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We extend and apply a method that we have developed for deriving high-order epistatic relation-
ships in large biochemical networks to a published genome-scale model of human metabolism. In
our analysis we compute 33 328 reaction sets whose knockout synergistically disables one or more
of 43 important metabolic functions. We also design minimal knockouts that remove flux through
fumarase, an enzyme that has previously been shown to play an important role in human cancer.
Most of these knockout sets employ more than eight mutually buffering reactions, spanning mul-
tiple cellular compartments and metabolic subsystems. These reaction sets suggest that human
metabolic pathways possess a striking degree of parallelism, inducing “deep” epistasis between
diversely annotated genes. Our results prompt specific chemical and genetic perturbation follow-up
experiments that could be used to query in vivo pathway redundancy. They also suggest directions
for future statistical studies of epistasis in genetic variation data sets. © 2010 American Institute of
Physics. �doi:10.1063/1.3456056�

Small molecule metabolism mediates the most basic bio-
chemical function of living matter: to derive energy and
macromolecules from nutrients in the environment.
Metabolic pathways are tied in intricate networks which
in E. coli and S. cereviseae have been shown to display a
great degree of buffering and epistasis. Epistasis has not
been previously been examined on a genome-scale in hu-
man metabolism. We apply a novel in silico approach to
sample the depth of epistasis in the human metabolic net-
work with respect to a variety of metabolic objectives.

I. INTRODUCTION

Cellular metabolism provides the biochemical machin-
ery to transform a small set of simple nutrients into the com-
plex building blocks of life. The metabolic network of a
human consists of thousands of small molecule species intri-
cately linked by an even larger set of biochemical reactions.
Dysregulation of metabolism underlies rare fatal conditions
like Niemann–Pick disease and pervasive chronic illnesses
like diabetes. The metabolic pathways of normal human cells
are distinctly altered during carcinogenesis.

The connectivity and coupling of metabolic reactions
can be most simply captured in a stoichiometric model. The
first such known model was constructed by Shapiro in the
1960s, who applied mathematical formalisms from econo-
metrics to conduct an “input-output analysis” of E. coli
metabolism.1 Over the past ten years, genome-scale stoichi-
ometric metabolic models have been built for a variety of
organisms, including E. coli, S. cereviseae, H. pylori, S. au-
reus, and H. sapiens.2–14 Such models facilitate analysis of
systems-level behaviors such as growth or metabolite pro-

duction in the context of nutrient media and chemical/genetic
perturbations.14,15

Part of the complexity of metabolism arises from the
existence of backup pathways for a given function. Such
parallelism can obscure the role of seemingly dispensable
network components. The role of genes and enzymes in such
robust functions can only be revealed through the knockout
of multiple genes or reactions.16–21 We refer to a set of reac-
tions whose knockout abolishes a given function as a cut set
for that function. A cut set is minimal for a given function if
its knockout abolishes that function, while the knockout of
none of its subsets abolishes that function. Reactions that
contribute to minimal cut sets �MCSs� are “epistatically” re-
lated, since their simultaneous knockout induces a phenotype
that is not seen with simpler knockout combinations.45 In
previous work, we have identified over 11 000 MCSs of five
or more reactions for biomass production in E. coli.19 Deut-
scher et al.17 employed in silico multiple knockout analysis
to reveal novel essential roles for reactions in the yeast meta-
bolic network. These results indicate the presence of robust
parallelism and deep epistasis in the metabolic networks of
E. coli and yeast.

Interest in metabolic epistasis is motivated by practical
considerations. First, pharmaceutical manipulation of me-
tabolism, e.g., for chemotherapy or antibiotics, can be con-
founded by the presence of alternative pathways supplying
an unwanted function. Second, complex epistatic relation-
ships can mask statistical genetic associations linking germ-
line or somatic genetic variation to disease phenotypes, e.g.,
diabetes, cancer.22 The size of the search space for “naive”
epistatic genetic models not only incurs significant computa-
tional expense but significantly reduces the statistical power
to detect complex associations in genetic data sets. Systems
biology and network analysis can inform statistical geneticsa�Electronic mail: mimielinski@partners.org.
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by providing biologically grounded epistatic models that fol-
low from basic biochemical relationships between gene
products.23,24

To detect high-order epistasis in in silico metabolic net-
works, one can apply a brute-force approach to exhaustively
test all combinations of single, double, triple, etc. mutants.
This approach, although applicable to analysis of low-order
��4� knockout combinations, is untenable for higher-order
mutant combinations.17 For example, a network of 1000 re-
actions would require over 1014 linear programs to exhaus-
tively test all possible quintuple-knockout combinations. To
overcome the curse of dimensionality we have recently ex-
tended the elegant approach of Klamt and Gilles for identi-
fying complex knockouts.19,25 Klamt and Gilles’ method ex-
ploits the pathway decomposition of a metabolic network to
uncover MCSs, or minimal sets of reactions whose removal
disables a particular objective reaction. Our extended ap-
proach takes advantage of a “relaxed” pathway definition
that is actually computable for genome-scale networks.19

In this paper we extend our approach further and apply it
to the study of human metabolism using a published network
reconstruction.12 We compute MCSs for 43 important bio-
synthetic objectives and a metabolic enzyme known to be
mutated in cancer. Our results reveal high-order epistatic re-
lationships between diverse components of human metabo-
lism and illuminate essential systems-level roles of reactions
in highly redundant and robust metabolic subnetworks.

II. METHOD

A. Theory

1. Notation
R is the set of real numbers, R+

n is the set of all
n-dimensional vectors with real and positive components,
and Rm�n is the set of all m�n matrices with real entries.
Given m ,n�N, we use the notation M = �1, . . . ,m� and
N= �1, . . . ,n�. For a set C, we use �C� to denote its cardinal-
ity. If A�Rm�n and U�M, then AU denotes the submatrix of
A containing the rows with indices in the set U. Therefore, if
x�Rn, i�N, and U�N, then xi and xU�R�U� denote its ith
component and the vector formed by taking components
with indices in set U, respectively. The inequality x�0 is
interpreted componentwise, i.e., xi�0, i=1, . . . ,n, while the
inequality x�0 is interpreted as x�0, x�0. Each vector
x�Rn induces a ray, rx= ��x ���0�. We denote the sparsity
pattern of a ray rx�Rn as SP�rx�= �j�N �xj�0�. The spar-
sity pattern SP�R� of a ray collection R is a collection of sets
�SP�rx� �rx�R�.

2. Stoichiometric metabolic model
We represent a mass-balanced metabolic network of n

chemical reactions involving m metabolites with stoichiom-
etry matrix S�Rm�n. In addition to representing the bio-
chemical reactions in the cell, S encodes reactions mediating
exchange �uptake and secretion�, growth-based dilution, and
consumption of small molecule species by macromolecular
processes. Each entry Sij specifies the stoichiometric coeffi-
cient for metabolite i in reaction j, which is negative for
substrates and positive for products. We represent the flux

distribution through the reactions of the network by v�Rn,
where a component v j corresponds to flux through reaction j.
We constrain all reactions in the network to be irreversible,
i.e., v�0, and represent every reversible reaction with two
irreversible reaction fluxes with opposite orientation.46 The
concentrations of species in the system at time t are denoted
by x�t��R+

m. Under these assumptions, the rate of change in
time of species concentrations is given by

ẋ = Sv, v � 0. �1�

Metabolic reactions occur at a fast rate with respect to
cell regulatory and environmental changes. When modeling
at the slower time scale it is reasonable to apply the quasi-
steady state assumption,14 which assumes that for the over-
whelming majority of time the system obeys

Sv = 0, v � 0. �2�

Under these assumptions, the flux states of the network lie in
the polyhedral set

K = �v � Rn�Sv = 0,v � 0� , �3�

which we refer to as the feasible flux cone of S induced by
stoichiometric, steady state, and irreversibility constraints.

3. Minimal cut sets
A cut set for a metabolic objective is a set of reactions

whose knockout abolishes that function.25 The objective is
generally a flux in the network to be disabled. This can rep-
resent a single reaction, the producibility of a target metabo-
lite, or the consumption of small molecules species by mac-
romolecular processes, e.g., biomass production.

Formally, in a stoichiometric model of metabolism S, a
set of reactions C�N is a cut set for an objective reaction
j�N if and only if v j �0 is feasible in the wild type �i.e.,
∃v�K �v j �0� and

vC = 0 → v j = 0, ∀ v � K . �4�

A cut set C is minimal if no proper subset of C is a cut set.
MCSs are “elementary failure modes” of metabolic
networks.26 High cardinality MCSs also represent fundamen-
tal units of synergistic epistasis between network compo-
nents involved in robust systems-level functions.19

MCSs can be brute-force identified by exhaustively iter-
ating through all possible reaction knockout combinations C
using linear optimization �e.g., flux balance analysis �FBA��
and determining feasibility of v j �0. However, in large net-
works �i.e., thousands of reactions�, this method is limited to
the discovery of low cardinality �k�4� MCSs.17

Alternatively, MCSs can be constructed as minimal hit-
ting sets of extreme pathways �EPs� using the method of
Klamt and Gilles.19,25 EPs arise from a ray decomposition of
the feasible flux cone K, and can be thought of as both quan-
titative flux states and reaction subsets �i.e., pathways� in the
network. A MCS for a metabolic function is a minimal set of
reactions that intersects all EPs that supply that function
�e.g., biomass production�. Minimal hitting sets can be enu-
merated using various approaches, such as the Berge
algorithm.27

026104-2 M. Imielinski and C. Belta Chaos 20, 026104 �2010�



A major bottleneck to the elegant approach of Klamt and
Gilles is EP computation, which is not usually possible for
genome-scale networks.47 However, in previous work, we
have overcome this bottleneck by generalizing the theoretical
results of Klamt and Gilles to rays that generate overapproxi-
mations of the feasible flux cone K.19 These rays, which we
call pathway fragments, emerge from the application of
steady state constraints to only a subset of species in the
network, yielding a relaxed flux cone K� for which K�K�.

Like EP, pathway fragments can be used to derive
MCSs. A minimal hitting set C of a collection of pathway
fragments feeding objective j is guaranteed to be a cut set for
j.19 However, there are two caveats. A cut set C obtained in
this manner is not guaranteed to be minimal. As a result, it
may require reduction to minimality via an optimization
based post processing step. Second, we are also not guaran-
teed to find all cut sets C through the analysis of pathway
fragments. This nonminimality and incompleteness is the
price of the overapproximation of K by K�, but clearly im-
proves the more closely K� envelopes K, i.e., the more spe-
cies steady state constraints are enforced.

In practice, we have shown that the analysis of pathway
fragments in genome-scale metabolic networks can yield
large numbers of complex MCSs. In E. coli, this approach
generated more than 11 000 MCSs for biomass production.19

Most MCSs were also of high cardinality ��5� and would
have been virtually impossible to identify through brute-
force approaches. These MCSs clustered into functional re-
action modules that illuminated instances of robust parallel-
ism and deep epistasis in E. coli metabolism.

In this paper we apply our MCS computation method to
the network of human metabolism, which contains a much
larger number of reactions and species compartments than
E. coli metabolism. Our method involves three basic stages:
�1� pathway fragment generation, �2� minimal hitting set
computation, and �3� reduction of cut sets to minimality. To
increase our yield of MCSs, we modify the previously pub-
lished method by generating multiple “extended” pathway
fragment collections in stage 1 to feed into stage 2.

B. Genome-scale MCS computation

1. Basic algorithm
The first stage of our algorithm is pathway fragment

generation. The feasible flux cone K of the metabolic net-
work S is the set sum of a finite and unique collection of
extreme rays E�K�.2 E�K� are computed iteratively by deter-
mining the extreme rays E�Ki� for a series of polyhedral
cones Ki�Rn where K0=R+

n and

Ki = �v�SMiv = 0,v � 0�, i � M , �5�

where Mi�M, �Mi�= i, and Mi�Mi+1.
In other words, at each iteration i we determine the cone

Ki of flux configurations that constrains i metabolites to
steady state. Following this, we choose a new metabolite for
iteration i+1. It follows directly from Eqs. �3� and �5� that
K�Ki, as shown in Fig. 1.

The initial collection of generators E�K0� consists of rays
induced by the Euclidean basis vectors ej �Rn. At each it-
eration i�M, a novel collection Etemp�Ki� is generated from

positive linear combinations of rays in E�Ki−1� that are out of
balance with respect to �i.e., consume or produce� metabolite
i. Etemp�Ki� contains many nonextremal rays, i.e., those
which lie in the positive span of two or more of their coun-
terparts, and must be pruned to yield E�Ki�.

This pruning process comprises the most computation-
ally intensive part of each algorithm iteration. Pruning is
implemented through pairwise comparison of the sparsity
patterns of rays r in Etemp�Ki� and removal of any ray r for
which there exists an r� such that SP�r���SP�r�. Since the
size of E�Ki� can become quite large with increasing i, this
step of the computation reaches memory limits �or slows to a
crawl� at some iteration imax�m for most genome-scale net-
works. However, the difference between m and imax is usu-
ally quite small even for large networks, representing a small
subset of only the most connected metabolites.

We refer to rays in each collection E�Ki� as pathway
fragments for S, since the final EPs E�Km�=E�K� lie in their
positive span �and thus involve a superset of their reactions�.
At iteration i= imax, when computational resources are ex-
hausted, pathway fragments P=E�Ki� are collected and in-
putted into step 2 �minimal hitting set computation� to gen-
erate cut sets.

Our formulation is flexible with respect to the order of
metabolite traversal. The choice of metabolite at each itera-
tion i can be thus optimized with the goal of maximizing imax

and producing a pathway fragment collection that captures a
larger number of network constraints. As previously de-
scribed, we employ a local greedy optimization strategy to
achieve this purpose.19,29

The second stage of our algorithm is minimal hitting set
computation. Because the cone Kimax overapproximates K
�Fig. 1�, a flux configuration v that is infeasible in Kimax will
also be infeasible in K. We use this property to generate cut
sets for an objective j from the analysis of pathway frag-
ments generating Kimax. Given a pathway fragment collection
P=E�Kimax� and objective reaction j, we generate cut sets
through the analysis of Pj, the collection of j-containing rays

v1

v2

v3

K i

(cone gener ated by
pathway f r agments)

K
(feasible flux cone)

FIG. 1. A relaxed flux cone Ki is generated by pathway fragments that fulfill
a subset of steady state requirements for metabolic network S. With each
new iteration i of pathway fragment computation, Ki provides an increas-
ingly better overapproximation to the system’s actual feasible flux cone K.
Since any flux that is infeasible in Ki is guaranteed to be infeasible in K, we
can use the analysis of pathway fragments generating Ki to compute cut sets
for a reaction j.
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in P. We have previously shown that a reaction set C�N is
a cut set for j if C intersects all j containing pathway frag-
ments in P, i.e., if C is a hitting set of SP�Pj�. Although we
cannot ensure that C will be an MCS for j, we can increase
the likelihood of minimality by choosing C that are minimal
hitting sets of SP�Pj�. Minimal hitting sets for SP�Pj� are
computed using a variant of the Berge algorithm.19,27

In the third stage, we reduce minimal hitting sets to
MCSs using linear optimization. To determine whether the
minimal hitting set C is an MCS it needs to be checked for
minimality against the objective j in metabolic network S.
This is done by determining feasibility of flux j when each of
the immediate subsets of C is knocked out.19 For example, if
�C�=10, one would perform ten linear optimizations to verify
its minimality. Cut sets that are not minimal are pruned to
minimality by recursively testing subsets with additional lin-
ear optimizations.

2. Increasing MCS yield by expanding the pathway
fragment collection

In the first step of our previously published MCS algo-
rithm, we carry pathway fragment computation to an itera-
tion imax. The next iteration imax+1 fails due to the large num-
ber of vector comparisons required to remove nonextremal
rays from the collection Etemp�Kimax+1�. However,
Etemp�Kimax+1� is usually computable, i.e., by taking positive
combinations of rays in E�Kimax� to balance the metabolite at
iteration imax+1, although it may not be storable in main
memory. Despite containing many nonextremal rays, this
collection is identical in essence to other pathway fragment
collections; namely, minimal hitting sets of j-containing rays
in Etemp�Kimax+1� are cut sets of reaction j. We can thus gather
j-containing pathway fragments from Etemp�Kimax+1� and ex-
ploit them for MCS computation.

What is the benefit of extending pathway fragment com-
putation a half iteration further? To explain this, we intro-
duce the concept of a boundary set B�P��M \Mi of a path-
way fragment collection P=E�Ki�. B�P� is the subset of
metabolites that are consumed or produced by pathway frag-
ments in P �i.e., are not in steady state�. For a given objective
j, B�Pj� can be large or small, depending on the connectivity
of j to the remainder of the metabolic network and how well
the pathway fragment computation has discovered that con-
nectivity. At i=0 of pathway fragment computation, Pj con-
sists of only a single reaction �i.e., the ray induced by ej� and
B�Pj� will consist only of the substrates and products of re-
action j. As iterations proceed and substrates/products of re-
action j are traversed, �Pj� naturally grows and both �B�Pj��
and �B�P�� are reduced.

At iteration imax, B�P� is generally equal to M \Mimax, the
set of metabolites consumed or produced by one or more
pathway fragments in P=E�Kimax�. Because of the local
greedy optimization strategy used in guiding pathway frag-
ment computation, B�P� consists mostly of species in central
pathways �e.g., glycolysis, citric acid cycle�, currency mol-
ecules �ATP, NADH, CoA�, and promiscuous ions �hydro-
gen, water, ammonia�. A reaction j that is buried in the core
metabolic machinery and only involves these species in
B�P�=M \Mimax as substrates or products will still be repre-

sented by only a single ray ej in E�Kimax�. This occurs be-
cause that pathway fragment ej is by definition balanced with
respect to all previous species Mimax and thus has been able
to escape engaging in positive linear combination with any
ray in any other iteration. For such a reaction j, analysis of
Pj would only generate a single cut set �j� �since ej is the
only j containing pathway fragment�.

However, if we generate the collection Etemp�Kimax+1� by
deliberately choosing a metabolite in B�Pj� �i.e., in this case
a species consumed or produced by reaction j�, then we will
derive positive linear combinations of ej with all pathway
fragments in P \ Pj that consume or produce this species. Al-
though this metabolite may have been avoided by the greedy
search due to its promiscuity with the existing pathway frag-
ments, we force it to be considered with the aim of expand-
ing Pj. The resultant rays obtained in this half iteration will
connect reaction j to other reactions that use both the new
metabolite and at least one species from Mimax. These reac-
tions will now take part in cut sets for flux j, potentially
dramatically increasing the yield of MCSs. This “single me-
tabolite extension” can be applied separately to each species
that is produced or consumed by flux j, further increasing the
yield. In general, we can perform extensions for each species
in B�Pj� given an objective j associated with pathway frag-
ment collection Pj, even when �Pj��1. The resulting ex-
tended pathway fragment collections can be shuttled to mini-
mal hitting set computation to increase the yield of MCSs for
any objective j in the network.

C. Implementation

1. Human metabolic network
We employed the H. sapiens Recon 1 genome-scale stoi-

chiometric model built from 1496 ORFs �open reading
frames� spanning 2004 proteins, 2766 metabolites, and 3311
metabolic reactions, including 1078 transport reactions.12 We
replaced reversible reactions with two irreversible reactions,
and supplemented this network with 2362 sink fluxes to cap-
ture the dilution of intracellular species via growth and their
consumption by macromolecular processes.15,30 We simu-
lated rich media by making all extracellular species available
to the network. In the interest of reducing metabolite dimen-
sionality, we performed this by eliminating rows correspond-
ing to extracellular metabolites �as opposed to adding addi-
tional source fluxes�. The final network corresponding to S in
Eq. �2� contained 2362 rows �metabolites� and 7654 columns
�reactions�.

2. Computation
All computation was carried out on MATLAB R2008a us-

ing a Dell 8 Core Precision T7400 �Intel Xeon E5430, 2.66
GHz, 4 Gbytes random access memory� running Linux and
an HP 8 Core DL145 G3 �AMD Opteron, 2.7 GhZ, 32
Gbytes random access memory� running Microsoft Windows
Server 2003 R2 Enterprise x64. Pathway fragment computa-
tion, minimal hitting set, and reduction routines were imple-
mented as MATLAB scripts and can be made available upon
request. We computed pathway fragments through imax

=2209 of 2362 metabolites yielding 339 504 pathway frag-
ments. During the pathway fragment extension step for ob-
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jective j, we excluded extremely promiscuous metabolites
�i.e., those consumed/produced by more than 20 000–40 000
rays in Pj in B�Pj� to reduce the computational load�. For the
original and each extended pathway fragment collection, we
computed minimal hitting sets of the j containing pathway
fragments. We limited minimal hitting set computation to
sets of cardinality �10 in the interest of reducing computa-
tional time. We implemented flux feasibility computations
within the reduction routine as previously described19 using
the SeDuMi convex optimization toolbox.31

III. RESULTS

A. Deep epistasis underlies many human biosynthetic
functions

To examine the robustness of the human metabolic net-
work with respect to a variety of biosynthetic objectives, we
computed MCSs for the producibility of 43 important cellu-
lar metabolites spanning four biochemical classes: this com-
prised 24 amino acids, five deoxyribonucleotides, ten mem-
brane lipids, and four core metabolites �i.e., energy
metabolism intermediates�. For all cases we examined MCSs
mediating cytoplasmic producibility of the given metabolite,
with the exception of deoxyribonucleotides where we exam-
ined their producibility in the nucleus.

Before proceeding with a description of our results, we
emphasize that our MCS computation approach does not
guarantee the discovery of all MCSs. Therefore, the absence
of certain MCSs in our results is not necessarily reflective of
the �unknown� underlying distribution of MCSs for that
function. However, by establishing with certainty the exis-
tence of MCSs with certain qualities, we can make some
interesting assertions regarding epistasis in human metabo-
lism.

In total, we found 33 328 unique MCSs targeting one or
more of 43 metabolic objectives.32 This included 650, 98,
21 187, and 11 393 unique MCSs targeting amino acid,
nucleotide, membrane lipid, and core metabolite biosynthe-
sis, respectively. Most interestingly, MCSs found using our
method were almost all �99.5%� of cardinality greater than 5,
with 82% having cardinality of 9–10. A similar MCS cardi-
nality distribution was observed across all four metabolite
classes studied �Fig. 2�. These results suggest a striking
depth of parallelism in human biosynthetic pathways, irre-
spective of metabolite class.

Figure 3 shows the number of MCSs we discovered for
the various individual objectives, grouped by metabolite

class. Among the 24 amino acids, only D-Aspartate,
L-Aspartate, L-Tyrosine, L-proline, and L-arginine yielded
significant numbers of MCSs. The relatively small yield of
nucleotide-targeting MCSs that we discovered was directed
at dGTP and dTTP biosynthesis. In contrast we found mul-
tiple MCSs for all four core metabolites tested, which in-
cluded 4181 MCSs targeting fumarate synthesis and 6977
targeting oxoglutarate. Multiple membrane lipid objectives
yielded large numbers of MCSs, with the most plentiful
number by far associated �18 074� with sphingomyelin pro-
duction.

B. MCSs expose novel essential roles in human
metabolism

MCSs enable an expanded notion of essentiality called
k-essentiality.19 A reaction is k-essential for a given objective
if there exists a �possibly complex� MCS containing that
reaction and targeting that objective. This is in contrast to the
standard notion of essentiality, which is assigned to a gene or
reaction whose single knockout abolishes a phenotype.
k-essential links between genes/reactions and systems-level
functions arise from synergistic epistasis between parallel
pathways in the network.

Complex MCSs found using our method yield many
k-essential reactions. To quantify novel k-essential links be-
tween reactions and objectives, we compared the numbers of
k-essential reactions to the number of 1-essential reactions
obtained from a brute-force single knockout analysis of the
human metabolic network. Figure 4 shows how many reac-
tions were deemed k-essential for each objective, with the
numbers of reactions shown to be 1-essential for the objec-
tive shown in parentheses next to the metabolite label. We
found that for most objectives we were able to associate
many more k-essential reactions with the production of a
given metabolite than were able to be found using a single
knockout analysis. In many cases, this difference was pro-
found, such as for sphingomyelin, whose producibility we
were able to epistatically link to 235 reactions in the meta-
bolic network.
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FIG. 2. Histogram showing MCS cardinalities stratified across the four me-
tabolite classes.

FIG. 3. Histogram showing number of MCSs discovered for each biosyn-
thetic objective examined in our study.
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C. MCSs span multiple compartments and metabolic
subsystems

MCSs discovered by our analysis span a breadth of cel-
lular compartments. However, the actual distributions of
compartment span vary distinctly between specific metabo-
lite classes �Fig. 5�. In particular, amino acid-targeting MCSs
discovered by our method employ the fewest number of
compartments, drawing from cytoplasmic fluxes alone or a
combination of cytoplasmic and mitochondrial reactions.
MCSs targeting core metabolites span between two and three
compartments, consisting of primarily cytoplasmic and mito-
chondrial reactions, however often also employing peroxiso-
mal fluxes. Nucleotide-targeting MCSs sometimes employ
cytoplasmic reactions only, however more often pull combi-
nations of reactions from two or three of the following com-
partments: cytoplasm, mitochondria, lysosome, and nucleus.
Across all metabolite classes studied, membrane-lipid-
targeting MCSs are the most diverse: they harness up to five
compartment combinations that employ reactions from the
cytoplasm, endoplasmic reticulum, Golgi apparatus, nucleus,
and peroxisome.

There are also metabolite class differences in the sub-
system span of discovered MCSs �Fig. 6�. Nucleotide and
amino acid-targeting MCSs span between one and five sub-
systems. Meanwhile, membrane lipid and core metabolite-
targeting MCSs are more functionally diverse, spanning be-
tween three and seven and between five and ten metabolic
subsystems, respectively. MCSs targeting different metabo-

lite subclasses not only differ in their functional diversity, but
in the actual metabolic subsystems targeted �Fig. 7�. Many of
these differences are intuitive: nucleotide-targeting MCSs
uses reactions from “nucleotides” and “nuclear transport”
subsystems. Amino acid-targeting MCSs preferentially in-
volve reactions in “citric acid cycle,” “alanine/aspartate me-
tabolism,” “urea cycle/amino group degradation,” “glutamate
metabolism,” and “glycine/serine/threonine metabolism.” In
contrast, MCSs targeting core metabolite and membrane
lipid biosynthesis employ reactions with a much larger anno-
tated functional breadth, both spanning 26 subsystems in to-
tal. MCSs targeting core metabolites pull reactions from
“IMP �inositol monophosphate� biosynthesis,” “pentose
phosphate pathway,” “lysine metabolism,” “tryptophan me-
tabolism,” and many others. MCSs targeting membrane lipid
biosynthesis employ reactions from “transport, Golgi appa-
ratus,” “R group synthesis,” “carnitine shuttle,” “fatty acid
activation,” “inositol phosphate metabolism,” and “bile acid
biosynthesis” subsystems, among others. Subsystems that are
common to MCSs across all metabolite classes are “extracel-
lular transport” and “mitochondrial transport.”

Overall, we find staggering functional complexity and
diversity in the discovered MCSs, as shown in Fig. 8, which
displays individual “subsystem signatures” of MCSs and
their frequency across the results �Fig. 8�. There are 475
unique combinations of subsystems represented across the
33 328 MCSs. As can be seen in the sparsity patterns of the
plot, the majority of these MCSs combine reactions from
extracellular, mitochondrial, or endoplasmic reticulum �ER�
transport with reactions chosen from a diversity of 30 core
metabolic subsystems. The existence of MCSs spanning such
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diverse functional annotation classes establishes the exis-
tence of complex buffering relationships between seemingly
disparate parts of the human metabolic network.

D. Case study: Cancer metabolism

The fumarase gene undergoes deletion and loss of func-
tion mutation in adrenal, kidney, and smooth muscle
tumors.33 Fumarase mediates the conversion of fumarate to
malate in the mitochondrion. It is a component of the Krebs
cycle, which mediates oxidative energy metabolism and is a
central hub for multiple biosynthetic pathways linked to
amino acid, lipid, and DNA synthesis. Fumarase activity is
thought to play an important tumor-suppressive role in nor-
mal noncancerous cells. MCSs for this flux thus represents
potential alternative evolutionary targets for a dysplastic cell
seeking to achieve a higher degree of malignancy. We also
use this example to illustrate in more detail the composition
and topologic relationships between different MCSs target-
ing the same function.

We computed 97 MCSs for mitochondrial fumarase flux
�FUMm� spanning 34 reactions in the network, respectively.
MCSs associated with FUMm and the network of reactions
associated with them are shown in Fig. 9. Abbreviations used
in this figure are shown in Table I. These 97 MCSs contain

only a single low cardinality MCS, which consists of the
FUMm reaction itself �an objective reaction is by definition
its own single cardinality MCS, unless it is infeasible�. We
call this trivial set the “identity MCS.” The remaining
FUMm associated MCSs involve the simultaneous knockout
of multiple reactions, as the binary heatmap in Fig. 9�a�
shows.

Reactions contributing to FUMm MCSs cluster into a
single robust metabolic network module, shown in Fig. 9�b�.
Most of these MCSs inhibit FUMm flux by targeting the
mitochondrial fumarate �fum_m� pool. This occurs most sim-
ply by simultaneously knocking out four mitochondrial fu-
marate transport reactions �FUMtm, FUMSO3tm,
FUMSO4tm, and FUMTSULtm� and conversion from succi-
nate �SUCD1m�. We refer to this set as the “index” MCS as
it can be used to understand the remaining FUMm-targeting
MCSs, which indirectly inhibits mitochondrial fumarate
transport by knocking out mitochondrial sulfur pools.

As shown in Fig. 9�b�, fumarate import into the mito-
chondria is coupled to the outflux of SO3

− �FUMSO3tm�,
SO4

2− �FUMSO4tm�, and thiosulfate �FUMTSULtm�. Malate
import is similarly coupled, however, to the influx of these
sulfur molecules via the reactions MALSO3tm, MALSO4tm,
and MALTSULtm, respectively. One variation on the index

FIG. 8. Membership map depicting subsystem signatures for MCSs identified in this study and corresponding histogram for each. The sparsity pattern of each
row in the map represents a unique combination of subsystems, and the histogram on the right depicts how many MCSs exist with that given signature.
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MCS is thus to disable the MALSO4tm transporter instead of
FUMSO4tm. This perturbation indirectly inhibits
FUMSO4tm by knocking out mitochondrial SO4

2− �so4_m�
pools, which that fumarate transporter depends on. A similar
approach swaps FUMTSULtm with MALTSULtm in the in-
dex MCS, which prevents the influx of thiosulfate into mito-
chondria �tsul_m� and thus inhibits thiosulfate dependent im-
port. SO3

−, unlike SO4
2− and thiosulfate, has three routes into

the mitochondria in this model, via MALTSO3, CYANSTm,
and 3SPYRSP. As a result, knockout strategies that exclude

FUMSO3tm must suppress all three of these reactions or
their upstream pathways. The resulting MCSs, shown toward
the bottom of Fig. 9�b�, reach deep into sulfur metabolism
pathways targeting reactions linking cysteine �a sulfur con-
taining amino acid� degradation with arginine, aspartate, and
glutamine pathways. These MCSs are of high cardinality and
all employ 8–10 reactions. The most interesting of these tar-
get mitochondrial malate dehydrogenase �i.e., replace
3SPYRSP with MDHm� to indirectly prevent the formation
of 3-sulfonylpyruvate �3snpyr_m�. Additional MCSs target

FIG. 9. �a� Membership map depicting 97 MCS and corresponding network of reactions predicted to be k-essential for mitochondrial fumarase �FUMm� flux.
The sparsity pattern of each row in the map represents reaction membership in a single MCS. �b� In the corresponding network diagram, round shaded nodes
represent species and labeled hyperedges represent network reactions. Abbreviations used in this figure are listed in Table I.
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upstream SO4
2− pathways that generate cytoplasmic SO4

2−

from ferricytochrome �ficytC_m�.
A survey of the MCSs associated with the FUMm objec-

tive demonstrates the complexity of individual MCSs and
suggests an intuitive framework with which to understand
them. Although the “mechanism” of each MCS can be recon-
structed with relative ease through browsing of the network
topology, it must be noted that this simplicity only arises post
hoc after a considerable computational effort has been ap-
plied for MCS identification.

IV. DISCUSSION

A. What is the depth of epistasis in human
metabolism?

Our analysis reveals a plethora of high cardinality MCSs
across a variety of metabolic objectives in human metabo-
lism. Since the knockout of all reactions in an MCS disables
a given objective, while none of its subsets is predicted to,
each high cardinality MCS posits a deep buffering relation-
ship between multiple genes, mediated through the metabolic
network. Our FUMm-targeting MCSs expose such interac-
tions in multiple settings: many occur between intercompart-
ment transporters, of which there are multiple versions for a
given metabolite �e.g., fumarate, malate� that are differen-

tially coupled to other small molecules in the network. Re-
dundancy can also emerge from the multiple forms of el-
emental small molecules �e.g., SO3

−, SO4
2−, and thiosulfate�

that form distinct but interconnected pools that can be differ-
entially exploited for targeted knockout. Our analysis of bio-
synthetic objectives shows that most MCSs span multiple
cellular compartments and metabolic subsystems in impres-
sively complex combinations. This pattern is largely inde-
pendent of metabolite class, suggesting that epistatic interac-
tions link many reactions in metabolism to robust systems-
level functions.

The presence of large MCSs suggests that with respect to
multiple objectives, parts of human metabolism resemble at
least a nine or ten-lane highway. Compared to our analysis of
E. coli metabolism done using similar tools, the depth of
epistatic interaction that we see in the human metabolic net-
work is comparable.19 This degree of buffering is also com-
parable to results obtained in yeast using random sampling.17

How faithful is our estimate of the depth of epistasis in
human metabolism? Our modeling assumptions are very per-
missive: we allow all reactions encoded in the genome to be
active and provide all nutrients for which a transporter exists.
In the human body, metabolic genes are turned on and off in
a cell and tissue type specific manner. Therefore, the metabo-
lism of a specific cell in the human body may exhibit shal-

TABLE I. Flux and metabolite abbreviations in the fumarase MCS network. Suffixes “_c” and “_m” are added in the network diagram to denote cytoplasmic
and mitochondrial compartments, respectively.

Flux
abbreviation Name

Met
abbreviation Met name

3SALAASPm Cysteinesulfinate-aspartate mitochondrial shuttle 3sala 3-Sulfino-L-alanine
3SALATAim 3-sulfino-alanine transaminase �irreversible�, mitochondrial 3snpyr 3-Sulfinopyruvate
3SPYRSPm 3-sulfinopyruvate hydrolase �spontaneous reaction�, mitochondrial adp ADP
ASNNm L-asparaginase �mitochondrial� akg 2-Oxoglutarate
ASNtm L-asparagine transport, mitochondrial asn-L L-Asparagine
ASPGLUm Aspartate-glutamate mitochondrial shuttle asp-L L-Aspartate
ASPTAm Aspartate transaminase atp ATP
CYANSTm Cyanide sulfurtransferase, mitochondrial cyan Hydrogen cyanide
CYANt Cyanide transport via diffusion �extracellular to cytosol� cys-L L-Cysteine
CYANtm Cyanide transport via diffusion �mitochondrial� ficytC Ferricytochrome c
CYOOm3 Cytochrome c oxidase, mitochondrial complex IV focytC Ferrocytochrome C
CYSO Cysteine oxidase fum Fumarate
FUMm Fumarase, mitochondrial glu-L L-Glutamate
FUMSO3tm Fumarate:sulfite antiport, mitochondrial h2o2 Hydrogen peroxide
FUMSO4tm Fumarate:sulfate antiport, mitochondrial hco3 Bicarbonate
FUMtm Fumarate transport, mitochondrial mal-L L-Malate
FUMTSULtm Fumarate:thiosulfate antiport, mitochondrial nh4 Ammonium
MALSO3tm Malate:sulfite antiport, mitochondrial o2 O2
MALSO4tm Malate:sulfate antiport, mitochondrial o2s Superoxide anion
MALTSULtm Malate:thiosulfate antiport, mitochondrial oaa Oxaloacetate
MDHm Malate dehydrogenase, mitochondrial pyr Pyruvate
O2Stm Superoxide anion transport via diffusion �mitochondria� so3 Sulfite
PCm Pyruvate carboxylase so4 Sulfate
SPODMm Superoxide dismutase succ Succinate
SUCDlm Succinate dehydrogenase tcynt Thiocyanate
SULFOX Sulfite oxidase tsul Thiosulfate
TCYNTt Thiocyanate transport via diffusion �cytosol to extracellular�
TCYNTtm Thiocyanate transport via diffusion �mitochondrial�
TSULt4_3 Thiosulfate transport via sodium symport
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lower buffering if it has many metabolic genes turned off and
has access to poor nutrient media. One could partially evalu-
ate this conjecture by testing MCSs generated in our study in
a model equipped with additional cell type specific gene ex-
pression based constraints. The actual complexity of in vivo
“nutrient media” in a human is harder to estimate; however,
in most well-vascularized compartments it is reasonable to
assume that extracellular fluid is quite “rich” in nutrient
content.

Our estimate of epistatic depth may also be low for sev-
eral reasons. First, if the metabolic model is incomplete and
there exist additional unannotated reactions that introduce
novel alternative pathways to a given objective, then the ac-
tual depth of epistasis will be greater than our estimate. We
have also imposed a relatively arbitrary upper cardinality
bound in our MCS search of ten �due to computational re-
strictions�; however, the domination of our results by MCSs
with nine or ten reactions suggests that the current network
harbors higher cardinality combinations that we may detect
if we increase this limit.34

B. The implications of redundancy in metabolism

The presence of many backup pathways in the metabo-
lism of humans and microbes may suggest apparent “dupli-
cation” of function at the network level. This could be inter-
preted to provide an additional layer of redundancy on top of
gene duplication, which is widespread in multiple organisms
and conserved throughout evolution.35,36 However, unlike
gene duplication, systems-level redundancy is generally me-
diated by genetically distant proteins that provide “distrib-
uted robustness” by having one or more shared physiological
functions.37 In this case, the term “redundancy” may be too
strong to describe this phenomenon, since such backup path-
ways are rarely identical; rather, one pathway may use a
different set of nutrients and produce a different set of by-
products to achieve an objective. As a result, certain path-
ways may be more optimal or efficient in certain environ-
ments, allowing a microorganism with a high degree of
distributed robustness a survival advantage in the face of
changing environments. Applied to the metabolism of hu-
mans �and other higher organisms�, such robustness could
presumably allow for a wide spectrum of differentiation phe-
notypes �e.g., liver versus muscle cells� optimized for a
given cell or tissue level function. The relationship of net-
work buffering depth as a function of differentiation state in
human cells �e.g., comparing embryonic stem cells with ter-
minally differentiated liver cells� is an interesting direction
for future investigation.

C. Applications of human metabolic MCSs

1. Using MCSs to guide perturbation experiments
MCSs provide precise predictions of parallelism in the

metabolic network. The degree of actual parallelism in vivo
depends on the actual utilization and capacity of individual
pathways in the cell. If an individual pathway is able to
provide the needs of a metabolic objective on its own, then it
will be very difficult to detect the role of other reactions in
an MCS using low-order knockouts. In the case of perfect

synergistic epistasis, every member of an MCS will represent
a separate pathway individually capable of sustaining an ob-
jective. In this case the role of one gene or enzyme for a
given objective will only be visualizable in the context of the
knockout of all other MCS components. However, in reality
the utilization and capacity of various metabolic channels
likely differ, and low-order knockouts may reveal marginal
effects. Such questions can be pursued experimentally by
chemical or genetic perturbation experiments guided by
MCS predictions. One may begin such an investigation with
marginal knockout experiments that chemically or geneti-
cally disable only single enzymes in the MCS. One may also
pursue “pinching” experiments that knockout all but one of
the members of an MCS, effectively forcing all flux to an
objective through that remaining reaction.

2. Using MCSs to discover epistatic genetic factors
Despite several years of massive genome-wide associa-

tion studies seeking links between common genetic variation
and disease susceptibility, much of the heritable risk attrib-
uted to human illness �e.g., diabetes, heart disease� or traits
�e.g., height� remains unexplained. Although the location of
this “missing heritability” is a subject of active debate, one
possibility is that it arises from complex interactions between
multiple genetic variants.22,38 Given the degree of redun-
dancy that we observe at the metabolic network level, it
would be reasonable to assume that many deleterious genetic
traits require the simultaneous malfunctioning of parallel
pathways. �This relationship between “functional epistasis,”
which refers to the synergistic versus alleviating effects of
different mutations on function, and “statistical epistasis”
�e.g., in the sense of Fisher�, which refers to the presence of
nonadditive effects in statistical genetic models, has been
previously explored.23,24�

The discovery of such interactions through purely statis-
tical means is limited by computational complexity and sta-
tistical power. One approach to limit the number of hypoth-
eses is to use a functional biological framework to guide the
search for interacting genetic combinations. By capturing the
fundamental units of functional redundancy in a system,
MCSs provide such a framework. This could be applied for
the study of metabolism as well as signaling networks, which
can be represented in a stoichiometric constraint-based
framework.39,40 Such models can be similarly subjected to
MCS analysis to identify mutually buffering elements and
provide a template upon which to capture complex epistatic
effects.

3. Constraint-based modeling of cancer metabolism
Although it has been over 80 years since Warburg’s ob-

servation that cancer cells ferment sugar in the presence of
oxygen, major interest in cancer metabolism has only re-
cently reemerged.41,42 Our analysis has explored alternative
and complex knockout strategies that would be predicted to
replicate decreases in fumarase flux observed in certain can-
cer cells and tumors. The MCSs we have discovered provide
interesting starting points for investigating alternative muta-
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tional patterns that may achieve similar effects in other tu-
mor types. Since cancer evolution is a dynamic and stochas-
tic process, it is expected that tumor cells may take multiple
routes to achieve the same objective. MCSs derived from a
metabolic reconstruction can potentially help us infer that
evolutionary route, especially when it involves the simulta-
neous inhibition of multiple enzymes in the network.
Constraint-based models can also help us join disparate mu-
tational patterns under the banner of a single predicted phe-
notype. This can be a potentially powerful framework with
which to investigate marginal effects and high-order interac-
tion patterns in somatic sequence variation data sets such as
that emerging from The Cancer Genome Atlas.43

D. Computational directions

Although our computational approach yields a consider-
able number of high cardinality genome-scale MCSs, we are
unable to guarantee the discovery of all MCSs below a cer-
tain cardinality for a given metabolic objective. This is in
contrast to brute-force optimization and bilevel optimization
approaches, which have shown efficacy in deriving complete
MCS collections for a given cardinality but have only been
applied to yield low-order buffering interactions �i.e.,
k�5�.20 The completeness of our results is limited by the
ability of the pathway fragment collection to connect specific
objectives to sets of reactions that provide their flux. Algo-
rithmic improvements that yield a more complete collection
of MCSs may be useful in perturbational experiment design
or statistical analysis of genetic variation.

This paper provides an incremental modification to our
original genome-scale MCS algorithm.19 Our approach
greatly increases the yield of MCSs that we obtain for certain
objectives by expanding the pathway fragment collection an
iteration further in multiple metabolite directions. Our under-
lying metabolite selection approach during pathway frag-
ment generation is a local greedy optimization strategy. Al-
ternative approaches to metabolite ordering during pathway
fragment generation may be more ideally adapted to gener-
ating MCSs for a given objective. These include those that
differentially weigh reactions or metabolites of interest, or
take into account compartment structure.

A large limiting factor of MCS yield is the quality of the
pathway fragment collection, which can be roughly mea-
sured by imax or the number of balanced metabolites. Even
without additional algorithmic improvements, parallel imple-
mentations of standard pathway fragment computation will
serve to increase imax. Our unpublished results suggest that
even small increments in imax yield substantially larger col-
lections of more MCSs. Significant parallel computing effort
applied toward generating a human metabolic pathway frag-
ment collection may be worthwhile in creating a queryable
resource from which to derive more complete and targeted
collections of MCSs.

In the interest of generality, our current MCSs have not
taken into account the effects of gene/protein expression or
regulation. Instead we have built MCSs from a “master net-
work” in which all reactions are allowed to be simulta-
neously active. In reality, only a subset of reactions will be
active due to gene expression, post-translational modifica-

tions, and feedback regulation. One computational approach
to model this effect is to superimpose metabolic gene expres-
sion data from experiments on flux models as a set of on/off
constraints on reactions. Regulation can be more accurately
modeled using a mixed integer linear programming frame-
work that takes into account transcriptional and signaling
circuitry.44 The addition of either set of additional constraints
would yield potentially more minimal MCSs and provide
more accurate predictions for experimental follow-up.

V. CONCLUSION

We have applied MCS analysis to reveal multiple ex-
amples of deep epistasis in human metabolism. Our ability to
generate results at the size of the human metabolic network
leverages an important modification to our original genome-
scale MCS algorithm.19 The MCSs we generate forge novel
and interesting links between multiple metabolic reactions
and distinct functions of human metabolism, including me-
tabolite biosynthesis and the maintenance of flux through a
tumor suppressor enzyme. Our results also suggest a high
degree of redundancy in the human metabolic network,
which prompts future experimental and analytic follow-up.
This includes applying MCS-guided in vivo chemical or ge-
netic perturbation experiments to human cells and statistical
genetic analyses that use MCSs as templates to probe genetic
variation data sets for high-order epistatic effects.
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