� , �3�

where �D is the dynamic contact angle �varies with time�
between the bubble surface and channel wall at the contact
line, while �S is the static contact angle �an “equilibrium”
value corresponding to a stationary bubble�. Note that with
our choice of velocity scale the relative magnitudes of vis-
cous and surface tension forces express themselves as a
“contact line capillary number” in the dimensionless contact
line velocity ucl. It was observed that choosing �S very close
or the same as the dimensionless pressure ensures that the
contact line moves with the bubble meniscus. This guideline
was followed in all our simulations since this closely repre-
sents our experimental observations. As we move away from
the contact lines, the velocity on the channel walls linearly
decreases to zero over a “slip length” l, i.e., the no-slip
boundary condition, to avoid singularities at the contact
lines. The slip velocity within the slip length32 is

u = ucl�1 −
x

l
� , �4�

where x is defined as the distance along the solid boundary
from the contact line. Thus, the contact line moves at speed
ucl and no-slip applies at the wall at distances greater than the
slip length away from the contact line. The stress boundary
condition at the bubble interface is given by

�f� = � · n� , �5�

where �f� is the nondimensional modified stresses exerted by
the two fluids, � is the curvature of the interface, and n� is the
normal vector pointing into the liquid.

Once the flow field is determined with these boundary
conditions, the following kinematic boundary condition is
used to advance the interface shape in time:

FIG. 1. Channel geometry and example of a boundary mesh. The bubble
enters the bifurcation through the parent channel on the left and moves to
the right. Pbub is the driving pressure of the bubble, Pb and Pt are the
pressure at the bottom and top outlets, respectively.
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�Y�

�t
· n� = u� · n� . �6�

The kinematic boundary condition implies that at any given
point, the interface moves normal to itself with the local
normal fluid velocity. Once the interface is advanced in time,
we solve for the flow field for the new bubble shape with the
same boundary conditions, and the algorithm is repeated to
step the interface in time.

C. Numerical method

The solution of linear, elliptic, homogeneous, partial dif-
ferential equations may be represented by boundary integrals
involving the unknown function and its derivatives. For two-
dimensional Stokes flow,

ckjuk�x�o� =
− 1

4�
�

C

fi�x�,x�0�Gij�x�,x�0�dl�x��

+ �
C

ui�x��Tijk�x�,x�0�nk�x��dl�x�� , �7�

where C is the selected flow boundary, f�=�= ·n� is the modi-
fied stress, �== �−p−Bo·e�g ·x��I=+ ��u� + ��u��T� is the modified
stress tensor, n� is the normal pointing into the domain, and
ckj is the tensor due to stress jump at the boundaries �	kj /2
for smooth boundaries�. Gij and Tijk are the two-dimensional
Stokeslet and the associated stress field, respectively, defined
as

Gij = − 	ij ln	x� − x�0	 +
�xi − x0i��xj − x0j�

�x� − x�0�2 , �8�

Tijk = − 4
�xi − x0i��xj − x0j��xk − x0k�

�x� − x�0�4 . �9�

This formulation allows us to use the BEM.34–36 We use
quadratic elements to compute the integrals in Eq. �7�. A
ten-point regular Gaussian quadrature is used if x0 does not
lie on the element. If x0 does lie on the element being evalu-
ated, we use a ten-point logarithmic quadrature to evaluate
the portions of the integral that involve the logarithmic sin-
gularity. This results in a matrix equation, which we solve for
the unknown stress or velocity components at each node by
Gauss elimination with partial pivoting. By using Tanner’s
law, described in Sec. II B, we avoid stress singularities at
the contact line. An example of schematic of the discretized
boundary is shown in Fig. 1.

The curvature of the bubble interface � was computed
using cubic splines. Equation �6� was used to step the bubble
interface node points in time using either a forward Euler or
Adams–Bashforth scheme. Once all components of stress
and velocity are determined on the boundary at a particular
time step, velocity and stress at any interior point can be
determined using the version of Eq. �7� for x0 not on the
boundary in which ckj corresponds to the identity matrix. At
select time steps, the velocity and pressure fields in the liquid
were computed by meshing the interior domain using a con-
strained Delaunay mesh generator.37

III. RESULTS AND DISCUSSION

A. Computational parameters and numerical
considerations

Simulations were conducted using our in house BEM
code for a range of physiologically relevant dimensionless
parameter values for arterioles and capillaries. Based on the
surface tension of a PFC or air bubble with the surrounding
blood, the dimensionless driving pressures in arterioles and
capillaries can range from 7 to 1 depending on the vessel
size, which ranges from 5 to 50 �m in diameter. In the
model presented here, the driving pressure is equal to the
pressure inside the bubble because we model a semi-infinite
bubble. This driving pressure will be equivalent to the dif-
ference in pressure between the rear and front meniscus,
which will be the pressure difference driving the bubble
through a vessel or a bifurcating vessel, and the pressure
difference in the bubble interface will determine the menis-
cus shape. The values for the parameters used were the same
from previous work.3 Bubble and daughter channel outlet
pressures were varied, along with the bifurcation angle
�angle between the daughter channels� and contact line pa-
rameters, to investigate the interface evolution, bubble split-
ting behavior, and velocity and pressure fields in the sur-
rounding fluid. The bifurcation angles were selected to
approximate the typical range of physiological values, 78°–
110°. These were the same angles considered in our experi-
mental work.3,4 Since this study mainly focused on situations
where the bubble is close to lodging and Bo is small
�10−4–10−6� in arterioles and capillaries, gravity effect was
not considered. It is possible to keep Bo if gravitational ef-
fects are important as it may be in some regions of the vas-
culature. Asymmetry was introduced by varying the daughter
tube outlet pressures.

The convergence of the code was investigated by vary-
ing the number of boundary nodes and time step size ��t� to
achieve graphical convergence of the bubble interface shape
following splitting and to maintain stress and velocity toler-
ances in the range from 10−10 to 10−12. The final geometry
had a total of 700 nodes of which 120 were used along the
bubble interface. The straight regions of the channel wall had
less densely spaced nodes compared to the curved regions. A
heavy concentration of nodes was needed in regions where
the daughter tubes start and in the carina of the bifurcation.
For calculations in the domain interior, different resolutions
were used depending on the shape of the bubble at a specific
time step. Some cases required more nodes in front of the
bubble because of the presence of recirculation regions. The
mesh ranged from 8000 to 19 000 nodes. We could use this
high a density of interior nodes as the flow-field computation
was relatively fast for a specific time step �
5 min�. Calcu-
lating the bubble evolution and flow field took approximately
24–36 h on one processor of a multiprocessor Sun Fire V880
equipped with 8 Gbytes of random access memory �Sun
Microsystems, Santa Clara, CA�, and depended on driving
pressure �t and bifurcation geometry.
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B. Splitting behavior

This section focuses on the splitting behavior of bubbles
as they traverse through the bifurcation. The first computa-
tional model developed considered a bubble that did not con-
tact the walls. Figure 2 shows a model that begins with a thin
film between the bubble and the parent tube walls. However,
as the bubble begins to split, it is observed that the film
thickness between the bubble and the channel wall decreases
significantly on the sides of the bifurcation as well as near
the carina. A series of simulations were performed with dif-
ferent driving pressures and mesh densities to eliminate the
possibility of numerical error. All the solutions seem to sug-
gest that the bubble actually contacts the wall either before it
begins to split in the bifurcation or after the splitting starts in
the daughter channels. This was later corroborated with mi-
crochannel experiments.4 Accordingly, we changed the
model and started our simulations with the bubble contacting
the parent tube walls, thus forming a three phase contact line
that can slide along the channel wall. One possible mecha-
nism of bubble lodging is the surface tension forces at the
contact lines being large enough to counteract the pressure
difference driving the bubble motion. In the present BEM
model we focus on the splitting behavior of bubbles contact-
ing the wall and the velocities and stresses close to the three
phase contact line.

Asymmetry is created by specifying different pressures
at the daughter tube outlets. This is similar to the physiologi-
cal behavior at the arteriolar and capillary levels, where Bo is
very small and changes in daughter branch pressures domi-
nate the bubble dynamics at vascular bifurcations. Figure 3
shows the splitting ratio for two geometrically different bi-
furcations �bifurcation angles of 78° and 110°� with Pt=1
and Pb=0 over a range of driving bubble pressures. The
splitting ratio is defined as the ratio of the bubble length in

lower daughter channel to the bubble length in upper daugh-
ter channel, where the bubble lengths are measured along the
centerlines of the daughter channels. Since this model con-
siders a semi-infinite bubble we measure the bubble lengths
once any one of them reaches the straight section of the
daughter channel. The results show that as the driving bubble
pressure increases the splitting ratio increases. We observe
that there is a critical pressure at which the bubble does not
split and the entire bubble enters the channel with less pres-
sure. This is similar to the effect of capillary number on
bubble splitting observed in previously published bench top
experiments in which a critical capillary number below
which splitting does not occur was identified.3 Splitting ra-
tios predicted by our previous quasisteady one-dimensional
model,3 modified to reflect this flow scenario, are plotted for
the two bifurcation angles for comparison with the BEM
results. Although the quasisteady one-dimensional model is a
substantial simplification and does not provide details about
the flow very close to the bubble, it does predict the splitting
ratio reasonably well. The results show that the splitting ratio
is lower for the larger bifurcation angle. It was observed that
bubbles moving at the same flow conditions traveled faster in
the bifurcation with angle 78°.

To investigate this further, a dimensionless flow rate per
unit depth into the page Q is calculated at the daughter tube
outlets. This is done by numerical integration of the velocity
at the outlets cross section,

Q = �
ybottom

ytop

u� · n̂dy . �10�

Figure 4 shows Q versus t for two bubbles moving with the
same flow conditions, Pbub=6 and Pt=1, through the two
bifurcations with different angles. The flow rate in both
daughter branches is lower for a bifurcation angle of 110°.

FIG. 2. Bubble evolution for the original BEM model of a bubble with a
film thickness between. The parameters for this case are Pbub=2, Bo=0, and
Pt = Pb=0. The bubble evolution shows that the bubble gets very close to
the channel walls on the sides as it begins to split and at the carina of the
bifurcation.

FIG. 3. Slitting ratio vs bubble pressure with Pt=1. The bifurcation with the
smaller angle had larger splitting ratios for all pressures investigated. The
splitting ratio increases with pressure and there is a critical pressure for
which the bubble does not split and enters the branch with less pressure
resistance. The graph also shows the splitting ratio values predicted by our
previous quasisteady model modified to account for these flow conditions.
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These results, as well as the results from previous experi-
mental work,4 suggest that the losses from the wider angle
bifurcation make significant changes to the motion of
bubbles.

As shown in Fig. 4, there are “wiggles” or small fluctua-
tions in Q as time progresses. During our simulations we
varied the time steps in order to discard numerical error from
the time stepping method used here. The wiggles in Q as
time progresses are due to fluctuations in the contact angle as
the meniscuses travel through the bifurcation. The contact
angle was observed to vary slightly and was not constant as
it slipped through the bifurcation. These fluctuations in the
outlet flow rate are mainly due to a variation in the speed of
the contact line, similar to a small stick and slip behavior of
the contact line. Figure 5 shows the splitting ratio with a
driving bubble pressure of 5 for various values Pt �Pb is

maintained at zero�. As expected, increasing the top daughter
channel outlet pressure decreases the splitting ratio. The
splitting ratios for the bifurcation with the wider angle again
are consistently smaller than the bifurcation with the smaller
angle.

One can speculate that increasing the bifurcation angle
will change the behavior of the contact lines both in the front
meniscus as well as in the rear meniscus of a bubble as it
moves through a bifurcation. Thus, the splitting and lodging
behavior of bubbles will depend significantly on the bifurca-
tion angle. This is an important parameter for microchannel
design to avoid or, depending on the application, promote
bubble entrapment or manipulation of the three phase contact
line.

Figure 6 shows examples of bubble interface evolution
as a bubble splits in the bifurcation. The net viscous resis-
tance downstream of the bubble decreases as the bubble gets
closer to the outlets of the daughter branches. This decrease
in viscous resistance will allow the bubble to increase in
speed. From Fig. 4 it is observed that the flow rate increases

FIG. 4. Flow rates for Pbub=6 and Pt=1 for two different bifurcating angles.
The terminations of the graphs correspond to the time it takes the bubble to
reach the straight section of the daughter branches. The bubble moving in
the bifurcation with angle of 110° moves slower and thus takes longer to
reach the straight section.

FIG. 5. Graph of splitting ratio vs pressure in top daughter branch. The
splitting ratio decreases with increasing pressure in the top daughter branch.
The bifurcation with larger angle has lower splitting ratio at each daughter
channel pressure.

FIG. 6. Bubble evolution for a bifurcating angle of 78°. �Top� This is a
bubble evolution with parameters Pbub=6 and Pt=1. �Bottom� This is a
bubble evolution with parameters Pbub=4 and Pt=1. The bubble lengths
evolve at different rates since the bubble interface in one branch moves
faster than the one in the other branch. The branch with less pressure has a
longer bubble.
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at a high rate when the bubble gets closer to the outlets. This
will create an instability in bubble speed, since the longer
portion of the bubble will experience less viscous resistance
and speed up while the smaller will have lower speeds. This
is more noticeable with longer daughter channels. Figure 7
shows the flow rate and interface evolution for a bubble
moving through a bifurcation of angle 110° but with longer
straight daughter channels. The flow rate for the bottom
branch is increasing significantly faster than the flow rate in
the top branch. This will cause a splitting instability similar
to that observed by Baroud et al.38 in an experimental study
for airway reopening in which a semi-infinite plug moved
through a bifurcation and to that observed in our previous
experiments with finite bubbles.4 Although we did not con-

duct a stability analysis for Pt= Pb, we note that perturbing
the bubble length in a daughter branch does lead to uneven
splitting consistent with this instability.

The spike in the upper daughter tube from t=91 to 102
�Fig. 7� is due to contact angle instability. During this time
interval, the contact line speed changes from positive to
negative. We suspect that if the bubble had a finite length it
would probably reverse and go into the lower branch during
this time interval or remain static for a period of time. After
this time interval the contact line stabilizes and the flow rate
is approximately constant. This situation is discussed in more
detail below based on velocity and pressure fields. This split-
ting instability will most likely regulate itself as more
bubbles lodge in the microcirculation of tumors, thus in-
creasing the resistance of flow and allowing bubbles to reach
previously unoccluded regions.

In previous experiments,3,4 we observed bubbles which
began to split but then one of the menisci reversed and the
entire bubble eventually entered only one daughter branch of
the bifurcation. Values close to the critical driving pressure at
which bubbles do not split �Fig. 3� were investigated further,
since bubble reversal usually occurred at values close to
critical Ca in our previous experiments. The same bubble
reversal as the experiments was not expected to occur with a
semi-infinite bubble because the conditions for this occur-
rence are more applicable for a finite bubble. Bubbles will
not exhibit reversal until the rear meniscus reaches the carina
of the bifurcation and the surface tension prevents the split of
the bubble interface. This never happens in the semi-infinite
bubble, thus there is no force to reverse the bubble to the
other branch. Even though bubbles that began to split did not
return even at parameters close to the critical pressure, it was
observed that, at daughter pressures higher than the critical
pressures in which the bubble went entirely into one branch,
the lagging meniscus did reverse while the bubble portion in
the branch with lower outlet pressure accelerated. Figure 8
shows the bubble interface evolution with meniscus reversal
and the flow rate for the two daughter branches. The begin-
ning of the bubble reversal corresponds to the dramatic in-
crease in flow rate for the top branch.

C. Velocity and pressure field in the surrounding fluid

This section will further examine the dynamics of the
bubble for some specific flow situations using the velocity
and pressure fields of the core fluid in the domain interior.
There is a stagnation point in the center of the bifurcation
carina for the symmetric outlet pressure case, Pt= Pb �Fig. 9�.
The pressure is highest at the stagnation point and decreases
as one moves away from the center of the carina of the
bifurcation. We also observe that pressure increases near the
contact line. Experiments by Suzuki and Eckmann39,40 have
shown that bubbles can damage endothelial cells, depending
on the time for which bubbles contact the vessel wall, and
that adding surfactants minimizes the damage bubbles cause
to the endothelial cells. The pressure increase near the con-
tact line could be another contributing fact to the damaging
effect of bubbles that travel through the vessels.

FIG. 7. Bubble evolution and Q for a bifurcation angle of 110°. The param-
eters for this bifurcation are pressure of 6 driving the bubble and pressure of
2.5 in the top branch. �Top� The bubble favors the bottom branch because it
has less opposing pressure than the top branch. �Bottom� Looking at Q vs t
we observed that while the flow rate is increasing in the lower branch the
top branch remains with constant flow rate. The spike at flow rate at time
91–102 is due to an instability in contact line behavior.

061902-6 Calderon et al. Phys. Fluids 22, 061902 �2010�



In the symmetric case all the streamlines are parallel
without any recirculation regions. In the cases were Pt and
Pb are different the bubble does not split evenly, and in cases
where the driving pressure is close or equal to the critical
pressure for splitting recirculation regions can be observed.
We pay special attention to these cases since these yield re-
sults that are significant in relation to the bubble reversal
phenomena observed experimentally.3,4

Figure 7 shows an instability in flow rate and contact
angle that could indicate the onset of bubble reversal if it
were of finite length. We calculated the velocity and pressure
fields in the domain interior at t=96, which is inside the
range where the flow rate instability occurs �Fig. 10�. Figure
11 shows a magnified view of the contact line in the top
branch. We observe a recirculation region in front of the
meniscus in the upper daughter branch which has a higher

outlet pressure. This vortex formation is caused by the insta-
bility of the contact line at this time step. From these results
we can speculate that bubble reversal might happen if the
bubble were finite since a reversal of the bubble will prob-
ably cause a similar vortex due to the change of direction of
the meniscus. The vortex observed in Figs. 10 and 11 disap-
pears after the contact line stabilizes. Figure 12 shows the
same bubble at a later time of t=102 in which the vortex
disappears and the pressures near the contact line of the top
branch are lower. Figure 2 shows that the pressures between
the bubble and the channel wall in the lower daughter branch
are high but there is no vortex in this region.

The extent of the high pressure region and the size of the
vortex near the contact line were investigated with different
values of slip length. Slip length was varied arbitrarily from

FIG. 8. Bubble evolution and flow rate for a bubble with parameters Pbub=7 and Pb=8. The left figure shows the bubble evolution and the reversal of the
contact line. The right figure shows the flow rates in each daughter channel.

FIG. 9. �Color online� Pressure contours and streamlines for symmetric splitting. The driving bubble pressure is 5. �Left� A stagnation point can be observed
in the center of the bifurcation and the flow field looks laminar and symmetric. The pressure is higher near the carina of the bifurcation and near the contact
lines.
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0.1 to 0.6. The extent of the high pressure region and the size
of the vortex increased less than 5% with slip length, but a
vortex and a high pressure region was always observed re-
gardless of the slip length value. The pressures exerted by
this recirculation region close to the contact line are higher
than Pbub− Pt. This suggests that the recirculation region
close to the contact line increases the pressure at the vessel
wall, which could potentially induce bioeffects in the
endothelium.

A vortex was also created near the contact line for the
parameters Pbub=7 and Pb=8 in which contact line reversal
was observed �Fig. 8�. Figure 13 shows a small vortex near
the contact line at t=55. This vortex is small because the
contact line is stopping. Figure 14 shows the pressure con-
tours and streamlines at t=60.4. The streamlines in the
lower branch are heading toward the bubble indicating flow
reversal, which makes sense since the pressure in the lower
branch is higher than the pressure driving the bubble. A vor-
tex is present between the bubble interface and the wall in
the upper daughter branch �Fig. 14�. This is due to the flow
from the lower branch moving toward the upper branch and
by some squeezing of the bubble to the wall of the bifurca-
tion. The wall stresses resulting from these vortices may po-
tentially injure the vessel endothelium. On the other hand,
these recirculation regions might be beneficial to the mixing
of fluids in some microfluidic channel applications.

D. Wall shear stress

To specifically examine the potential for endothelial cell
injury due to shear stress at the vessel wall in addition to
pressure, we computed shear stress along the channel wall.
Shear stress is plotted as a function of position S along
the interior, upper, and lower channel walls in Fig. 15.

Figure 15�a� shows the convention used to measure S for
each of these, which corresponds to moving clockwise along
the boundary. The wall shear stresses are shown in Figs.
15�b� and 15�c�, and Fig. 15�d� corresponds to the configu-
rations shown in Figs. 10, 12, and 14, respectively. For all of
these, the shear stress along the upper and lower walls is
highest near the contact lines. Along the interior wall, the
shear stress is maximum near the carina of the bifurcation. In
Fig. 15�b�, there is also a local maximum in shear stress
along the upper wall near the recirculation region that occurs
in front of the bubble nose there �see Fig. 10�. This suggests
that the oscillating bubble interface and the recirculation re-
gion it induces have the potential to impart high stresses on
the endothelium for sustained time period during the oscilla-
tory behavior. In Fig. 15�d�, the shear stress along the interior
wall is higher in the upper branch of the bifurcation, down-
stream from the small recirculation region that occurs be-
tween the bubble and the wall in the upper branch �Fig. 14�,
than is the shear stress in the lower branch. This corresponds
to the higher flow in the upper branch compared to the lower
branch. The upper branch receives most of the bubble, with
little flow into the lower branch �Fig. 14�. Correspondingly,
the interior wall along the lower branch has a lower shear
stress. The lower wall does have a high shear stress near the
contact line, as in the other scenarios. In general, the maxi-
mum shear stress is the same order as the maximum pres-
sure. The shear stress gradients are high near the bubble
contact lines. The stress information provided by this study
will guide experiments, where it is challenging to measure
stress and stress gradients, to further examine the potential
for moving bubbles to induce bioeffects on the endothelium.

FIG. 11. �Color online� Enlarged view of region near the contact line,
Pbub=6 and Pt=2.5. We can observe the vortex clearly in front of the bubble
and high pressure near the contact line. There is also a small vortex near the
carina of the bifurcation, which also has slightly higher pressures than the
rest of the flow field.

FIG. 10. �Color online� Pressure and streamlines for t=96. The parameters
for this time are Pbub=6 and Pt=2.5. This time corresponds to the unstable
behavior of flow rate observed in Fig. 7. The flow is uniform in most of the
bifurcation expected in front of the meniscus in the branch with higher
pressure which exhibits recirculation.
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E. Limitations

Although the current model represents an important first
step in computationally modeling the transport of long
bubbles through bifurcations, it does have some limitations.
It is a two-dimensional model. As the simulations start, the
bubble contacts the top and the bottom walls of the parent
tube. Extrapolating to the three-dimensional situation, one
will expect the bubble to contact the whole circumference of
a circular channel. However, as the bubble travels into the
daughter tubes, it only contacts one side of the daughter
tubes and not both, meaning that in a three-dimensional situ-
ation, the bubble no longer contacts the entire circumference
of the channel. This might not be the case in all splitting
scenarios, even though we have observed partial contact of
bubbles as they pass through bifurcations in previous
experiments.4 This model could also treat tapered channels
or variations in diameter, this type of geometrical situations
would be very applicable for the adherence of bubbles in

vasculature and will change the motion of the bubble. The
motion of the bubble and its adherence is governed by the
differences in pressure at each meniscus and the surface ten-
sion forces that interact with the fluid and the vessel wall.
Changing the geometry of the vessel or channel will affect
the shape and motion of the bubble and might create differ-
ent adherence situations. This model can be extended to con-
sider multiple bifurcations and finite length bubbles, as in
our previous experimental studies,4,5 and we plan to do so in
future studies. Computation time will probably be more ex-
tensive, but significantly faster than if using other methods
such as finite volume or finite element methods. Likewise,
this model could be expanded in future work to consider
transport of bubbles in tumor vasculature in addition to ves-
sels feeding the tumor.

IV. CONCLUSIONS

The work presented here used a boundary element model
to calculate the interface shape and flow field for a semi-
infinite bubble contacting the parent channel moving through
a bifurcation. It has been shown that the splitting ratio in-
creases with increasing driving bubble pressure while it de-
creases as the bifurcation angle is increased. Viscous losses
at the bifurcation were observed to affect the bubble speed
significantly. Bubble reversal and splitting instability ob-
served in our previously reported studies3,4 were also inves-
tigated. Bubble reversal was not clearly observed, but menis-
cus reversal and creation of recirculation regions due to
changes in the velocity field and instabilities were observed,
suggesting that if the bubble were finite, reversal or stagna-
tion of one meniscus could be possible. The model presented
here also allows us to calculate the velocity profiles, pres-
sures, and stresses associated with a bubble traveling through
a bifurcation. It was observed that the pressure and wall
shear stresses are higher at the carina of the bifurcation and
near the contact line. The cases where recirculation was ob-
served also had high levels of pressure and wall shear stress
near the contact line. The results from pressure and wall

FIG. 12. �Color online� Pressure and streamlines for t=102. The vortex disappears and the pressures near the contact line in the branch with higher pressure
are lower than at t=96.

FIG. 13. �Color online� Streamline plot of a small vortex in front of a
contact line. This is a vortex that is diminishing as the contact line moves
backward. Parameters: Pbub=7 and Pb=8.
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shear stress will give insight into the forces and stresses cells
might experience if bubbles are sliding over the endothelium
and will guide experiments to examine possible bioeffects
induced by bubble motion. The finding of recirculation re-
gions near the contact line, even in Stokes flow, is relevant to
the design of microfluidic cell culture devices that use mul-

tiphase flow and to microdevices in which mixing is desired.
This first study of semi-infinite bubble transport through
channel bifurcations provides new physical insights regard-
ing the behavior of long bubbles in gas embolotherapy, as
well as microfluidic and other physiologic situations involv-
ing bubbles.

FIG. 14. �Color online� Pressure contours and streamlines for Pbub=7 and Pb=8, t=60.4. �Left� The overall flow field. �Right� Magnified view of the vortex
in the daughter channel.

FIG. 15. �Color online� Shear stress along the channel wall. �a� Position S along the wall for the three sections of the wall section, e.g., interior wall, lower
wall, and upper wall. S is measured in a clockwise direction for each of these sections. Shear stress vs S is shown for the three wall sections for �b� t=96,
Pbub=6, and Pt=2.5 �corresponds to Fig. 10�, �c� t=102, Pbub=6, and Pt=2.5 �as in Fig. 12�, and �d� t=60.4, Pbub=7, and Pb=8 �as in Fig. 14�.
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