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Interactions between genetic and/or environmental factors are ubiquitous, affecting the phenotypes
of organisms in complex ways. Knowledge about such interactions is becoming rate-limiting for
our understanding of human disease and other biological phenomena. Phenomics refers to the
integrative analysis of how all genes contribute to phenotype variation, entailing genome and
organism level information. A systems biology view of gene interactions is critical for phenomics.
Unfortunately the problem is intractable in humans; however, it can be addressed in simpler genetic
model systems. Our research group has focused on the concept of genetic buffering of phenotypic
variation, in studies employing the single-cell eukaryotic organism, S. cerevisiae. We have devel-
oped a methodology, quantitative high throughput cellular phenotyping �Q-HTCP�, for high-
resolution measurements of gene-gene and gene-environment interactions on a genome-wide scale.
Q-HTCP is being applied to the complete set of S. cerevisiae gene deletion strains, a unique
resource for systematically mapping gene interactions. Genetic buffering is the idea that compre-
hensive and quantitative knowledge about how genes interact with respect to phenotypes will lead
to an appreciation of how genes and pathways are functionally connected at a systems level to
maintain homeostasis. However, extracting biologically useful information from Q-HTCP data is
challenging, due to the multidimensional and nonlinear nature of gene interactions, together with a
relative lack of prior biological information. Here we describe a new approach for mining quanti-
tative genetic interaction data called recursive expectation-maximization clustering �REMc�. We
developed REMc to help discover phenomic modules, defined as sets of genes with similar patterns
of interaction across a series of genetic or environmental perturbations. Such modules are reflective
of buffering mechanisms, i.e., genes that play a related role in the maintenance of physiological
homeostasis. To develop the method, 297 gene deletion strains were selected based on gene-drug
interactions with hydroxyurea, an inhibitor of ribonucleotide reductase enzyme activity, which is
critical for DNA synthesis. To partition the gene functions, these 297 deletion strains were chal-
lenged with growth inhibitory drugs known to target different genes and cellular pathways.
Q-HTCP-derived growth curves were used to quantify all gene interactions, and the data were used
to test the performance of REMc. Fundamental advantages of REMc include objective assessment
of total number of clusters and assignment to each cluster a log-likelihood value, which can be
considered an indicator of statistical quality of clusters. To assess the biological quality of clusters,
we developed a method called gene ontology information divergence z-score �GOid_z�. GOid_z
summarizes total enrichment of GO attributes within individual clusters. Using these and other
criteria, we compared the performance of REMc to hierarchical and K-means clustering. The main
conclusion is that REMc provides distinct efficiencies for mining Q-HTCP data. It facilitates iden-
tification of phenomic modules, which contribute to buffering mechanisms that underlie cellular
homeostasis and the regulation of phenotypic expression. © 2010 American Institute of Physics.
�doi:10.1063/1.3455188�

A phenotype, or “trait,” is a physical manifestation of an
organism. Perhaps the most fundamental phenotype
among all organisms is survival and proliferation of a
cell. This phenotype has been and continues to be exten-

sively analyzed for the budding yeast, Saccharomyces cer-
evisiae, which has proven to be a valuable model for ge-
netic analysis and of high relevance to cancer and other
human diseases.1 The power of yeast genetics stems from
its extreme tractability regarding genotype-phenotype in-
terplay; however, only recently have tools been developed
for systematic analysis of gene-gene and gene-
environment interactions.2 Moreover, since the arrival of
genome sequencing, there has been increased apprecia-
tion for the evolutionary conservation of genes across dif-
ferent life forms,3 creating new opportunities, from a sys-
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tems biology perspective, to achieve an integrative
understanding of how genetic and environmental factors
interact with respect to phenotypes.4 Inherent limitations
with systematic studies of gene interaction include (1) in-
volvement of combinatorial tests (combinatorial explo-
sion), (2) the abundance of natural genetic and pheno-
typic variation (intractability), and (3) an emphasis of
biological research in human and mammalian model sys-
tems where gene interaction effects cannot be tested in a
controlled manner, and where acquisition of data is more
difficult and expensive. Genetically tractable model sys-
tems, although recognized for a role in biomedical re-
search, remain underutilized. Research employing quan-
titative high throughput cellular phenotyping (Q-HTCP)
analysis of the genomic collection of deletion strains has
the potential to address many current limitations for un-
derstanding gene interaction networks. In addition to
functional conservation between the S. cerevisiae and hu-
man genomes, S. cerevisiae is easy and inexpensive to cul-
ture, its generation time is less than a tenth that of human
cells, and its genes are much easier to manipulate. More-
over it is a single celled organism, and thus exists experi-
mentally in a more natural state than cells cultured in
vitro from multicellular organisms. Evolutionary con-
straints placed on biological systems naturally result in
conservation of cellular processes, and thus S. cerevisiae
can provide initial insight regarding biological principles
of gene interaction that underlie the genetic complexity of
human disease.4 For all of these reasons, we are utilizing
this model system to assess the effects of gene-gene and
gene-drug interaction on phenotypes. In this report we
revisit some data from previously published
experiments.5 In the earlier analysis of the data, we per-
ceived strengths and weaknesses in the use of hierarchical
clustering (Hc) for mining high throughput quantitative
gene interaction data. Here we describe our efforts to
address limitations of Hc while preserving useful fea-
tures, an approach called recursive expectation-
maximization clustering (REMc).

I. INTRODUCTION

A genomic set of gene deletion, or “knockout,” strains is
currently the most advanced resource for studying genetic
interaction networks.6,7 Using this collection of 5000 strains
one can systematically test the effects of single gene deletion
effects in combination with drug treatments5,8,9 or introduc-
tion of a particular gene mutation of interest into the entire
collection.10–12 Prior to creation of the yeast gene deletion
strain library resource, yeast cell proliferation phenotypes
were traditionally screened in a qualitative manner,13 and
only genes of special interest quantitatively analyzed using
kinetic growth curves. Since creation of the library, we have
worked to develop methodologies to measure tens of thou-
sands of growth curves in a single experiment in order to
resolve gene interactions quantitatively.14 We have found that

quantitative resolution of gene interactions can be a critical
factor for identifying phenomic “modules.”5,15,16 Other re-
search groups have also shown that clustering quantitative
gene interaction data is useful for identifying pathways and
protein complexes.17

An unnecessary distinction is often drawn between gene-
gene and gene-environment interactions. For practical and
biological reasons, we consider all gene interactions to be
fundamentally similar and mutually informative, because
gene mutations, environmental exposures, and drug treat-
ments in a broader context are simply different types of “per-
turbations.” Interactions can be quantified the same way re-
gardless of which perturbation types are combined.5 There is
plenty of support from the literature for this integrated sys-
tems view of gene interaction, since the genomic interaction
profiles of a drug treatment versus mutation of the corre-
sponding drug target in theory should �and in reality do�
share high similarity.9,18 Another note about the term gene
interaction �also called epistasis� is it has been defined vari-
ous ways in genetic research.19,20 We think of genetic inter-
actions in a mathematical sense; meaning that the observed
phenotype resulting from a combination of perturbations de-
parts from an assumed neutral �noninteractive� phenotype;
the expected phenotype being based on the phenotypes ob-
served in the setting of the respective single perturbations.
The strength of interaction reflects the degree of “surprise,”
or departure from expectation. Thus, genetic interactions de-
rive from two essential components: a neutrality function
and quantitative phenotypic measures.21 Synergistic, or “en-
hancing,” interactions reflect an accelerated effect on the
phenotype in the same direction; antagonistic, or “suppress-
ing,” interactions indicate alleviation or counteracting effects
on the phenotype by different perturbations when combined.
We are interested in how the neutrality function and quanti-
tative phenotypic measure affect the interpretation of
Q-HTCP data; however, the work here is not focused on
these issues directly, but rather on development of data min-
ing tools to assess genetic interactions, however defined. One
possibility is that improvement in the quality of Q-HTCP
data5,14,22 together with development of flexible and robust
data mining tools will help advance our understanding of the
biological relevance of different neutrality models in large-
scale studies of gene interaction.21,23

To assist in development and testing REMc, we used a
previously published data set of gene-drug interactions con-
sisting of a 297 gene by 14 drug perturbation matrix of gene-
drug interactions in which interactions were quantified as a
z-score, called the Growth Index �see below and supplemen-
tary material�.5,24 As seen in the equation below, the neutral-
ity function assumed that reduction in the area under the
growth curve induced by growth inhibitory drug treatment
would be proportional for any deletion mutant compared to
the wild type control strain. Noise in the assay was ac-
counted for by replicate assays of the wild type strain �no
gene deletion�. This definition is a form of the “multiplica-
tive” neutrality function,21,25
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Equation for quantifying gene-drug interactions used

to develop REMc �Ref. 5�.

We screened the entire collection of 5000 knockout
strains at different concentrations of hydroxyurea �HU�, an
inhibitor of ribonucleotide reductase �RNR�. To further un-
derstand biological differences between 297 putative RNR-
interactive genes, they were tested for phenotypic interaction
with drugs having different cellular effects including �1� cis-
platin, which like HU, induces DNA damage, but by a dif-
ferent mechanism �intercalating in DNA�. �2� Miconazole,
which is an inhibitor of the ERG11 gene and essential en-
zyme in ergosterol biosynthesis. �3� T-butyl hydrogen perox-
ide �TBHP�, which induces oxidative damage, stressing
many cellular processes, including DNA and protein metabo-
lism. �4� Cycloheximide, which is an inhibitor of a gene
RPL28, a component of the large ribosomal subunit essential
for translation, making protein synthesis rate-limiting for cell
proliferation. Genes having function�s� important for pheno-
typic stability in the presence of one perturbation often have
different importance in another context, hence the rationale
of clustering matrices of quantitative gene interaction data to
identify genetic pathways that buffer �e.g., compensation by
alternative pathways� loss of RNR function.5

Our primary goal for development of a new clustering
approach was to achieve objective results that could be easily
interpreted—interpretation including the total number of
clusters as well as the statistical quality and biological mean-
ing. These objectives were born from our experience with
Hc, for which the flexibility and scalability seemed limited
by subjectivity, making it labor intensive and nonquantita-
tive. K-means clustering �KMc�, also commonly used, re-
quires a priori knowledge of the number of clusters, and like
Hc, employs metrics such as Euclidean distance �Euc� or
Pearson correlation �Pc�, introducing another subjective pa-
rameter that impacts the result. Other methods, such as bi-
clustering, offer an advantage over KMc or Hc, in that the
multifunctional aspects of genes may be better accounted for
by allowing genes to appear in multiple clusters.8,26 How-
ever, with biclustering there are also numerous different al-
gorithms and data visualization is a challenge.27,28 REMc
resulted from taking a fresh look at developing a flexible,
quantitative, and visually intuitive clustering tool for discov-
ering phenomic modules from Q-HTCP data. In previous
work we had demonstrated that such modules can contain
information about novel buffering mechanisms that regulate
phenotypic expression.15 Recently, others have shown inde-

pendently that such mechanisms are evolutionarily
conserved.29 We wondered if, by using REMc, we could ar-
rive at similar conclusions, but in a more objective, efficient,
and potentially automated way than with other clustering
approaches.

REMc utilizes a probabilistic framework, enabling deter-
mination of cluster likelihood, and objective estimation of
the total number and rank order of clusters. Advantages of
REMc thus include �1� direct analysis of data, avoiding use
of gene similarity metrics, such as Euclidean distance or Pc
coefficient; �2� objective determination of the total number
of clusters; �3� ranking of clusters according to their quality;
and �4� a view of hierarchical relationships between clusters.
To assess potential advantages of REMc, we compared
properties of REMc clusters with those obtained from Hc
and KMc.

In addition to the “statistical quality” of clusters pro-
vided by REMc, we desired a tool to assess gene interaction
clusters with regard to biological function. Gene ontology
�GO� is a computational resource for systematic assessment
of genomic data for biological functions.30 Although many
computational tools have been developed for use with GO,
we did not find one for summarizing, in a single quantitative
score, the enrichment over all GO terms within a single list
of genes. Thus we devised a method called gene ontology
information divergence z-score �GOid_z�. GOid_z can be
thought of as a score that summarizes overall enrichment of
biological functions within a gene list. GOid_z is useful
for assessing the relative enrichment of all biological func-
tions between different gene clusters. In addition, we used
GO TERMFINDER �GTF�,31 available at the SGD website,32 to
identify specific annotation terms and the genes that com-
pose each term.

II. RESULTS

A. REMc offers theoretical and practical advantages
over popular clustering methods

Hc and KMc are commonly used to mine biological
data. Each entails the use of metrics, such as Euclidean dis-
tance or Pc coefficient, and Hc additionally employs differ-
ent linkage methods, namely, average or complete. Cluster-
ing results thus vary according to the particular combination
of algorithm and similarity metric used.33 The rationale for
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choosing a particular algorithm and/or metric to evaluate a
data set is difficult to establish, and there is no statistical
basis upon which to assess the number or quality of clusters.
By contrast, expectation-maximization clustering �EMc� is a
model-based clustering method, implemented by fitting the
raw data matrix to Gaussian distributions to calculate the
most probable number of distinct groupings �Gaussian mix-
ture model �GMM� optimized by expectation-maximization
�EM� algorithm�. EMc eliminates the need to choose among
distance metrics for clustering analysis, while objectively
specifying the number and quantifying the likelihood of clus-
ters. For EMc, we used the freely available Waikato Envi-
ronment for Knowledge Analysis �WEKA� software.34 We
found that by recursively applying EMc �REMc�, additional
clusters could be found, a log-likelihood �LL� value could be
obtained for every cluster, and hierarchical relationships
were established in the process. Thus, REMc avoids subjec-
tively cutting a dendrogram to define clusters, as is often
done with Hc, or guessing, a priori, the number of clusters,
as required for KMc. To investigate these advantages, we
compared REMc results with �1� two KMc methods, using
either Euclidean distance or Pc as a similarity metric, and �2�
four Hc methods, combining Pc or Euclidean distance with
either average or complete linkage.

B. REMc provides an objective assessment of cluster
number and quality

An overview of the REMc clustering algorithm is de-
picted in Fig. 1�a�. A 297�14 matrix of gene-drug interac-
tions was analyzed, and characteristics of the clusters result-
ing from REMc are further detailed in Table I. In the first
round of clustering, there were four clusters with a LL of
�41.1. In the second round of clustering, each of the first
round clusters was further subdivided; cluster 0 giving rise to
two additional clusters with LL=−30.9, cluster 1 giving rise
to five clusters with LL of �37.8, and so on. By recursively
applying the algorithm to each new cluster, until subclusters
are no longer obtained, a LL value can be obtained for “ter-
minal” clusters �larger LL indicates a more significant clus-
ter�. In addition to cluster quality values, REMc establishes
hierarchical relationships through the generation of subclus-
ters with iterations of the method �e.g., clusters 0_0 and 0_1
comprise branches of cluster 0�. To validate the number of
clusters predicted by REMc, we specified the number of
clusters incrementally �an optional parameter in WEKA�, gen-
erating a plot of LL versus number of clusters. We observed
a steep increase in LL versus cluster number followed by a
leveling off of the LL when the number of clusters reached
17, equal to the number of clusters predicted by REMc �Fig.
1�b��. Our interpretation of Fig. 1�b� is that any increase in
LL associated with greater than 17 clusters represents over-
fitting. Recognizing that every gene interaction profile is
unique, incremental linear increases in LL obtained by in-
creasing cluster number are probably noninformative and
thus not worth attention.

C. REMc surpasses other clustering methods
for biological discovery

CLUSTERJUDGE, which assesses enrichment of GO terms
across all clusters, was used to assess the overall quality of
each clustering method.35 The basic idea is genes that func-
tion together biologically �i.e., they are coannotated with GO
terms� will cluster together, and CLUSTERJUDGE assesses this
partitioning of genetic data with respect to biological infor-
mation. The CLUSTERJUDGE score is calculated from the sum
of mutual information �MI� correlation scores for all clusters
based on the biological attribute �GO category� vector and
the vector of cluster assignments for all genes. A z-score is
created by comparing the global MI score for clusters de-
rived by a particular method using as a benchmark a distri-
bution of random clusterings. CLUSTERJUDGE is run multiple
times for each cluster to achieve a robust comparison. CLUS-

TERJUDGE results were obtained �15 replicate runs for each

A

B

FIG. 1. �Color online� Algorithm for REMc. �a� REM clustering is per-
formed on the unclustered data and then repeatedly on each new cluster until
no additional subcluster is obtained. The first round of clustering yielded
four clusters. Each cluster was subdivided in a second round of clustering
�thick lines�. Only two clusters were divided further in the third round of
clustering �thin lines�. No new clusters were found in the fourth round of
REMc. A LL score is obtained for each round of clustering, thus when a
single cluster is no longer subclassified, the LL provides a quantitative in-
dication of the probability that the cluster represents a uniform class of data.
�b� To evaluate the number of clusters obtained by REMc, EMc was per-
formed by fixing the number of clusters between 1 and 40 �instead of de-
termining the optimal number of clusters�. The arrow indicates that the
number of clusters determined by REMc, 17, was at an inflection point of
the plot of LL vs cluster number.
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clustering method with average and standard error� using the
online tool provided by the Roth laboratory.35 Since other
methods do not determine the number of clusters, we em-
ployed 17 clusters, the number determined by REMc �Fig.
1�, for comparison of other methods. Hc tended to yield clus-
ters containing only one gene �Fig. 2�a��, perhaps contribut-
ing to lower CLUSTERJUDGE scores, since single attributes by
definition do not exhibit MI �Fig. 2�b��. Thus, REMc and
KMc yielded more information than Hc regarding biological
enrichment in gene clusters. Since Hc_Pc with complete
linkage performed best among Hc methods, it was carried
forward in the additional comparisons between REMc and
KMc described below.

D. Log-likelihood and GOid_z discriminate REMc
cluster quality

As described above, a LL measure is obtained for each
individual cluster by recursively clustering until there are no
significant subclasses �Fig. 1 and Table I�. Independent of
this statistical value assigned to each cluster by REMc, we
sought a convenient biological measure for cluster quality.
For this purpose, we developed a method, GOid, to assess
functional enrichment within a gene cluster with respect to
all GO terms. GOid is converted to a z-score �GOid_z� to
correct for the effect of gene cluster size, which correlates
negatively with the GOid mean and standard deviation of
randomly chosen gene sets �Figs. 3�a� and 3�b��. The GOid_z
is a quantitative measure summarizing the enrichment of bio-
logical functions in a gene cluster. As expected, GOid_z cor-
relates positively with the total number of GO terms enriched
within a cluster �Fig. 3�c��. Note that GOid_z estimates en-
richment of biological functions in a single cluster �e.g., for
comparing relative quality of clusters obtained by a single
method�, in contrast to CLUSTERJUDGE, which compares dif-

ferent clustering methods with respect to the entire result �all
clusters�.

Whereas the GOid_z provides an assessment of biologi-
cal enrichment, the LL provides an indicator of statistical
quality, which can be thought of as the uniformity of the
gene profiles in the cluster. These are complementary mea-
sures to objectively assess cluster quality and identify phe-
nomic modules. From a scatter plot of LL versus GOid_z, we
observed a positive, although weak, correlation between LL
and GOid_z �Fig. 3�d��. Considering four groups of clusters,
corresponding to the four quadrants of this plot: group 1
consisted of clusters with high LL and high GOid_z values.
These represent gene clusters where the experimental signa-
ture �LL� is strongly detected, and the associated biology
�GOid_z� is well described in the literature. Cluster 0_1 is
the representative cluster in this group, containing DNA
damage response genes that have a strong and uniform pro-
file of response to HU and cisplatin, and are highly annotated
due to extensive study of these genes, which are of high
cancer-relevance. Group 2 clusters for which the LL was
high, but the GOid_z was relatively low, indicated a set of
genes whose functions affect phenotype of the organism in a
similar manner, however for which the biological relation-
ships of the genes with respect to one another are less well
characterized in the literature. Group 3 held clusters with
relatively low LL and low GOid_z scores, probably repre-
senting heterogeneous data with low biological information
quality. Notably, we did not find any clusters in the potential
group 4, with low LL and high GOid_z, consistent with the
thought that sets of genes that do not have good statistical
cluster quality �i.e., the gene interaction profiles are hetero-
geneous� are less likely to contain biologically related genes.

TABLE I. Results from REMc are indicated. For each round of clustering, the LL is given along with the name of corresponding clusters and their number
of genes. “1” indicates that the gene list submitted for REMc did not reveal additional subclusters. See also Fig. 1 and supplementary material.

First Rd LL First Rd
No. of
genes Second Rd LL Second Rd

No. of
genes Third Rd LL Third Rd

No. of
genes Fourth Rd LL Fourth Rd

0 44 �30.88 0_0 18 �32.64 1
0_1 26 �28.52 1

1 63 �37.58 1_0 16 �40.06 1
1_1 11 �36.21 1
1_2 23 �35.33 1
1_3 10 �33.12 1
1_4 3 �30.98 1

297 ORFs �41.13 2 96 �40.22 2_0 47 �34.07 2_0_0 15 �31.13 1
2_0_1 12 �35.20 1
2_0_2 20 �33.08 1

2_1 21 �44.71 1

2_2 28 �36.03
2_2_0

2 0 9 �35.32 1
2_2_1

2 1 19 �35.44 1
3 94 �33.93 3_0 9 �32.20 1

3_1 34 �32.02 1
3_2 24 �33.94 1
3_3 27 �32.46 1
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E. Partitioning biological information by different
clustering methods: A case study

When plots of GOid_z versus cluster size were com-
pared between REMc, KMc, and Hc_Pc �Fig. 4�, two differ-
ences were apparent: first, Hc tended to yield clusters of
more extreme size, less than 20 or greater than 50 �Fig. 4�d��,
whereas the other three methods yielded similar size distri-
butions. The extreme size of some Hc clusters was consistent
with the fact that three out of the four Hc methods yielded
multiple clusters containing only one gene �Fig. 2�a��. This is
partially a consequence of constraining the cluster number to
17, but highlights the difficulty in objectively determining

the absolute number of clusters with Hc. The range of cluster
GOid_z values was notably different for KMc using Pc �Fig.
4�b�� than it was for REMc and KMc using the Euclidean
distance metric �Figs. 4�a� and 4�c��. Most KMc_Pc clusters
had GOid_z between the range of 2 and 4, lacking discrimi-
nation between clusters. In contrast, the distributions of
GOid_z observed for KMc_Euc and REMc suggested greater
discrimination between different clusters. The differences
above can also be appreciated in Fig. 5, in which the data in
Fig. 4 were ranked and viewed together in separate plots of
cluster size and GOid_z. A biological explanation for the
difference in the range of GOid_z values between Pc and

cluster size rank REMc KMc_Euc KMc_Pc Hc_Pc_comp Hc_Euc_comp Hc_Pc_avg Hc_Euc_avg

1 34 39 37 80 54 114 191

2 27 32 28 49 52 45 44

3 26 28 28 20 47 32 17

4 24 26 25 18 29 17 11

5 23 24 23 16 22 15 8

6 21 24 23 14 19 14 5

7 20 23 21 12 15 12 4

8 19 17 21 12 14 10 4

9 18 14 15 12 14 9 3

10 16 11 13 10 13 7 2

11 15 11 12 10 7 7 2

12 12 11 11 9 4 5 1

13 11 10 9 9 3 4 1

14 10 9 9 9 1 3 1

15 9 8 8 7 1 1 1

16 9 7 8 6 1 1 1

17 3 3 6 4 1 1 1

( a )

( b )

FIG. 2. Comparison of cluster distributions and yield of biological information by REMc, Hc, and KMc. �a� Cluster size distributions from each of seven
different clustering methods. With the cluster number fixed at 17, Hc results in a wider range of cluster sizes relative to other methods. �b� The output from
15 runs of CLUSTERJUDGE �CJ� using the entire result of each indicated clustering method as an input. 17 clusters, the number predicted by REMc, were
assumed for each method. The p-value refers to t-test results comparing distributions of CJ scores between REMc and each other method. Clustering method
abbreviations are REMc �recursive expectation-maximization�, KMc_Euc �K-means with Euclidean distance�, KMc_Pc �K-means with Pc�, Hc_Pc_comp
�hierarchical with Pc and complete linkage�, Hc_Euc_comp �hierarchical with Euclidian distance and complete linkage�, Hc_Pc_avg �hierarchical with
Euclidian distance and average linkage�, and Hc_Euc_avg �hierarchical with Pc and average linkage�.
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Euclidean distance metric-derived cluster is that Euclidean
distance takes more into account the strength of gene inter-
actions. In contrast, Pc is more sensitive to the pattern, and
less so to the magnitude of effects across an effect profile.
Thus we reason that KMc_Euc may partition discrete bio-
logical functions more precisely than KMc_Pc, because it
better incorporates information about the strength of gene
interactions. Importantly, REMc shares more the characteris-
tic of KMc_Euc, which is desirable for biological discrimi-
nation between phenomic modules. Accordingly the back-
ground size for GO terms resulting from REMc and
KMc_Euc tended to be smaller than for KMc_Pc, indicating
discovery of more specific biological functions by REMc
and KMc_Euc. On the other hand, Pc has been particularly
useful in genome-wide analysis of gene expression where
identification of functionally related genes hinges on detec-
tion of the direction of change, perhaps more so than the

absolute amount of change.35 Taken together, we conclude
that the strength of gene interaction is a key component in
identifying phenomic modules, and that REMc and non-
model based methods using Euclidian distance are better at
detecting this than methods using Pc.

We next mapped REMc clusters to those obtained using
Hc_Pc_complete, KMc_Pc, and KMc_Euc by comparing the
overlap of respective gene clusters. We hypothesized that
tightly correlated gene interaction profiles and/or those con-
taining genes with highly related functions would be identi-
fied in common by different clustering methods. REMc clus-
ters were considered to match those obtained by another
method if there was a 10% overlap of genes in both direc-
tions and at least a 25% overlap in either direction, thus a
REM cluster could map to multiple clusters from another
method. For each REM cluster, the best match was deter-
mined by the largest two-way overlap with a cluster from
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FIG. 3. The GOid_z score as a summary of functional enrichment of clustered genes. For random clusters, the mean GOid and standard deviation were
inversely correlated with the number of genes per cluster. Thus, the GOid mean �a� and standard deviation �b� were calculated for 1000 random clusters and
used to determine a z-score for the GOid for each REMc cluster. �c� For REMc clusters, a positive correlation was found between GOid_z and the number
of enriched GO terms for each cluster, as calculated by GTF. �d� To investigate the complementary nature of the REMc LL and GOid_z score for mining gene
interaction data, LL and GOid_z were plotted for all clusters; see text for discussion.
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another method. For example, there were 26 genes in REMc
cluster 0_1. The total number of overlapping genes appear-
ing in other matching clusters—22 �Hc_Pc=85%�, 23
�KMc_Euc=88%�, and 23 �KMc_Pc=88%�—was compa-
rable for each of the methods; however, the sizes of those
clusters and thus the percentage matches were different be-
tween Hc_PC �22/80�, KMc_Euc �23/24�, and KM_PC �23/
28�, and thus KMc_Euc was considered the best match to
REMc for cluster 0_1. The result of cluster mapping is sum-
marized in Table II. As suggested by the GOid_z versus clus-
ter size plots �Fig. 4�, the cluster mapping exercise indicated
greatest similarity between REMc and KMc_Euc. Although
not an entirely simple relationship, high quality REMc clus-
ters, i.e., clusters with high LL and/or high GOid_z, tended
to overlap between methods �Table II�.

F. REMc reveals a hierarchical aspect of quantitative
phenomic information

A useful feature of Hc, which is lacking from KMc, is
the representation of hierarchical relationships between
genes and gene clusters.36 In contrast to KMc, hierarchical
relationships are an emergent aspect of REMc, as illustrated
by the heat maps representing the intermediate and final clus-
ters of REMc �Fig. 6�. By combining knowledge associated
with �1� the molecular effect of the perturbations �e.g., drugs

with known targets�, �2� statistical and biological cluster
quality, and �3� visual data such as heat map images �see Fig.
6�, one can mine the biological relevance of each cluster.

With respect to Fig. 6, recall that the unclustered set of
297 genes is in fact a highly select subset of genes from the
genomic set of 4850 knockout strains that exhibit interac-
tions with HU, an inhibitor of RNR and DNA synthesis.5 To
better understand biological differences between these genes,
they were tested for phenotypic interaction with drugs hav-
ing different cellular effects. Cisplatin, like HU, induces
DNA damage, but does so by a different mechanism �inter-
calating in DNA�. Miconazole is an inhibitor of the ERG11
gene and essential enzyme in ergosterol biosynthesis. TBHP
induces oxidative damage, which stresses many cellular pro-
cesses, including DNA and protein metabolism. Finally cy-
cloheximide is an inhibitor of a gene RPL28, a component of
the large ribosomal subunit essential for translation and thus
makes protein synthesis rate-limiting for cell proliferation.

Since HU and cisplatin are most related among the per-
turbations �both perturb DNA metabolism�, and the genes
were selected originally based on interaction with HU, cispl-
atin is the next most “gene interactive” drug that drives clus-
tering among these selected deletion strains. This is evi-
denced in the first round cluster heat maps, which can largely
be described in terms of HU and cisplatin gene-drug interac-
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FIG. 4. Differential partitioning of biological information by REMc and other clustering methods. Cluster size is plotted against GOid_z for four clustering
methods. REMc �a� shared similarity with KMc_Euc �c�, consistent with assessment of overlap in genes per cluster �see Table II�. By comparison with REMc
and KMc_Euc, KMc_Pc �b� exhibited different GOid_z range, while Hc_Pc �d� differed with respect to cluster size distribution.
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tions: �1� cluster 0 shows strong interactions with both HU
and cisplatin; �2� cluster 1 shows strong interaction with HU,
but intermediate strength interaction with cisplatin; �3� clus-
ter 2 shows intermediate strength interaction with HU and
cisplatin and more assorted interactions with other drugs;
and �4� cluster 3 shows weak-to-intermediate strength inter-
action with HU and cisplatin, with fewer pleiotorpic interac-
tions.

A biological expectation of REMc is increasing enrich-
ment in the sharing of annotation terms among genes with
successive rounds of clustering. In general, this was what we
observed. For example, cluster 0 displays genes with an in-
teraction profile indicative of a strong requirement for buff-
ering DNA damage, which is induced by treatment with HU
�Fig. 6, columns a–c in each heat map� or cisplatin �columns
g–i in each heat map�; i.e., there is a synergistic growth
inhibition effect from deleting any one of these genes and
thus sensitivity �i.e., synergistic interaction� to either of these
drugs is greatly increased when any of the genes in the clus-
ter are knocked out of a cell’s genome. Interestingly, cluster
0 breaks down into two subclusters; cluster 0_1 has high
statistical quality and contains more highly annotated genes
�reflected by high GOid_z� than cluster 0_0. Cluster 0_0 has
lower statistical quality and differs by exhibiting strong sen-
sitivity to cycloheximide �columns l–n in each heat map� and
weak sensitivity to both miconazole �columns d–f in each
heat map� and hydrogen peroxide �columns j and k in each
heat map�. The high GOid_z and LL of cluster 0_1 are con-

sistent with the fact that genes in that subcluster function
relatively specifically in DNA damage repair, as reflected by
the uniformity of their gene interaction profiles relative to
those in cluster 0_0, representing more pleiotropic pheno-
types. To add finer grain to assessment of relationships
within E-M clusters, we employed Hc using Euclidean dis-
tance and complete linkage �Fig. 6�. As can be seen �gene
names are provided beside the heat maps�, genes with the
most similar interaction profiles are often genes in a common
pathway.5 Another example is seen in cluster 2, where genes
are grouped in the subcluster 2_1 when they confer increased
resistance �blue shading� to miconazole and hydrogen perox-
ide treatment; however, subcluster 2_0 contains genes con-
ferring weak resistance or no phenotype in response to mi-
conazole or hydrogen peroxide and cluster 2_0_2 contains
genes that, although they exhibit synergistic interaction with
HU, actually have stronger interactions �darker green shad-
ing� with cisplatin, a drug used in treatment of many human
cancers.

The overall enrichment of biological functions �mea-
sured by the number of GO terms� attributable to clustering
is summarized in Table III, and was obtained using GO

TERMFINDER.31 Our first hypothesis was simply that cluster-
ing of gene interaction data would increase the discovery of
GO terms. REMc increased the total number of GO terms by
about threefold over unclustered data �which was already
enriched based on selection for HU gene-drug interactions�
�Table III�. We next traced the segregation of GO terms fol-
lowing successive rounds of REMc. Occasionally terms
would fall out, being present in an intermediate cluster, but
not in subsequent clusters. These were sometimes terms
comprised of very large gene sets �over 100 genes per term�,
meaning they were biologically nonspecific, in which case
genes annotated to a disappearing term might be associated
with different, smaller terms in the clustered data. On the
other hand, genes that were annotated to the same term in an
intermediate cluster did not exhibit similar enough gene in-
teraction profiles to stay together in subsequent rounds of
REMc, thus distinguishing between genes that function as
tight modules from those that are �although co-annotated�
more heterogeneous, or pleiotropic in their phenotypic ef-
fects. We further observed from the GO TERMFINDER analysis
that terms represented in the unclustered data segregated into
more than one cluster, meaning that functional subsets of
genes assigned to the same cellular process can be differen-
tiated by unique aspects of their phenotypic profiles. The
majority of new terms, which were not enriched in the un-
clustered data but emerged during REMc, were specific to a
single cluster. In general, new GO terms emerging during
REMc represented more specific biological functions involv-
ing smaller groups of genes. A frequency histogram, plotting
together the number of GO terms identified versus the total
number of genes annotated to a given term, revealed that the
new GO terms discovered by REMc primarily reflected cel-
lular processes annotated to 60 or fewer genes �Fig. 7�.

We note that GO comprises an acyclic graph structure,30

thus with GO TERMFINDER analysis, an increased number of
GO terms overrepresents the increase in biological processes,
because the same gene set often accounts for multiple related

FIG. 5. �Color online� Comparison of cluster size and GOid_z for clusters
from each method. The histograms represent a different view of the data
presented in Fig. 4, showing similarity between REMc and KMc, and de-
picting that Pc tends to result in the even distribution of biological informa-
tion across all clusters �a�, while Hc tends to yield extreme cluster sizes �b�.
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TABLE II. An overview of mappings between REMc clusters and clusters obtained by other methods. Based on the total number of overlapping genes and the relative size of each cluster, REMc clusters were matched
to Hc �Euclidian distance and complete linkage� and KMc �Euclidian distance or Pc� clusters. A match was defined as at least 0.10 overlap in both directions and 0.25 overlap in one direction. The best matches are in
bold.

GOid_z rank
LL

rank
REMc

ID
No. of
genes Matches

Best
match He_rank

No. of
genes

No. of
match

EM
�%�

Hc
�%� KMc_Eu_rank

No. of
genes

No. of
match

EM
�%�

K_EU
�%� KMc_Pc_rank

No. of
genes

No. of
match

EM
�%�

K_Pc
�%�

1 1 0_1 26 All K_Euc 1 80 22 0.85 0.28 1 24 23 0.88 0.96 1 28 23 0.88 0.82
2 7 0_0 18 All K_Euc 3 20 11 0.61 0.55 5 26 16 0.89 0.62 7 6 6 0.33 1.00
2 7 0_0 18 2 16 4 0.22 0.25 4 25 9 0.50 0.36
3 3 2_0_0 15 All N/A 4 12 10 0.67 0.83 2 32 14 0.93 0.44 3 12 9 0.60 0.75

3 6 9 3 0.20 0.33 13 8 4 0.27 0.50
4 13 1_2 23 N/A N/A 1 80 10 0.43 0.13 10 14 6 0.26 0.43 6 37 8 0.35 0.22
4 13 1_3 24 5 49 7 0.30 0.14 7 28 8 0.35 0.29 2 23 6 0.26 0.26
5 8 2_0_2 20 Hc; K_Euc K_Euc 1 80 15 0.75 0.19 3 23 12 0.60 0.52 5 28 8 0.40 0.29
5 8 2_0_2 20 13 4 2 0.10 0.50 4 25 5 0.25 0.20
6 14 2_2_1 19 All K_Euc 10 12 7 0.37 0.58 9 9 7 0.37 0.78 17 13 7 0.37 0.54
6 14 2_2_1 19 14 12 6 0.32 0.50 8 21 5 0.26 0.24
6 14 2_2_1 19 9 10 4 0.21 0.40 3 12 3 0.16 0.25
7 10 3_2 24 K_Euc K_Euc 8 9 5 0.21 0.56 6 39 13 0.54 0.33 14 9 5 0.21 0.56
7 10 3_2 24 5 49 6 0.25 0.12 11 11 3 0.13 0.27 12 8 3 0.13 0.38
7 10 3_2 24 2 16 4 0.17 0.25 16 9 3 0.13 0.33
8 12 2_2_0 9 All Hc 7 7 5 0.56 0.71 11 11 4 0.44 0.36 10 11 4 0.44 0.36
8 12 2_2_0 9 8 9 3 0.33 0.33 4 24 3 0.33 0.13 14 9 3 0.33 0.33
9 11 2_0_1 12 Hc: K_Euc Hc 12 18 6 0.50 0.33 8 17 5 0.42 0.29 9 21 5 0.42 0.24
9 11 2_0_1 12 3 20 4 0.33 0.20 4 25 4 0.33 0.16

10 17 2_1 21 K_Euc; K_Pc K_Euc 16 9 6 0.29 0.67 15 7 7 0.33 1.00 8 21 8 0.38 0.38
10 17 2_1 21 16 3 2 0.10 0.67 5 28 6 0.29 0.21
10 17 2_1 21 12 8 4 0.19 0.50
10 17 2_1 21 3 23 6 0.29 0.26
11 4 3_1 34 K_Euc K_Euc 1 80 17 0.50 0.21 7 28 15 0.44 0.54 5 28 9 0.26 0.32
11 4 3_1 34 5 49 10 0.29 0.20 6 39 11 0.32 0.28 6 37 10 0.29 0.27
11 4 3_1 34
12 9 1_3 10 K_Euc K_Euc 3 20 4 0.40 0.20 5 26 10 1.00 0.38 4 25 4 0.40 0.16
12 9 1_3 10 2 16 3 0.30 0.19 2 23 3 0.30 0.13
12 9 1_3 10 12 8 2 0.20 0.25
13 15 1_1 11 Hc Hc 15 6 4 0.36 0.67 4 24 6 0.55 0.25 6 37 5 0.45 0.14
13 15 1_1 11 9 10 3 0.27 0.30 8 17 4 0.36 0.24
14 16 1_0 16 K_Euc K_Euc 5 49 11 0.69 0.22 13 10 7 0.44 0.70 15 23 5 0.31 0.22
14 16 1_0 16 10 14 6 0.38 0.43 1 28 4 0.25 0.14
15 5 3_0 9 K_Euc; K_Pc K_Euc 14 11 7 0.78 0.64 15 23 7 0.78 0.30
16 6 3_3 27 K_Euc K_Euc 11 14 6 0.22 0.43 17 11 10 0.37 0.91 11 15 6 0.22 0.40
16 6 3_3 27 14 10 4 0.15 0.40 6 39 15 0.56 0.38 17 13 4 0.15 0.31
16 6 3_3 27 17 12 4 0.15 0.33 10 11 3 0.11 0.27
17 2 1_4 3 N/A
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terms �supplementary material�.24 We can see this in the ex-
ample of clusters 0_0 and 0_1 resulting from the second
round of E-M clustering, where cluster 0_1 resulted in 24
GO terms not enriched in the unclustered data; however,
only three completely distinct �i.e., nonoverlapping genes
representing the terms� gene modules accounted for all of
them. Similarly, cluster 0_0, which contained 18 new GO
terms, shared two genes in common between all of the terms,
although some of the terms were broader and contained as
many as nine of the 18 genes in the cluster. Interestingly,
however, there was no overlap in the terms associated with
clusters 0_1 and 0_0. Thus, in the example of these two
clusters, there were five nonoverlapping gene sets contribut-
ing to most of the annotations, they were functionally dis-
tinct, and segregated distinctly.

G. REMc highlights phenomic modules
that cooperate to buffer cellular perturbations

REMc determined about the same number of clusters as
we previously described using Hc. Reassuringly, REMc clus-
ter heat maps and associated enrichment in gene functions
tracked those surmised from our previously published analy-
sis using Hc.5,24 Cluster 0 involves genes strongly required
for tolerating DNA damage. Cluster 0_1 is highly specific in
this regard and contains genes involved in double strand
break repair �RAD57, RAD55, XRS2, RAD51, RAD54, RAD5,
MMS22, RAD52, MRE11, RAD50�, post replication repair
�RAD18, RAD6, POL32, RAD52�, and DNA replication
�RNR4, POL32, TOP3, SGS1, CTF4�. Cluster 0_0 also buff-
ers DNA damage, but is less specific, being comprised of

A B C D E F G H I J K L M N
YIL128W_MET18
YGL071W_RCS1
YLR032W_RAD5
YJR043C_POL32
YDL013W_HEX3
YJL115W_ASF1
YMR198W_CIK1
YCR066W_RAD18
YMR224C_MRE11
YER095W_RAD51
YNL250W_RAD50
YGL163C_RAD54
YLR234W_TOP3
YDR369C_XRS2
YLR235C_#N/A
YPL024W_NCE4
YML032C_RAD52
YMR190C_SGS1
YDR076W_RAD55
YDR004W_RAD57
YPR135W_CTF4
YLR320W_MMS22
YGR180C_RNR4
YNR052C_POP2
YKL054C_DEF1
YAL016W_TPD3
YPL129W_TAF14
YOL076W_MDM20
YDL160C_DHH1
YLR399C_BDF1
YAL021C_CCR4
YBL093C_ROX3
YOL012C_HTZ1
YGL058W_RAD6
YGR055W_MUP1
YNL064C_YDJ1
YGR167W_CLC1
YGL206C_CHC1
YGL095C_VPS45
YKL212W_SAC1
YDR028C_REG1
YBR081C_SPT7
YLR240W_VPS34
YJL140W_RPB4

Before E-M Clustering Round1 E-M Round2 E-M Round3 E-M
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YGL020C_MDM39
YGL135W_RPL1B
YGL240W_DOC1
YIL036W_CST6
YLR182W_SWI6
YLR244C_MAP1
YNL248C_RPA49
YOR368W_RAD17
YBR099C_#N/A
YBR098W_MMS4
YBR094W_0
YDR386W_MUS81
YPR141C_KAR3
YGR092W_DBF2
YMR060C_TOM37
YGL167C_PMR1
YGL168W_HUR1
YLL002W_RTT109
YMR198W_CIK1
YEL036C_ANP1
YER111C_SWI4
YOL081W_IRA2
YEL050C_RML2
YDR114C_#N/A
YDR405W_MRP20
YDR115W_0
YDR298C_ATP5
YJL027C_0
YGR064W_#N/A
YER052C_HOM3
YDR158W_HOM2
YCL060C_#N/A
YDL101C_DUN1
YLR268W_SEC22
YDR207C_UME6
YPL031C_PHO85
YER014C−A_BUD25
YDL118W_#N/A
YNL111C_CYB5
YMR304W_UBP15
YHR025W_THR1
YKL176C_LST4
YNL236W_SIN4
YPL055C_LGE1
YHR041C_SRB2
YJR018W_#N/A
YOR323C_PRO2
YKL204W_EAP1
YNL059C_ARP5
YEL044W_IES6
YGL070C_RPB9
YDL006W_PTC1
YJR139C_HOM6
YJL124C_LSM1
YGR104C_SRB5
YDR364C_CDC40
YLR369W_SSQ1
YJL140W_RPB4
YLR056W_ERG3
YGL025C_PGD1
YJL056C_ZAP1
YGR262C_BUD32
YBL033C_RIB1
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YDR495C_VPS3
YLR396C_VPS33
YPL045W_VPS16
YOR036W_PEP12
YDR323C_PEP7
YBR097W_VPS15
YOR035C_SHE4
YHR060W_VMA22
YDR176W_NGG1
YLR330W_CHS5
YGL012W_ERG4
YMR116C_ASC1
YPL042C_SSN3
YDR195W_REF2
YLR322W_VPS65
YDR532C_0
YKL119C_VPH2
YCR053W_THR4
YCL007C_#N/A
YER155C_BEM2
YBL094C_#N/A
YLR423C_ATG17
YDL020C_RPN4
YLR337C_VRP1
YDR388W_RVS167
YPL268W_PLC1
YNL307C_MCK1
YLR027C_AAT2
YGL127C_SOH1
YDR138W_HPR1
YHR010W_RPL27A
YDR378C_LSM6
YMR097C_MTG1
YJR105W_ADO1
YLR193C_0
YLR233C_EST1
YDR226W_ADK1
YPR131C_NAT3
YNL241C_ZWF1
YGR036C_CAX4
YJL189W_RPL39
YKR024C_DBP7
YIL040W_APQ12
YBR147W_0
YGR157W_CHO2
YMR038C_LYS7
YOL001W_PHO80
YNL084C_END3
YBR200W_BEM1
YPL084W_BRO1
YPR087W_VPS69
YDL115C_IWR1
YKR082W_NUP133
YJL180C_ATP12
YGR105W_VMA21
YLR447C_VMA6
YPL065W_VPS28
YPL002C_SNF8
YPR160W_GPH1
YKL118W_#N/A
YGR020C_VMA7
YEL051W_VMA8
YEL027W_CUP5
YKL080W_VMA5
YBR127C_VMA2
YHR039C−B_#N/A
YDL185W_TFP1
YOR331C_#N/A
YBL007C_SLA1
YAL047C_SPC72
YOR312C_RPL20B
YJL179W_PFD1
YML095C−A_#N/A
YDR432W_NPL3
YJL080C_SCP160
YLR358C_#N/A
YMR091C_NPL6
YMR272C_SCS7
YKL057C_NUP120
YJL047C_RTT101
YCL016C_DCC1
YHR191C_CTF8
YHR134W_WSS1
YDL116W_NUP84
YNR010W_CSE2
YLR357W_RSC2
YNL171C_#N/A
YGL173C_KEM1
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YDR392W_SPT3
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YFR039C_0
YPL178W_CBC2
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YHR004C_NEM1
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YDR162C_NBP2
YKL048C_ELM1
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YOR124C_UBP2
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FIG. 6. �Color� Heat maps of REMc clusters illustrate hierarchical relationships and cluster quality. Heat maps represent each round of REMc. Each REM
cluster was subjected to Hc to produce a gene dendrogram and heat map. Green shading indicates synergistic interaction, and blue shading indicates
antagonistic interaction �see scale�. The interaction values �each shaded box� correspond to Growth Index scores �described in Sec. I and reproduced in
supplementary material� �Ref. 5�. The cluster names are given to left of heat map. GOid_z and LL are displayed to the right of clusters �rank indicated in
parentheses�. Gene names are given along the right side of each heat map. Drug treatment conditions are labeled A-N at the bottom and the same order is
maintained for each cluster, as detailed for cluster 0. See text and supplemental material for additional detail about each perturbation �Ref. 24�.
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genes functioning in regulation of mRNA stability �CCR4,
DHH1, RPB4, POP2�, a cellular process that is of broader
utility. Nevertheless, these genes have been recently been
confirmed as particularly important in regulating RNR, pro-
viding a mechanistic molecular explanation for the genetic
interactions.37 Cluster 1 highlights genes strongly required to
buffer HU perturbation, but only have a moderate role in
buffering the DNA damaging effects of cisplatin. Cluster 1_1
reveals genes involved in threonine �HOM2, HOM3, THR1�
and sterol �ERG3, CYB5� metabolism, while cluster 1_0 con-
tains genes cofunctioning in meiotic recombination �MMS4,

UME6, MUS81, RAD17�, and cluster 1_2 indicates that te-
lomere maintenance �PTC1, RPB9, SRB5, BUD32, RPB4�
could partially underlie this interaction profile. Cluster 2 con-
tains genes that on average are more strongly required to
buffer cisplatin damage than genes from other clusters. Clus-
ter 2_1, like cluster 1_2, involves a significant number of
genes cofunctioning in telomere maintenance �HPR1, KEM1,
CAX4, CHO2, ADO1, EST1, VPS9, NAT3�.38 Cluster 2_0_0
reveals components of the vacuolar H+ /ATPase �VMA2,
TFP1, CUP5, VMA8, VMA10, VMA5, VMA6� that functions
in vacuolar acidification and regulation of cellular pH; clus-
ter 2_0_2 shows functional enrichment in sister chromatic
cohesion �DCC1, CTF8, RSC2� related to chromosome seg-
regation �DCC1, CTF8, RSC2, CSE2�, chromosome localiza-
tion �NUP84, NUP133�, and protein sumoylation �SLX8,
WSS1�. Cluster 3 consists of genes with relatively weak
drug-gene interactions; nevertheless, the subclusters repre-
sent modules that buffer HU and cisplatin �3_1�, those more
specifically involved in buffering only HU �3_3�, or those
exhibiting a heterogeneous pattern of interactions �3_2�.
Consistent with the subtler phenotypes of cluster 3, the genes
were less well annotated. However, the weaker phenotypes
were informative, cluster 3_0 revealing involvement of the
tubulin complex assembly �YKE2, GIM5�, cluster 3_1 high-
lighting mitochondrial signaling �RTG3, RTG2, MKS1,
RTG1� and cell cycle checkpoint �MRC1, RAD9, BIM1,
RAD24, ELM1, DDC1�, and cluster 3_3 pointing to genes
functioning in mitochondrial organization and biogenesis
�MGM101, MDM35, MDM30, SML1�.

TABLE III. Summary of total GO terms emerging during REMc. Unclustered data were enriched for 71 GO
terms. The first round of clustering yielded four clusters and a total of 166 GO terms, indicating an increase in
the detection of functionally related genes by clustering. However, 42 of the GO terms across the four clusters
were redundant �reducing the total number of unique GO terms to 124, given in parentheses�, and 15 terms
�“missed previous”� associated with the unclustered data were not associated with one of the four clusters. The
cluster ID name indicates the parent-child relationships for each clustering. Clustering was performed recur-
sively until no new clusters were obtained. See supplemental material for list of GO terms for each cluster.

Unclustered Cluster ID Rd 1 GT Cluster ID Rd 2 GT Cluster ID Rd 3 GT

71 1.0 69 2.0-0 31
2.0-1 61

1.1 20 2.1-0 1
2.1-1 15
2.1-2 12
2.1-3 8
2.1-4 0

1.2 56 2.2-0 41 3.2-0-0 21
3.2-0-1 7
3.2-0-2 12

2.2-1 10
2.2-2 17 3.2-2-0 5

3.2-2-1 19
1.3 21 2.3-0 0

2.3-1 16
2.3-2 0
2.3-3 2

Unique GT �total� 71�71� 124�166� 144�214� 146�220�
New in round 68 39 11
Missed previous 15 19 9

FIG. 7. Increase in GO terms associated with REMc. The frequency of GO
terms obtained from the unclustered data �white� and following REMc clus-
tering �black� is plotted against bins representing total number of genes
annotated to the corresponding terms.
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H. Phenomic modules enable hypothesis generation
regarding buffering networks

The overall goal of this data set was to gain insight into
how cells buffer replication stress.4,5 Replication stress was
induced by HU, which depletes dNTP pools through inhibi-
tion of the rate-limiting enzyme for dNTP biosynthesis,
RNR. A model attempting to connect as many of the modules
as possible was generated. Some were straightforward such
as DNA repair pathways, which were easily identified �clus-
ter 1 and cluster 3�. Other modules were not known to be
involved in dNTP metabolism, having been studied previ-
ously in other context. With discovery of their co-occurrence
as phenomic modules buffering replication stress, it was pos-
sible to create a model hypothesizing their cooperation in a
buffering mechanism �Fig. 8�, involving rerouting of meta-
bolic fluxes.15 It was surprising that genes involved in threo-
nine biosynthesis �AAT2, HOM3, HOM2, HOM6, THR1, and
THR4� would be HU sensitive, and moreover that successive
genes in the pathway were progressively more sensitive. The
threonine biosynthesis pathway is evidenced by HOM3,
HOM2, and THR1 in cluster 1_1 �Fig. 6�. Aspartate is a
precursor in the biosynthesis of threonine and is produced
from the substrate oxaloacetate by aspartate amino trans-
ferase �AAT2�. Oxaloacetate is a product of the TCA cycle,
so it was intriguing that RTG1/RTG2/RTG3, known to trans-
mit “retrograde” �nuclear-to-mitochondrial� signals that
regulate TCA cycle activity,39,40 represented another module
�cluster 3_1�. These two modules suggested de novo threo-
nine biosynthesis to be important for buffering dNTP pool
depletion. Additionally, LST4 �cluster 1_1� and LST7 �cluster
3_2�, two genes that cofunction with LST8 and SEC13 in
regulating amino acid permease trafficking, had suggestive
gene interaction profiles,41 and furthermore LST8 is a known
regulator of the RTG pathway.42 We validated this model by
knocking down the RNR gene activity directly �reducing
gene expression� to deplete dNTP pools and induce replica-
tion stress in these deletion strains �rather than using HU,
which inhibits RNR activity, but could potentially have other
“off-target” effects�. The gene-drug interactions discovered
with HU were validated as gene-gene interactions, and fur-
thermore two parallel �“extrinsic”� buffering paths of this

homeostatic circuit �threonine biosynthesis and uptake� were
found to be synthetic lethal. The model was further validated
by the finding that the unexplained slow growth phenotype
of a strain with a deletion mutation in the gene GLY1, en-
coding threonine aldolase, was associated with a low basal
level of dNTP pools and a slow homeostatic response fol-
lowing induction of RNR deficiency.15

In summary, the work above illustrates how identifica-
tion of phenomic modules can lead to discovery of buffering
mechanisms, as described above for maintenance of dNTP
pools via regulation of threonine metabolism. The extent to
which buffering mechanisms are evolutionarily conserved re-
mains unknown. However, evolutionary conservation of
threonine catabolism for maintenance of normal dNTP pools
has been recently reported in mice. Furthermore, the mecha-
nism by which threonine metabolism regulates dNTP pool
homeostasis and cell proliferation was specific to embryonic
stem cells, suggesting that yeast may be a good model for
this cell type.29 At some level of granularity, the yeast and ES
cell models for buffering DNA synthesis by regulation of
threonine metabolism will be different. Nevertheless, it pro-
vides an example that buffering mechanisms, like genes, are
conserved over long evolutionary distances.4

III. DISCUSSION

Living organisms are dynamic, nonlinear systems with
modular and hierarchical designs having been engineered by
natural selection over evolutionary time in response to envi-
ronmental pressures. Living systems are also robust;43 how-
ever, in contrast to man-made systems, the generation of di-
versity is a fundamental characteristic.44 High throughput
analysis of genetic interactions reveals aspects of robustness
and diversity in biological systems representing a sort of
reverse engineering approach to dissect the complexity of
cellular design.45 Genome-scale, systematic analysis of gene
interactions is relatively new, but from it we already know
that genes are highly interactive,46,47 and that quantitative
assessment of interactions aids the effort to resolve their
complexity.5,11,15,48 Having developed tools with enhanced
capacity for collecting Q-HTCP data, we sought streamlined
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FIG. 8. �Color online� A model for buffering of dNTP
pool homeostasis by threonine metabolism. Please see
text and references for further explanation �Refs. 15 and
29�.

026103-13 REMc: Recursive E-M clustering Chaos 20, 026103 �2010�



and efficient ways to mine the resulting large-scale quantita-
tive genetic interaction data, which lead to the development
of REMc. The goal during development of REMc was to
establish objectivity regarding where clusters exist, and
which ones are of the highest quality. We sought to test
whether comparable interpretation would be reached for a
large data set that had been previously mined using Hc.5 In
general it appears REMc provides useful features of other
clustering methods �identification of genes with similar pro-
files�, but with increased objectivity and efficiency. There are
theoretical and technical issues that remain to be addressed
to deploy REMc on a larger scale, as well as questions re-
garding further development of REMc. These considerations
overlook for the moment matters regarding how phenotypic
data are collected and/or how genetic interactions are calcu-
lated.

An unrealistic aspect of gene clustering is that genes are
typically assigned a single cluster. Just as the Beadle–Tatum
hypothesis of one gene-one enzyme no longer fits with our
appreciation of biological complexity, neither does the notion
of a gene interacting within one or even a small number of
phenomic modules.49,50 Instead, genes interact, and phe-
nomic modules function, dynamically within a changing cel-
lular context. Although the REMc outputs we focused on in
this initial study were the most probable ones �i.e., genes
were constrained to one cluster�, it is possible to relax the
model and to consider individual genes as part of multiple
clusters. Considering genes to interact in multiple modules
adds dimensions to the data mining problem. Like
biclustering,8,26,28,51 REMc should enable investigation of
this question as a future direction. Other factors affecting
REMc, such as selecting the most mutually informative fea-
tures for clustering, should also be examined.

GOid_z could be improved by creation of additional al-
gorithms that perform tasks a biologist would typically un-
dertake, such as correcting for increases in the GOid_z score
due to the same set of genes being associated with multiple
related terms. Similarly the GTF tool could be integrated
within the REMc framework for streamlining related data
mining tasks.

In summary, from the outset our benchmark for devel-
opment of REMc was to recapitulate biological insights de-
scribed in detail previously where the same data were ana-
lyzed by Hc and without the use of GO tools.5 The earlier
effort demonstrated that a relatively small amount of quanti-
tative gene-drug interaction data revealed many of the same
functional modules as a much larger set of qualitative gene-
gene and gene-drug interaction data.5,9 As described below,
REMc recapitulated the biological findings that stood out
from the earlier more subjective analysis, thus achieving the
objective. We refer to that paper for more detailed discus-
sions, emphasizing here that the fundamental advantages of
REMc are objective determination of the absolute cluster
number and hierarchy together with quantification of cluster
quality. These advantages reduce laborious and subjective
scrutiny of clustering results, increase reproducibility, pro-
viding a scalable clustering approach.

As tools for studying gene interaction networks improve,
the challenge of data visualization increases. Given the di-

versity of living organisms and universal requirements for
homeostatic mechanisms there would seem to be nearly in-
finite ways that genes and pathways can interact. However,
evolutionary constraints and modularization of biological
processes may make it possible to understand and extrapo-
late gene interactions to buffering mechanisms across spe-
cies. REMc may help by making clustering more flexible,
objective, and quantitative, allowing more attention to focus
on utilization of cluster information for data integration.
Tools and interdisciplinary approaches for systems biology
are under rapid development, and hopefully REMc can assist
the impending phenomics effort by providing a useful data
mining tool for large-scale quantitative analysis of gene
interactions.

IV. METHODS

A. Quantification of genetic interactions

We used previously published genetic interaction data
obtained from 297 yeast gene deletion strains, selected from
a screen of over 4800 deletion strains for chemical-genetic
interactions with HU �an inhibitor of RNR activity that ar-
rests the cell cycle by rendering dNTP biosynthesis rate-
limiting for cell proliferation�. These strains were further
tested for interactions with four additional chemicals, each at
multiple concentrations, to aid discrimination of gene func-
tions with respect to a range of cellular perturbations, as
previously described.5

B. Clustering analysis

1. EM-optimized Gaussian mixture model clustering
REMc was developed using WEKA 3.5,34 which provides

an EM clustering module that was incorporated into JAVA

code to perform the clustering recursively �for help incorpo-
rating WEKA in JAVA code see http://weka.wikispaces.com/
Use�Weka�in�your�Java�code�. WEKA accepts comma-
delimited files containing a data matrix, which can be
optionally converted to ARFF files �see http://
weka.wikispaces.com/Creating�an�ARFF�file� prior to
clustering. Parameters that can be selected are the number of
clusters and the degree of cross-validation. We used the de-
fault settings, which include that the algorithm optimizes the
number of clusters and with tenfold cross-validation.

In GMM clustering, a finite mixture of Gaussian densi-
ties is fit to the data. Each of the N genes is represented as a
vector g� i with components corresponding to the 15 perturba-
tions. The likelihood function for finding gene i in cluster j is

f�g� i 	�� j�, where �� j is the vector of Gaussian distribution pa-
rameters. A function proportional to the posterior probability
for gene i being generated by the collection of cluster classes
is a mixture or linear combination of these Gaussians:


 j=1
M � j f�g� i 	�� j�, where � j is the prior probability of a gene

coming from cluster j. The goal of GMM clustering is to
maximize the LL,

026103-14 Guo et al. Chaos 20, 026103 �2010�

http://weka.wikispaces.com/Use+Weka+in+your+Java+code
http://weka.wikispaces.com/Use+Weka+in+your+Java+code
http://weka.wikispaces.com/Creating+an+ARFF+file
http://weka.wikispaces.com/Creating+an+ARFF+file


L = log��
i=1

N



j=1

M

� j f�g� i	�� j� . �1�

The EM algorithm �maximum likelihood method� is applied
to yield the class membership and fit the mixture
components.52 The algorithm alternates between E and M
steps. In an E step, the probability of each observation be-
longing to each cluster is estimated conditionally on the cur-
rent parameter set �cluster means and standard deviations�. In
an M step, the model parameters are estimated given the
current class membership probabilities. It is likely an over-
simplification of biology to force each gene to be in only one
cluster because we expect genes to have more than one func-
tion. Thus, unlike K-means, which assigns each gene to a
single cluster, GMM clustering does not assign a gene to any
single cluster but rather gives the gene’s probability of being
in all clusters. However, to simplify interpretation, once the
EM algorithm converges, genes are assigned to the class with
the maximum conditional probability.

Training the GMM models on the entire data set in-
creases overfitting and decreases the generality of the model.
To achieve more robust clusters and more reliable LL esti-
mates, tenfold cross-validation is used with the EM algo-
rithm. The data set is divided into ten equal partitions, and
the EM algorithm is trained on each partition and tested on
the remaining data. The LLs are averaged over all ten folds.
The number of clusters is determined iteratively by incre-
menting the number of clusters until the average LL does not
increase appreciably from the previous number of clusters.
To perform the maximum likelihood GMM clustering, we
used the WEKA open source data mining software written in
JAVA. We modified the WEKA algorithm to include the recur-
sive approach described above.34

2. Hierarchical and K-means clustering
Hc and KMc were performed using the MATLAB Bioin-

formatics Toolbox. Function “pdist” was used to calculate
the distance for either Euclidean or Pc distance �http://
www.mathworks.com/access/helpdesk/help/toolbox/stats/
pdist.html�. Function “linkage” was used to establish the hi-
erarchical cluster tree �http://www.mathworks.com/access/
helpdesk/help/toolbox/stats/linkage.html�. Function “cluster”
creates clusters from linkages �http://www.mathworks.com/
access/helpdesk/help/toolbox/stats/cluster.html�. Function
“kmeans” was used for KMc �http://www.mathworks.com/
access/helpdesk/help/toolbox/stats/kmeans.html�. Function
“clustergram” was used to generate all heat maps with one-
dimensional clustering �perturbation axis fixed�, Euclidean
distance metric, and complete linkage provided http://
www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/
ref/clustergram.html�.

C. Gene ontology methods

GO provides biological knowledge about genes from cu-
rated literature information using a controlled vocabulary
and systematic annotation of genes. It provides a computa-
tional way to assess for biological functions within a list of
genes relative to a background set.53

1. CLUSTERJUDGE

A GO-based method used in this study compares the
relative quality of different clustering methods based on MI
regarding enrichment of gene functions across all clusters.
The online tool provided by the Roth laboratory was used.35

2. GO TERMFINDER

GTF is an online tool available from the Saccharomyces
Genome Database website.31,54 It takes input files consisting
of a gene list �cluster� and a background set �deletion
strains�.

3. Gene ontology information divergence z-score
We developed a new tool for this study, GOid, to sum-

marize the overall enrichment of gene functions �across all
biological processes� in a single cluster. GOid was converted
to a GOid_z score, as indicated in Fig. 3; GOid_z was in turn
used to compare REMc, Hc, and KMc results. Whereas the
LL from REMc provides a data-driven quality of classes pre-
dicted by model-based clustering, knowledge-driven cluster
quality methods assign biological function to clusters. Most
clustering evaluation tools provide a global score for the col-
lection of clusters produced by a method. In order to assess
the quality of individual clusters, we introduced an informa-
tion theoretic score to quantify the GO enrichment of each
class. Specifically, we use the Kullback–Leibler divergence
�KLD� between a cluster of genes C and a background list of
genes B for a given GO term t,

Dt�C,B� = 

k��0,1�

ck log� ck

bk
� . �2�

The divergence D measures the degree of dissimilarity be-
tween the discrete posterior distribution C with probability
spectra ck and a background or prior distribution B with
probability spectra bk. In this application, each gene can be
in binary state k=1 or 0, corresponding to the probability of
genes being associated with the GO term or not. Although
not a true metric, it satisfies many important mathematical
properties such as being non-negative and equaling zero only
if ck=bk. In other areas of bioinformatics KLD �referred to as
relative entropy in this context� has been used to quantify
sequence alignments and visualized by sequence logos.55 In
the alignment application, the posterior was the observed
probability of a residue at an alignment column and the
prior/background was the expected probability of the residue
to occur at random. To understand the output of the GO term
divergence for a cluster, it is instructive to compare with the
output of GTF. Consider five highly enriched hypothetical
GO terms and the results for a hypothetical cluster with 28
genes compared with 7292 background genes.
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GO
term

Cluster
frequency

Background
frequency GTF p-value Divergence

1 28/28 104/7292 7.84�10−52 5.99
2 28/28 108/7292 2.65�10−51 5.93
3 28/28 215/7292 4.6�10−42 4.95
4 23/28 98/7292 1.01�10−37 4.43
5 23/28 200/7292 5.63�10−30 3.59

The output of GTF is a p-value, while the output of KLD
is a raw score or strength, but the table shows the same trend
down a column: less significant p-values and decreasing di-
vergence scores. It is also possible to assign an approximate
p-value to the divergence score by either assuming its
asymptotic distribution of chi-square or by generating boot-
strap samples.56

To estimate the biological quality of C with respect to
GO, we compute the GOid as the sum of the divergence
between C and B across all t,

GOid�C� = 

t�GO terms

Dt�C,B� . �3�

Similar to CLUSTERJUDGE,35 we filter extremely sparse at-
tributes to avoid division by zero in the divergence calcula-
tion, but we do not otherwise filter attributes. For a given
attribute, a large information divergence suggests that the
enrichment of genes in C for this GO category diverges from
the fraction of genes associated with this term for the entire
genome �background enrichment�, signifying significant en-
richment of this classified set of genes. If the class and back-
ground probabilities are equal, then GOid=0, consistent with
a cluster providing no significant GO enrichment. The output
of GTF would be less suitable for estimating cluster quality
than KLD because it is less statistically sound to average
p-values, whereas it makes sense to average a strength like
KLD. The divergence from Eq. �2� can be used to rank the
contribution of individual GO terms to the enrichment of a
cluster class, and the total divergence in Eq. �3� adds these
contributions to give a quality score for a cluster class.

For GOid_z, we incorporated the mean and standard de-
viation from a set of 1000 random clusters R, generated with
the same number of genes as the corresponding real cluster C
�see Fig. 2�. The random clusters were generated from the
same background set of genes, corresponding to those repre-
sented in the gene deletion strain library �gene lists available
from Open Biosystems�. The GOid_z was calculated as

GOid _ z�C� =
GOid�C� − �GOid�R�

�GOid�R�
. �4�

To reduce computing requirements for calculation of GOid
for R and GOid_z for C, we fit the data shown in Figs. 3�a�
and 3�b�, and used the resulting functions �data not shown� to
determine the mean and standard deviation of GOid scores
from 1000 random clusters of any size.
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NOMENCLATURE

CJ 	 CLUSTERJUDGE

Euc 	 Euclidean distance
EMc 	 Expectation-maximization clustering
GO 	 Gene ontology

GOid_z 	 Gene ontology information divergence z-score
Hc 	 Hierarchical clustering

HU 	 Hydroxyurea
GMM 	 Gaussian mixture model

GTF 	 GO TERMFINDER

KMc 	 K-means clustering
LL 	 Log-likelihood
Pc 	 Pearson correlation

Q-HTCP 	 Quantitative high throughput cellular pheno-
typing

REMc 	 Recursive expectation-maximization cluster-
ing

RNR 	 Ribonucleotide reductase
TCA 	 Tricarboxylic acid
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