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Multiple high-throughput genetic interaction studies have provided substantial evidence of modu-
larity in genetic interaction networks. However, the correspondence between these network mod-
ules and specific pathways of information flow is often ambiguous. Genetic interaction and mo-
lecular interaction analyses have not generated large-scale maps comprising multiple clearly
delineated linear pathways. We seek to clarify the situation by discerning the difference between
genetic modules and classical pathways. We review a method to optimize the discovery of biologi-
cally meaningful genetic modules based on a previously described context-dependent information
measure to obtain maximally informative networks. We compare the results of this method with the
established measures of network clustering and find that it balances global and local clustering
information in networks. We further discuss the consequences for genetic interaction networks and
propose a framework for the analysis of genetic modularity. © 2010 American Institute of Physics.
�doi:10.1063/1.3455183�

Systematic genetic perturbation is a powerful tool for in-
ferring gene function in model organisms. Functional re-
lationships between genes can be inferred by observing
the effects of combined genetic perturbations. The study
of these relationships, generally referred to as genetic in-
teractions, is a classic technique for ordering genes in
pathways, thereby revealing genetic organization and in-
formation flow paths among genes and their products.
Large-scale genetic interaction studies based on this tech-
nique have provided substantial evidence of modular or-
ganization in genetic interaction networks. However, the
correspondence between these network modules and spe-
cific pathways of information flow is often ambiguous in
that the scaling up of genetic interaction analysis has not
generated large-scale maps comprising distinct linear
pathways. We seek to clarify the situation by defining
genetic modules independent of classical pathways and
vice versa. We propose that a genetic module is a more
general construct than the molecular pathway concept
and define a module as a set of coinformative genes that
may or may not be involved in the same linear molecular
sequence. We review a recently proposed method to opti-
mize information extraction that consequently led to the
discovery of these modules in genetic interaction data.
We contrast this method to other measures of network
clustering and discuss its relationship to alternate meth-
ods of genetic interaction analyses.

I. INTRODUCTION

Genetic interaction analysis is rapidly becoming a
prominent tool for inferring the function and structure of
genetic networks. To date, genome-scale studies have in-
volved primarily the baker’s yeast Saccharomyces cerevisiae

due to its genetic manipulability, short life cycle, and poten-
tial for high-throughput phenotyping. Large-scale studies
performed with both engineered strains1–7 and yeast inter-
cross strains8 have revealed the power of genetic interactions
to map genetic networks and to understand gene function.

The use of genetic interactions to understand the struc-
ture and flow of biological information is derived from the
classical analysis of comparing the effects of two individual
genetic mutations with the effects of the combination of
those mutations. Historically, targeted genetic interaction
analysis has been an effective tool for mapping biological
pathways.9 As data collection grows in scale, the mapping of
individual pathways has become increasingly intractable due
to the functional and structural complexity inherent in bio-
logical systems. Networks that represent the interactions of
multiple genetic variants typically form a dense web of nu-
merous potential pathways and molecular mechanisms. The
concept of genetic modularity provides a powerful paradigm
for the analysis of such large and dense networks.10 A modu-
lar representation allows a substantial reduction of genetic
complexity,11 making detailed genetic modeling of key sys-
tem elements tractable. Since modular analysis is not con-
strained by the concept of sparsely connected linear path-
ways, it is more suitable to data-driven mapping of dense,
large-scale genetic networks.

However, it is not clear how to define modularity in
genetic interaction networks. While metabolic reaction net-
works and protein-protein interaction networks often exhibit
modularity as regions of high connectivity,11 genetic interac-
tion networks encode more abstract information and can gen-
erate modules of genes that function together in diverse ways
to inform phenotype. These modules can be defined as
groups of genes with interaction coherence across a large
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network;1,2,7,12 however, the resulting modularity can depend
on how genetic interactions are defined.13 Here, we expand
on previous works2,14,15 to show how an unsupervised
method of finding the most informative mapping of genetic
interactions tends to yield networks with modular architec-
ture. These modules, furthermore, were shown to make sig-
nificant biological sense. Given that modularity was a result
rather than an assumption of this analysis, we propose that
this method reveals inherent modularity in genetic data.

II. MODULES VERSUS PATHWAYS

We draw a key distinction between a genetic pathway
and a genetic module. A pathway is a specific information-
flow conduit, usually a sequence of molecular interactions.
In contrast, a module is an information-processing unit with
a self-contained emergent function. Modules therefore can
contain multiple pathways, and pathways can operate be-
tween modules to form intermodule connections.

Intermodular pathways serve as lines of communication
and coordination between distinct biological processes that
combine to regulate cellular function. For example, cell dif-
ferentiation from yeast-form to filamentous growth in bud-
ding yeast requires a pathway linking a mitogen-activated
protein �MAP�-kinase signal transduction module to the cell-
cycle control module in order to regulate cell elongation.16

The intermodular biomolecular pathway responsible for this
linkage is mediated by the Ste12-Tec1 transcription complex,
which is activated by the MAP-kinase Kss1 to transcription-
ally activate the cyclin-encoding gene CLN1. Indeed, the
definition of a module as a functional cellular subunit re-
quires such coordinating connections, and these connections
often correspond to the classical definition of a pathway.

By contrast, intramodular pathways are often the central
features of modules. In some cases, a module can be opera-
tionally defined as a collection of connected molecular-
interaction pathways. In addition to information-flow lines,
intramodular pathways involve feedback and feedforward
loops, scaffolds and tethers, regulators, and other interfaces
that combine to produce a distinct functional unit. Thus,
modules can be viewed as a level of organization above bio-
molecular pathways but below phenotypes.

The distinction between modules and pathways is par-
ticularly relevant when one seeks to analyze biological pro-
cesses with large-scale data sets. Using the early tools of the
biochemist �e.g., radioactive tracers� or the developmental
geneticist �e.g., gene/protein ordering through epistasis test-
ing�, one can decipher biochemical sequences. These meth-
ods, by their nature, tend to reveal distinct biomolecular
pathways, and from such early studies, the concept of bio-
molecular pathways arose. Observational biases and low ex-
perimental throughput necessitated a focus on a modest num-
ber of major information-flow trunk lines. From this
perspective, it is not surprising that early molecular network
maps feature sparsely connected pathways. However, analyz-
ing a high-throughput collection of phenotype observations
across multiple genetic backgrounds reveals functional orga-
nization involving many genes that are often not directly
involved in shared biomolecular pathways. Modern high-
throughput technologies for molecular network cartography

generate densely connected networks with numerous pos-
sible pathways, but a relatively modest number of interaction
clusters. Had such high-throughput experiments been the
first look at these networks, the module would probably be
the most prominent organizational concept rather than the
pathway.

This module-versus-pathway framework provides a
promising strategy for understanding large-scale genetic
data. The immediate challenge, however, is to develop tech-
nologies that infer and characterize genetic modules system-
atically, and that complement the proven techniques for path-
way mapping. Recent studies in genetic cartography
�mapping interactions between genes on a large scale� have
developed analytical methods to infer genetic modules.
These modules comprise of cofunctional sets of genes and
are derived primarily from phenotypic observation1,2,6,7,15,17

or computational analysis.12 A modular representation �by
definition� substantially reduces the complexity of the ge-
netic data. Key pathways, operating within or between mod-
ules, can be identified and mapped in terms of specific infor-
mation flows. In cases where large-scale molecular data are
available, these information conduits can then be translated
into specific molecular hypothesis.18

The inference of genetic modularity is ideally pursued
without preconceptions of the extent or even existence of
such modularity. In developing a technique to maximize the
extraction of biological knowledge from genetic data, we
recently found that the most informative network analysis
also yielded highly connected clusters of coinformative
genes. We identified these clusters as gene modules.15 Thus,
the study of genetic modularity might fruitfully be viewed
from the perspective of information theory. In this light,
modular architecture inferred in a genetic network maps how
information is distributed throughout a biological system or,
more specifically, a particular genetic data set derived from
that system. This proposition requires a method to measure
the information content of a system, and we proposed using
set complexity as a measure.14,15 By maximizing this com-
plexity in genetic network analysis by finding the most in-
formative rules of interaction, we were able to identify ge-
netic modules and thereby optimize the biological
information obtained from data derived from a set of genetic
perturbations. Each module contained genes with shared
functional annotations unique to that module, providing
strong evidence that these gene sets are precisely the gene
modules we have defined above. The modules overlapped
with known pathways but also allow for an interpretation of
cofunctionality that is complementary to specific molecular
sequences of information flow. Furthermore, the genetic in-
teraction rules that maximized set complexity often did not
correspond to rules commonly used in pathway analysis.
These complexity-based rules were interpreted as those that
govern how genes are organized into functional groups, tak-
ing into account the full content �and limitations� of the ana-
lyzed data set. This was contrasted with the pathway analysis
of genetic interactions, in which the rules are interpreted in
terms of information flow through individual gene pairs.
Thus, we conclude that the most fruitful application of the
complexity-based algorithm is the identification of gene
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modules rather than linear gene pathways. As a corollary, we
conclude that methods designed to order genes into
molecular-interaction sequences �pathways� are not ideal for
the discovery of modules.

In this work, we further demonstrate that these modular
structures are optimally defined using the set complexity
method described previously15 in a way that best balances
general and specific information within a network. We show
that naïve clustering measures are often not functionally in-
formative, particularly as networks become very dense and
involve multiple modes of interaction between nodes. Since
genetic interaction networks can become very dense, espe-
cially when one considers many genes involved in a given
function, a clustering measure that reflects functional modu-
larity is necessary. We provide evidence that set complexity
maximizes nontrivial, functional modularity.

III. MODULARITY IN GENETIC INTERACTION DATA

Genetic interaction is a general term to describe pheno-
typic nonindependence of two or more genetic perturbations.
However, it is generally unclear how to define this
independence.2,13,19 Therefore, it is useful to consider a gen-
eral approach to the analysis of genetic interaction. We have
developed a method to systematically encode genetic inter-
actions in terms of phenotype inequalities.2 This allows the
modes of genetic interaction to be systematically analyzed
and formally classified. Consider a genotype X and its cog-
nate observed phenotype PX. The phenotype could be a
quantitative measurement or any other observation that can
be clearly compared across mutant genotypes �e.g., slow ver-
sus standard versus fast growth, or color or shape of colony,
or invasiveness of growth on agar, etc.�. The genotype is
usually labeled by the mutation of one or more genes, which
could be gene deletions, high-copy amplifications, single-
nucleotide polymorphisms, or other allele forms. With geno-
types labeled by mutant alleles, a set of four phenotype ob-
servations can be assembled which defines a genetic
interaction: PA and PB for gene A and gene B mutant alleles,
PAB for the AB double mutant, and PWT for the wild type or
reference genotype. The relationship among these four mea-
surements defines a genetic interaction. For example, if we
follow the classic genetic definitions described above, PAB

= PA� PWT� PB describes one type of epistatic interaction,
while PWT� PAB= PA= PB is an example of asynthesis. There
is a total of 45 distinct inequalities that can be constructed
from four phenotypes.

Although this procedure reduces the data to a limited set
of experimental outcomes, there is still the potential for sub-
stantial complexity.20 One strategy to reduce this complexity
is to group these inequalities into rules of genetic interaction,
with each inequality within a rule representing different in-
stances of the same biological relationship. For example, in-
equalities PAB� PA= PB= PWT and PA= PB= PWT� PAB

might both be considered instances of synthetic interaction,
defined as the occurrence of two genetic perturbations with-
out individual effects on the phenotype combining to cause
an effect. Different groupings have been proposed and exam-
ined in literature.2,4 The goal of any such analysis is to obtain
the most biologically informative set of rules for genetic in-

teraction. Placed in this context, seeking the most informa-
tive analysis is a problem of finding the groupings of inter-
action inequalities that best resolve the underlying biology. A
set complexity measure, based in information theory and dis-
cussed in detail below, provides an agnostic solution to this
problem. Namely, this set complexity measure can be maxi-
mized to find the most informative inequality grouping. This
procedure depends only on the genotype and phenotype data,
requiring no additional prior information. We then assessed
these networks for biological meaning using two published
methods �Fig. 1�.2

The first method we have used to assess biological in-
formation is finding statistically significant associations be-
tween genes and functions �Fig. 1�a��. The genomes of
model organisms have been well annotated for gene function
and these annotations have been organized into the Gene
Ontology database.21 We generated and assessed a genetic
interaction network for biological statements, defined as a
particular gene nonrandomly interacting via a single rule
with multiple genes annotated with a shared biological
function.2 The significance of statements can be computed
with Fisher’s exact test and we defined valid statements as
those that meet a significance criterion �e.g., p�0.01 in Ref.
15�. The result was a computer-generated list of biological
statements relating genes, interaction modes, and target an-
notations, with entries such as: “A deletion of gene PBS2
interacts additively with deletion mutations of signal trans-
duction genes �p=0.001�.” The number of such existing
statements is highly sensitive to the interaction rules in the
network and thus served as a measure of how informative
each classification scheme was in a biological sense.

The second method we have used to extract biological
information from genetic interaction networks is the compu-
tation of mutually informative allele pairs within the network
�Fig. 1�b��. These calculations revealed global patterns of
gene association and distilled a complex genetic interaction
network down to modules of coinformative genes. These
mutually informative pairs of alleles exhibited an improbably
high degree of mutual information with common interaction
partners such that knowing the interactions of one allele may
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FIG. 1. �Color� Examples of biological information in genetic interaction
networks. �a� A biological statement showing the interactions of a gene
deletion �PBS2� with perturbations of genes with a common function �signal
transduction� via a common interaction rule �blue edges�. �b� Mutually in-
formative gene perturbations of STE12 and STE20 show large-scale patterns
of genetic interaction. Both panels adapted from Drees et al. �Ref. 2�.
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allow one to know the interactions of another. In genetic
interaction networks this pairwise property can be quantified
by the Shannon mutual information scores used to compute
the context-dependent complexity metric. We identified pairs
of alleles with statistically significant mutual information and
these pairs were mapped in mutual information networks. We
found that clusters or cliques of genes in a mutual informa-
tion network identify genes with similar effects on biological
processes. These groups of genes clustered by mutual infor-
mation correspond to specific modules. Therefore, a larger
number of mutually informative pairs correspond to a more
comprehensive module mapping.

After an initial analysis based primarily on pathway
mapping,2 we later found that analyzing genetic interaction
networks by maximizing set complexity14 yielded a greater
amount of biological information.15 In particular, networks
with maximal set complexity contained many more gene
pairs with significant mutual information in their interaction
patterns across common neighbor nodes. Representing these
pairs as a network of coinformative alleles yielded large in-
terconnected subnetworks, which segregated the Ras-cyclic
adenosine monophosphate �Ras-cAMP� and filamentation
MAP-kinase signaling networks involved in yeast invasion.
From this, we concluded that these gene subnetworks repre-
sent gene modules or sets of genes that somehow cofunction
to produce a phenotype.1,12,17 We further speculated that
maximizing our set complexity measure served to find the
most modular representation of the data set, which the modu-
larity hypothesis would associate with the best representation
of the cell’s functional organization that could be obtained
from the limited set of genetic perturbations.

IV. MODULARITY AND SET COMPLEXITY

The set complexity measure used to optimize the analy-
sis of genetic interaction data led to substantial modularity in
the genetic interaction network. However, it is unclear how
this modularity relates to other definitions of modularity and
network structure. Here, we review the definition of set com-
plexity, investigate its relationship with global and local clus-
tering measures, and highlight some aspects of set complex-
ity that are especially suited to genetic interaction analysis.

The set complexity metric applied in Ref. 15 was defined
and developed in Ref. 14. It is based on the normalized in-
formation distance function between two strings as derived
by Li et al.,22 which is a metric satisfying the three criteria of
identity, symmetry, and the triangle inequality. This metric is
universal in that it discovers all computable similarities be-
tween strings.22 As shown by Galas et al.,14 a simple rela-
tionship between the universal information distance and the
pairwise mutual information allows the set complexity � to
be computed with mutual information.

For network analysis, for which the sample space is
well-defined in terms of nodes and possible edges, we com-
pute the set complexity using single and mutual Shannon
entropies. The set complexity for a network is thus defined as
follows. Consider a network of N nodes with M types of
edges that connect the nodes. For simple binary networks,
M =2, commonly corresponding to the presence or absence
of an edge. For the ith node in a network, we first compute

the Shannon information Ki based on its interactions with all
other nodes. This is done by computing the fraction of near-
est neighbors within each class of interaction, denoted as
pi�a� for the ath interaction class, with the frequency of these
connections defining effective probabilities. Summing over
all interaction types yields the single-node complexity,

Ki = −
1

ln�M��a=1

M

pi�a�ln pi�a� , �1�

where M is the number of interaction classes and the sum is
over all interaction classes. The normalization ensures that
this quantity is always between 0 and 1. Edge directionality
can be considered where relevant, with outgoing edges con-
sidered a different interaction type than incoming edges, al-
though here we consider only nondirectional edges. We next
compute the mutual information for every pair of nodes in
the network using the Shannon approach. This can be written
as

mij =
1

ln�M��a=1

M

�
b=1

M

pij�a,b�ln� pij�a,b�
pi�a�pj�b�

� , �2�

where pij�a ,b� is the joint probability of node i interacting
with a third node with rule a and node j interacting with the
same third node with rule b. This expression is also normal-
ized to the interval �0,1�.

With these normalized quantities we compute the
context-dependent complexity of a network with N nodes by
summing over all node pairs as

� =
4

N�N − 1��i=1

N

�
j=1

N

Max�Ki,Kj�mij�1 − mij� . �3�

This complexity measure is normalized to yield values be-
tween 0 and 1. Any network can be scored in terms of set
complexity �. As edge mapping varies for different analysis
schemes, the single-node entropies �Ki� and pairwise mutual
information values �mij� differ and lead to variations in �.

Substantial insight can be gained by considering the
simple case of M =2, corresponding to Erdős–Rényi graphs
of nodes connected by one undirected and unweighted edge
type without any self-interactions. We previously found that
for such graphs maximal complexity arises from nearly bi-
modular or near-bipartite graphs.14 These graphs appear to
balance the requirement of maximal complexity for each
single node with the requirement of uniform mutual informa-
tion between all node pairs. Figure 2 shows an example of
such a graph, representing the maximally complex graph
found for N=20. The set complexity of this graph is
�=0.92. While the modular structure of this network is ap-
parent, the intermodular connections are critical for a high
complexity score. For example, the union of two complete
graphs with ten nodes has a � of only 0.017.

The two most striking aspects of the maximally complex
graphs are the apparent modularity coupled with the pres-
ence of a limited number of linkages between the two graph
modules. To further explore this architecture, we systemati-
cally compared set complexity to standard measures of graph
properties across an ensemble of networks. We first consid-
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ered the global clustering coefficient,23 a simple measure of
graph modularity defined as the number of three-node
cliques �fully connected subgraphs� divided by the number
of three-node subgraphs with at least two edges. The ratio is
denoted by C and varies from 0 �nonclustered network� to 1
�fully clustered network�. We also consider the more sophis-
ticated measure of modularity proposed by Clauset,24 which
defines a measure of local modularity denoted by R. This
metric arises from an algorithm that infers a hierarchy of
communities by considering the neighborhood of each vertex
in a graph. Greater values of R correspond to more commu-
nity structure, with 0�R�1. Finally, we consider the impor-
tance of intermodular links by computing the betweenness
centrality of each node in a graph. For a given node A, this is
defined as the fraction of the shortest paths linking two other
node pairs that pass through A, summed over all node pairs.
A node with high betweenness centrality is therefore a node
that lies on many shortest paths connecting node pairs across
the graph. Of particular interest to us here is the maximum
betweenness centrality in the network, denoted as Bmax,
which represents the presence or absence of a small number
of central linking nodes.

We first compared the maximally complex graph �Fig. 2�
to increasingly random graphs with a fixed density �101
edges, equal to 0.53 of all possible edges�. Beginning with
the maximally complex graph, we randomly reassigned
edges one at a time until graphs became fully random. This
procedure was repeated 200 times, and the mean graph sta-
tistics are shown in Fig. 3. The maximally complex graph is
the most modular graph in terms of both global clustering
�Fig. 3�a�� and local modularity �Fig. 3�b��. Although the
maximally complex graph features a limited set of linkages

between the two major modules �Fig. 2�, this does not lead to
particular nodes having more betweenness centrality than a
random network �Fig. 3�c��. So while the most complex net-
works are substantially more modular than random networks,
they do not contain specific nodes that bridge the modules.
This result is further supported by the fact that power-law or
scale-free networks25 are not substantially more complex, on
the average, than random networks �data not shown�. These
results follow from the observation that � is greatest when
information is shared throughout the network.

Although these results reinforce the association between
complexity and modularity, comparing the maximally com-
plex network to random networks of fixed density omits an
important feature of genetic interaction networks. Namely,
the definition of genetic interaction is often ambiguous be-
cause of the nature of a given data set.13 A single genetic data
set can yield sparse, dense, or intermediately dense networks
depending on the criteria used to define interactions, the size
of the data set, and the inherent noise.

It is therefore of interest to consider how � is related to
C, R, and Bmax across a range of network densities. To this
end, we calculated these quantities for a sequence of 20-node
networks ranging from an empty network �no edges� to a
complete network �all nodes linked by an edge�, averaging
over an ensemble of 200 independent sequences that each
traverse the maximally complex network. This is equivalent
to the edgewise construction of the maximally complex net-
work �Fig. 2� from an empty network, followed by the filling
of the remaining edges to a complete network. The mean
graph statistics plotted in Fig. 4 reveals some substantial dif-
ferences between � and three modularity measures. Since
the global clustering coefficient is the ratio of three-node
cliques to potential cliques, it varies from 0 in an empty
network to 1 in a complete network. Thus, the most-clustered
configuration according to this measure is a complete net-
work, which is a fairly trivial statement of clustering. Fur-
thermore, in the context of biology such networks are un-
likely to be informative of how individual pairs of nodes are
related since all pairs are similarly related. The complexity
measure � avoids this simplification by quickly decreasing
as the edge density approaches 1 �Fig. 4�a��. While the local
modularity measure R also vanishes for a complete network,
it maximizes for very sparse configurations �Fig. 4�b�� that
correspond to the early steps in building the maximally com-
plex network. On the average, these networks feature small,
localized edge groups that are reflected in the large local

FIG. 2. The maximally informative undirected, unweighted graph with
N=20.
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FIG. 3. Set complexity vs �a� global clustering coefficient, �b� local modularity, and �c� maximum betweenness centrality for a sequence of 20-node networks
ranging a random network to the maximum-Psi network with the number of edges fixed. Results have been averaged over 200 paths, and dots represent every
tenth network configuration.
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modularity measure. However, in a biological context such a
sparse network will often not be the most informative as it
may miss many biologically important features in the data.
Similar results were observed for other measures of modu-
larity that are maximal for localized network clusters.26 An
analogous behavior is seen for the maximum betweenness
centrality Bmax �Fig. 4�c�� as sparse networks are more likely
to feature a single node with very large B. In contrast, net-
works with higher � feature a few nodes of moderate B and
distribute the betweenness centrality over multiple nodes that
bridge modules. Thus, the network complexity metric � is a
good candidate for balancing the global and local aspects of
modularity, allowing nodes to be characterized on a global
scale in a way that retains potentially meaningful local infor-
mation. These findings agree well with our previous
interpretation.15

These properties of set complexity � extend to networks
with multiple edge types, although the lack of well-
established clustering measures for multimodal networks
makes exact, comparative analysis impossible. Such net-
works with multiple edge types, which are essential to rep-
resent gene interactions, are readily computable with �. The
primary difference we find is that a network of M edge types
with maximum complexity exhibits M modules, each com-
prised of nodes that exhibit a large degree of mutual infor-
mation. An example of a maximum-� network is shown in
Fig. 5. This network has 3 edge types, 12 nodes, and a com-
plexity �=0.81. It exhibits the similar features to the binary
network of Fig. 2, with near-perfect modularity disrupted by

a small number of alternate edge types. The key feature of
this network is the separation of otherwise identical nodes by
the edges, and permutations of the specific edge colors yield
equally complex networks.

V. DISCUSSION AND CONCLUSIONS

Genetic interactions have a successful history of map-
ping pathways of information flow in biological systems, and
contemporary high-throughput technologies allow such inter-
actions to be assayed on large scales. The resulting data sets
provide a resource for mapping not only isolated pathways
but also large-scale genetic architecture. There is a growing
body of evidence that this architecture is modular, and these
genetic modules are traversed and connected by molecular
pathways. Furthermore, there is substantial evidence that ge-
netic modules comprise of sets of cofunctional genes. This
allows for the generation of functional hypotheses for incom-
pletely annotated genes that fall within a module containing
many other genes of a common function. It additionally en-
ables the identification of novel biological process associa-
tions with broader phenotypes and candidate genes for the
control of that process.

Here, we have shown that this modularity can arise as a
consequence of maximizing set complexity, which provides a
flexible basis for effectively determining the most biologi-
cally informative analysis of a given genetic data set. The
modularity results from an unsupervised assessment of bio-
logical complexity, which itself is agnostic to the presence of
modular network architecture. Thus, the degree of modular-
ity observed can be viewed as the inherent modularity of a
data set that has been analyzed in a way that optimally re-
solves general and specific information. We further propose
that these networks maximized for complexity exhibit a non-
trivial modularity that balances global and local clustering to
yield the most information from a given data set. We empha-
size that although the calculations presented here address
purely theoretical network architectures and real biological
data exert strong constraints on possible networks derived
from those data, the general results will apply. Given the
possible networks derivable from a specific data set, maxi-
mizing for set complexity will select the network with the
greatest nontrivial modularity. Although the full space of
possible networks is computationally intractable for most
data sets, � can serve as an optimization metric for deter-
mining the most informative analysis without the require-
ment of any prior biological knowledge.
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FIG. 4. Set complexity vs �a� global clustering coefficient, �b� local modularity, and �c� maximum betweenness centrality for a sequence of 20-node networks
ranging from an empty network to a complete network, averaged over 200 paths that traverse the maximum-Psi network. Dots represent every tenth network
configuration and are shaded according to network density ranging from an empty network �white� to a complete network �black�.

FIG. 5. �Color� The maximally informative graph with 12 nodes and 3 edge
types �red, blue, and no edge�. The graph layout is chosen to illustrate edge
monochromaticity between node sets.
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While many early high-throughput genetic interaction
studies were confined to two edge types,1,3 the analysis of
genetic interaction networks often involves multiple interac-
tion types.4,7,12,27 The appropriate choice of edge type, or rule
of genetic interaction, is often ambiguous and is likely to
depend on the system under study, the phenotype that is mea-
sured, and the specific genetic perturbations underlying the
phenotypic diversity. The spectrum of genetic interaction
types depends crucially on how genetic interactions are de-
fined. Recent work by Mani et al.13 defines genetic interac-
tions as being deviations from genetic independence, mea-
sured on an additive, multiplicative, or binary scale. This
analysis has been extended by Gao et al.19 with a maximum-
likelihood approach to determine which of these interaction
models best captures epistasis. These studies both assess in-
teractions in growth rates of yeast strains. While a summary
statistic characterizing genetic interactions �denoted epsilon
in many studies� might well be sufficient for assessing
growth rate variation, in many cases additional information
may be needed. For example, in the genetic study of molecu-
lar signaling it is often useful to know which of two mutant
phenotypes masks the other when combined in a double
mutant.9 Maximizing the complexity of genetic interaction
networks based on phenotype inequalities allows such infor-
mation to be retained and, furthermore, can judge its biologi-
cal meaning relative to the analyzed phenotype. Additionally,
the inequality-based strategy does not rely so strictly on
quantitative data, as phenotype inequalities can often be de-
termined from semiquantitative or qualitative data that can
be arranged on a comparative scale. However, when detailed
quantitative data are available, the complexity-maximization
technique might be applied to the statistical assessment of
interaction parameters, as performed in the maximum-
likelihood approach of Gao et al.19 Finally, the complexity-
based strategy does not restrict genetic analysis to a set of
model classes, although it could if such constraints are
known to be appropriate.

Our results align well with the concept of monochroma-
ticity in genetic interaction, first hypothesized by Segré et
al.12 The maximization of complexity naturally yields net-
works with monochromatic interactions separating modules
�Fig. 5�. Experimental data are rarely expected to have such
a simple structure, as real outcomes often contain redun-
dancy, random noise, and biological complexity that are in-

sufficiently probed in a single data set. However, maximally
complex networks derived from real data show evidence of
systematic blocks of uniform interaction type between gene
modules. Assessing the complexity of the computational
metabolic network originally studied by Segré et al.12 might
further elucidate the relationship between monochromaticity
and complexity.

In addition to providing functional hypotheses, modular
network abstraction can substantially reduce the complexity
in genetic interaction networks. This concept is illustrated in
Fig. 6. Beginning with a network of genetic interactions �Fig.
6�a��, gene pairs with high mutual information can be ex-
tracted to map a simplified network of coinformative genes
�Fig. 6�b��. Genes, and perturbations thereof, that function
together in an emergent process are naturally grouped into
cofunctional modules, which can then be assessed and mod-
eled in relation to other multigene modules. This greatly re-
duces the number of system elements and the combinatorial
complexity and allows the identification of key network
nodes. This, in turn, enables the prioritization of important
genes for further study. For example, additional experimen-
tation and analysis can be used for fine mapping of informa-
tion flow paths within this limited set of genes and between
genes that bridge modules �Fig. 6�c��. The formulation of
such models is a critical task in systems biology and one
that, so far, has been less vigorously pursued than genetic
cartography. Such efforts are often hindered by the over-
whelming number of possible paths, the lack of data specific
to a given condition or phenotype, or insufficient congruence
between functional �e.g., genetic� and physical �e.g., molecu-
lar� data. Reducing the genetic complexity to a set of key
system elements coupled with methods that map information
flow between a limited number of genetic actors18,28 might
resolve these difficulties, thereby enabling the inference of
models of system function with substantial predictive power.

The identification of key nodes that connect modules
may be of particular interest in understanding how multiple
biological processes are coordinated. For example, the
complexity-maximization analysis of the yeast invasion
network2,15 yielded two major gene modules that represented
the cAMP and filamentation MAP-kinase signaling net-
works. By identifying the best candidate gene pairs that con-
nect these modules by identifying the pair with the most
mutual information relative to expectation �lowest likeli-

(a) (b) (c)

FIG. 6. �Color� Modular analysis of a hypothetical genetic interaction network. �a� Multimodal network representing pairwise genetic interactions. �b�
Reduced network of gene pairs with significant mutual information and the resulting modular structure. �c� Network of gene-gene information flow paths
derived from further analysis based on the modular network �b�.
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hood�, we found a possible link between deletions of the
nuclear kinase genes IPK1 and SNF4. This gene pair thus
serves as a hypothetical mechanism for signal integration in
the nucleus. The identification of such key bridge nodes can
greatly constrain and/or prioritize the space of possible
models.

Generating gene modules by maximizing set complexity
might be particularly useful when addressing natural genetic
variance across populations. The number of relevant genetic
mutations within a given population is limited, making path-
way identification and mapping particularly challenging
since many links within a molecular path will not vary across
the population. The result is a series of fragmented pathways
and an incomplete association of cofunctional genes. Modu-
lar analyses provide a more general basis for associating
groups of genes than linear pathway analysis. Modular
analysis flexibly groups genes based on clues at the pheno-
type level instead of imposing the constraint of linear con-
nections. Complexity-based methods of inferring genetic
modules, however, are particularly suited to extracting the
most biological information from a given data set. In this
way, the analysis is tuned to the resolution of the genetic
variation that resides in a given sample population.

Combining the inference of genetic modules with pre-
dictive network modeling might be of particular use in the
analysis of natural genetic variations with sparse prior anno-
tation. For example, genetic modularity may be used to clas-
sify rare disease-related gene variants into sets of mutually
informative genetic perturbations. Modules of rare variants
that coinform phenotypes such as cancer susceptibility29

might represent multiple biological processes involved in
disease etiology and progression. Candidate modules would
provide a basis for identifying biological processes relevant
to the disease outcome, and key nodes connecting distinct
modules would represent candidate paths of intermodular
communication and regulation. These nodes could then be
analyzed at greater resolution to infer a model of system
function at the genetic level. The result would be a two-level
model of system elements and relevant interactions rather
than ambiguous lists of gene candidates. Such models have
the potential to predict the outcomes of genetic and/or thera-
peutic interventions at the molecular level, aiding in the de-
velopment of personalized and predictive medicine.
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