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Abstract
Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the
most common causes of hypertension. In a small minority of cases, enhanced Na+ reabsorption by
the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of
the kidney, adrenal cortex, or pituitary. Far more frequently, however, the salt retention may be the
result of minor renal injury or small genetic variation in renal salt transport mechanisms. How the
salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of
hypertension) and the elevation of blood pressure remain an enigma. Here we review the evidence
that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na+ pumps, type-1
Na/Ca exchangers, and receptor- and store-operated Ca2+ channels play key roles in the pathway that
links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to
understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and
why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate
that ouabain upregulates arterial myocyte Ca2+ signaling mechanisms that promote vasoconstriction,
while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports
reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to
hypertension.
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1. Introduction
Hypertension, or chronic high blood pressure (BP) is a major contributor to ischemic heart
disease, cerebrovascular disease, heart failure and renal failure, and is estimated to cause more
than 7 million premature deaths per year worldwide [1]. Appropriate treatment, and even
prevention, of hypertension depends upon better understanding of the underlying causes and
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mechanisms of the elevated BP. Despite extensive research during the past few decades, some
critical questions about the pathogenesis of elevated BP remain unanswered. Here, we focus
on recent findings that provide novel insight into the linkage between salt retention and
hypertension.

2. Kidneys, salt retention and hypertension
The kidneys, which play the primary role in salt and water balance, have long been at the center
of hypertension research. The kidney glomeruli of a 70 kg man filter ∼25,000 mEq of Na+ and
180 liters of water per day, and then reabsorb nearly 99.5% of this filtered load by a variety of
Na+ transport mechanisms [2]. It is not surprising, therefore, that defects in any mechanisms
that alter renal Na+ transport may contribute to the net gain or loss of salt (and water).

The association of hypertension with renal parenchymal diseases [3,4], monogenic diseases of
renal salt transport [5-7] and renal transplant studies [8-10], as well as Guyton's seminal work
on the “over-riding dominance of the kidneys” in controlling BP [11-13], all point to the critical
role of the kidneys in hypertension. Likewise, epidemiological studies as well as acute and
chronic dietary studies [14,15], volume expansion studies [13,16-18], the efficacy of diuretic
therapy [19], and monogenic diseases of renal salt transport [5,6,20], all indicate that NaCl
retention and a tendency toward plasma volume expansion [21] play a fundamental role in the
chronic elevation of BP. Conversely, genetic defects that reduce salt retention, such as those
associated with Bartter's and Gittelman's syndromes, tend to lower BP and protect against the
development of hypertension [22]. Nevertheless, the specific mechanism(s) responsible for
salt retention in most forms of human essential hypertension (EH) is(are) unresolved. Perhaps
subtle renal damage [23], which increases with age, including that which may result from
obesity [24,25], causes the salt retention. Importantly, any of several genetic variants (single
nucleotide polymorphisms, SNPs), such as those in G-protein coupled receptor kinase type 4
[26-28], alpha-adducin [29,30], or serine/threonine kinase (STK39) [31] genes may favor salt
retention by the kidneys and, therefore, predispose the bearers of these genes to salt-dependent
hypertension. It is apparent, however, that in virtually all of these situations, extracellular fluid
(ECF) neither progressively increases nor decreases. Instead, homeostatic physiological
(feedback) mechanisms come into play to protect against large ECF volume changes [21]. As
we shall see, some of these mechanisms may alter BP to defend against changes in plasma (and
ECF) volume.

3. Vascular tone
A related, unresolved issue in hypertension, and our main focus, is the specific mechanism(s)
or “signaling pathway” by which salt retention actually elevates BP [32]. To explore this issue,
we begin with some basic hemodynamic principles: Mean arterial BP is a function of cardiac
output (CO), heart rate (HR), stroke volume (SV) and total peripheral vascular resistance (TPR)
[33]. At constant CO, mean BP ≈ CO × TPR. CO, which is equal to HR × SV, is, in turn,
directly related to the ECF volume and the volume of venous return to the heart. TPR is
regulated dynamically by vasoconstriction/dilation in small “resistance” arteries by three
groups of mechanisms: baroreflexes and other neuro-humoral mechanisms, endothelial
mechanisms, and myogenic mechanisms [33]. The local (myocyte and endothelial) factors that
maintain tonic arterial constriction, or ‘tone’, can be studied in isolated, cannulated small
arteries. These arteries develop spontaneous ‘myogenic’ tone (MT) when the lumen is
pressurized [34,35]. Indeed, the level of tone in isolated arteries “is often comparable to that
observed in the same vessels in vivo” [34,35], and may even be used to predict BP changes
[36].
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Hypertension has often been associated with structural changes that decrease the lumen-to-
wall thickness ratio and increase wall stiffness [37-39] due to vascular remodeling [40,41]. It
is not clear, however, whether this vascular remodeling is usually the cause or the effect of the
hypertension. Recently, we reported that, in some hypertension models, most of the increase
in TPR can be attributed to functional, and not structural, alterations in small resistance arteries
[42]. Here, we will explore the basis of the dynamic, reversible arterial functional changes, the
augmented tone and contractile responses that are observed in hypertension [43,44]. To
understand the generation of vascular tone, it is prudent to examine the fundamental
mechanisms that influence arterial myocyte contraction. We will start with the mechanisms
that regulate myocyte Ca2+ because contraction is activated by a rise in the cytosolic Ca2+

concentration, [Ca2+]CYT [45].

4. Ca2+ homeostasis and arterial constriction
Arterial constriction/dilation and, thus, BP are under neural control, and are also regulated by
various endocrine and paracrine substances. Especially noteworthy is the role of the
endothelium, which normally tends to restrict excessive vasoconstriction by secretion of nitric
oxide (NO) and other vasodilatory factors [46]. In small “resistance arteries”, MT induced by
intra-vascular pressure [34,35], plays a key role in controlling BP.

At the cellular level, contraction depends directly on [Ca2+]CYT and the activation of myosin
light chain kinase by Ca2+-calmodulin, as well as on modulation of the contractile apparatus'
sensitivity to Ca2+ (e.g., by Rho/Rho kinase) [47,48]. Myocyte [Ca2+]CYT is regulated by
various Ca2+ entry, exit and storage systems [45]. Ca2+ enters myocytes from the ECF through
voltage-gated, receptor-operated, store-operated and stretch-activated channels (VGCs, ROCs,
SOCs and SACs, respectively; see Fig. 1). Most of the myocyte Ca2+ is sequestered in the
sarcoplasmic reticulum (SR) by the sarco-/endoplasmic reticulum Ca2+ pump (SERCA).
Myocytes can be activated by various hormones and neurotransmitters. For example,
stimulation of the sympathetic nerves that innervate the arteries releases norepinephrine (NE),
ATP and neuropeptide Y, all of which contribute to activation of the myocytes [49]. Myocytes
can also be activated by increased intra-lumenal pressure and wall tension; this opens cation-
selective SACs, which depolarize the myocytes, thereby opening Ca2+-selective VGCs.
Neurotransmitter release, as well as NO release by the endothelium, are also activated by a rise
in [Ca2+]CYT in the respective cell types, but the neurotransmitters promote myocyte
contraction, while NO antagonizes contraction. Nevertheless, Ca2+ homeostasis in neurons and
endothelial cells utilizes many of the same mechanisms that operate in arterial myocytes.

Vasoconstrictors such as NE bind to agonist receptors (ARs), which are G-protein coupled
receptors (GPCRs) located in the myocyte PM (Fig. 1). This induces the phospholipase C-
mediated synthesis of inositol trisphosphate (IP3) and diacylglycerol (DAG). The IP3 interacts
with its receptors/channels (IP3Rs) on the SR membrane, thereby releasing Ca2+ into the
cytosol to activate contraction. Ca2+ (and Na+) [50,51] can also enter the cytosol from the ECF
through cation-selective ROCs (opened by DAG) and SOCs (opened by SR Ca2+ depletion).
The Ca2+ can be re-sequestered in the SR by SERCA, or it can be extruded from the myocytes
by ATP-driven PM Ca2+ pumps (PMCA). Importantly, Ca2+ can also either exit or enter the
cells via the Na+/Ca2+ exchanger (NCX) which is driven by the Na+ electrochemical gradient
across the PM under the control of the Na+ pumps [52]. NCX uniquely links Na+ metabolism
to Ca2+ regulation and, thus, to arterial myocyte constriction. These mechanisms provide
critical insight into question of how salt retention elevates BP.
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6. Whole body autoregulation
A seminal advance in elucidating the pathophysiology of hypertension was the introduction of
the concept of long-term1 “whole body autoregulation” of blood flow [53] and its experimental
verification [16,18,54,55]. These studies showed that salt retention and consequent plasma
volume expansion initially elevates BP because of an increase in CO. With sustained volume
expansion, even for just a few days, however, the CO declines and TPR increases to maintain
the elevated BP. Thus, relatively normal CO and elevated TPR are routinely observed in
established hypertension [11]. Nevertheless, in experimentally-induced hypertension, for
example with mineralocorticoids [55] or renal artery clipping [56], a transient initial state of
increased CO can often be detected. Failure to observe this high CO stage could be the result
of compensatory mechanisms (“autoregulation”) that turn on very shortly after the volume
starts to expand. In most humans with (essential) hypertension, the salt retention and (tendency
toward) volume expansion likely occur gradually, over days to years. In that case, the
mechanisms that tend to lower plasma volume and CO, including the rise in TPR and pressure
natriuresis [12,54,57], likely operate simultaneously to prevent an overt increase in CO. This
corresponds to a condition of “virtual hypervolemia,” however, because blood volume is still
inappropriately high relative to the BP [21]. Importantly, the effects of volume expansion on
TPR and BP are rapidly reversed if the stimulus (e.g., the volume load or the mineralocorticoid
and salt) is withdrawn [54,55,57,58]. This implies that the (initial) rise in TPR must be
functional and not structural, and it must almost certainly be hormonal because this
“autoregulation” involves all of the vasculature, veins as well as arteries, and pulmonary as
well as systemic vessels [59].

Despite the elapse of forty years since the demonstration of long-term autoregulation, efforts
to elucidate the specific underlying mechanisms have been surprisingly scant. In the
mid-1970's, we [60] and others [61] raised the possibility that an endogenous Na+ pump
inhibitor, i.e., a ouabain-like compound with vasotonic action, might be secreted in response
to salt retention and plasma volume expansion. In other words, this substance might be a
missing hormonal link between salt retention, and the increased TPR and hypertension. Strict
conservation of the high affinity ouabain-binding site amino acid sequence throughout
mammalian evolution implies that there must be an endogenous ligand that interacts with this
site. We suggested that partial Na+ pump inhibition by the endogenous inhibitor should
promote the net gain of Ca2+ via the myocyte NCX, and thereby augment Ca2+ signaling and
vasoconstriction [59,60]. The central roles of these three molecular entities, the endogenous
Na+ pump inhibitor, Na+ pumps and NCX, is described below. New evidence that certain TRPC
proteins, components of Ca2+- and Na+- permeable ROCs and SOCs [50,51], also make key
contributions to the altered Ca2+ signaling [62], is discussed as well.

7. Endogenous ouabain and its receptor
The aforementioned ideas fueled the search for the postulated endogenous Na+ pump inhibitor,
a ligand for the pump's cardiotonic steroid (CTS) binding site, that might mediate the vascular
response. In 1991, we purified endogenous ouabain (EO) from human plasma; the endogenous
substance was identified as ouabain by mass spectroscopy [63]. It is now possible to quantitate
EO by liquid chromatography-tandem mass spectroscopy (LC-MS-MS) methods [64] starting
from small (1 ml) samples of human or animal plasma [65,66]. The idea that EO might be the
11β isomer of ouabain [67,68] has been excluded because the 11-epimers of ouabain are
chromatographically different [69].

1This long-term, or day-to-day, whole body autoregulation, can be distinguished temporally and, therefore, almost certainly
mechanistically, from the minute-to-minute autoregulation that maintains constant blood flow in, for example, the brain or kidney
vasculature.
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Rat adrenal cortex is highly enriched with EO, and human and cow adrenals also contain very
high levels [63]. Bilateral adrenalectomy greatly reduces EO in rat plasma; conversely,
treatment of uni-nephrectomized rats with DOCA (deoxycorticosterone acetate) + salt greatly
increases plasma EO and elevates BP [63]. These findings indicate that EO is an adrenocortical
hormone. Other reports, however, suggest that EO may also be synthesized in, and secreted
by, the hypothalamus [70,71].

Numerous human and intact animal studies, as well as adrenocortical cell culture studies,
indicate that EO is synthesized in the adrenal cortex, and that its synthesis and secretion is
stimulated by adrenocorticotropic hormone (ACTH) [63,72-83]. In humans [79] and animals
[72,75], ACTH-induced hypertension is associated with elevation of EO. Indeed, preliminary
reports indicate that certain rare adrenocortical tumors, which are associated with severe
hypertension, may produce prodigious amounts of EO [84,85]. In ACTH-induced hypertension
[75,86], as well as in DOCA-salt hypertension [87] and reduced renal mass hypertension
[88], BP is lowered by Digibind (digoxin-selective Fab fragments), which also binds ouabain
with high affinity [89].

About 50% of humans with untreated essential hypertension and a majority of patients with
adrenocortical adenomas and hypertension have significantly elevated plasma EO; moreover,
BP correlates directly with plasma EO [90-93]. Even in normal human subjects, a high salt diet
raises plasma EO [66], and a 10 min infusion of low dose ouabain increases vascular resistance
and elevates BP for >60 min [94-96].

Critical support for the idea that EO might play a key role in the pathogenesis of hypertension
was the demonstration that prolonged administration of ouabain to normal rats induces
hypertension [97]. This observation has been replicated in many laboratories [98-100].

Plasma EO levels are elevated in several rodent salt-sensitive hypertension models [63,88,
101-103], and chronic administration of low dose ouabain to normal rodents usually induces
hypertension in 1-3 weeks (Fig. 2) [90,97-99]. Also, sub-pressor doses of ouabain and DOCA
act synergistically to induce hypertension [104]. Ouabain-induced BP elevation in rodents is
counteracted by the ouabain antagonist, Rostafuroxin (PST-2238) [105,106], and hypertension
induced by ACTH or DOCA+salt is antagonized by Digibind [75,86,87].

The aforementioned findings are strong evidence that circulating EO has a key role in the
pathogenesis of salt-sensitive hypertension. Other studies suggest, however, that brain, not
plasma, EO [70], or even marinobufagenin [70,107], may be important.

Interestingly, low-dose ouabain increases TPR in dogs, but doesn't raise BP, presumably
because heart rate and CO are markedly reduced [108]. Ouabain also doesn't induce
hypertension in sheep [109] or in mineralocorticoid-resistant [110] Long-Evans rats [111].
Such exceptions not only show that the genetic background is important, but may provide novel
information to help clarify the relationship between EO and hypertension.

Na+ pumps are widely accepted as the CTS receptor, but this greatly oversimplifies the
situation. Na+ pumps are αβ heterodimers. The catalytic subunit, α, contains the Na+, K+, ATP
and ouabain binding sites, and is phosphorylated during each pump cycle. β is essential for
pump function; it stabilizes the α subunit conformation and chaperones the αβ complex to the
PM [112-114]. The 4 mammalian α subunit isoforms (α1-α4) are products of different genes,
but have nearly 90% sequence identity; they have different expression patterns and different
kinetics, and are differently regulated [112,115-121]. Many (most) cell types express Na+

pumps with an α1 subunit and Na+ pumps with a second α isoform [112,119,122]. Astroglia
[123-125], endothelial cells [126], and all types of muscles [42,112,127-129] express Na+

pumps with an α2 subunit as well as pumps with an α1; most neurons express α1 and α3
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[112,123,125,129]. Renal epithelia express predominantly (>90-95%) Na+ pumps with α1,
which mediate the final step in net transepithelial Na+ reabsorption [120,130].

The Na+ pump α subunit CTS binding site has been highly conserved during the evolution of
higher animals. Nevertheless, not all α subunit isoforms, nor the isoforms in all species, have
the same high affinity for CTS. For example, rodent α1 Na+ pumps have unusually low affinity
for CTS [112,131]. Thus, it is important to understand better both the CTS and their interactions
with their Na+ pump α2 subunit binding sites.

8. The myriad uses and roles of cardiotonic steroids
Recorded use of CTS dates back more than 1500 years. CTS have been employed not only as
diuretics and cardiotonics, but as emetics, as abortion agents, and as poisons. For more than
two centuries following William Withering's classic clinical study [132], Digitalis glycosides
were the drugs of choice for the treatment of congestive heart failure and certain cardiac
arrhythmias.

Recently, the novel roles of CTS and the Na+ pump in cancer therapeutics, and mood/
behavioral [133] and neurological disorders [134] have been discussed. For example, one
striking observation is that mortality from breast cancer was markedly reduced in patients on
digitalis therapy [135]; this has prompted greatly renewed interest in CTS and their possible
role in cancer therapy [136-140]. In addition, ideas about the action of EO as a natriuretic agent
[60] have been revived [141,142]. Furthermore, many observations now indicate that EO also
is a growth hormone: EO may participate in a variety of kinase-mediated and other signaling
pathways, independent of its effects on Na+ pump-mediated Na+ transport [143-150]. This
might contribute, for example, to the target organ damage that often occurs in hypertension.

9. Cardiotonic steroid structure-activity relationships: hypertensinogenic
and anti-hypertensinogenic cardenolides

Cardiotonic steroids have been widely used clinically to treat heart failure and cardiac
arrhythmias. It has long been accepted that the cardiotonic effect of CTS results from their
ability to inhibit Na pumps (Na,K-ATPase) [151] and thereby promote Ca2+ entry via NCX
[152,153]. The CTS include two structurally distinct groups – the cardenolides, in which the
steroid is attached to a five member singly unsaturated lactone ring (Fig. 3, Table 1), and the
bufadienolides, in which the lactone has six members and is doubly unsaturated. When one or
more sugars are attached to the CTS at carbon 3, they are termed ‘cardiac glycosides’; common
examples include ouabain and digoxin. With the exception of the bufanolide, proscillaridin,
the steroid nucleus (aglycone) in the common bufadienolides is usually not glycosylated, but
it may be conjugated with suberyl arginine or various other congeners.

Cardenolides and bufadienolides are synthesized in certain plants, some amphibians and
insects, and possibly all higher animals. Crude as well as highly enriched extracts from plants
and the parotid secretions of the toad have been used in homeopathic remedies to treat heart
failure and some cancers, and as general tonics for metabolism and immune function, especially
in China (e.g., Chan Su) and Japan (Senso). The advent of modern pharmacology, coupled with
the desire to use purer preparations in therapy, led to extensive studies on the Digitalis and
Strophanthus glycosides and their aglycones, and the more prominent entities in toad
secretions, including bufalin and resibufagenin.

Most research on CTS, and on various natural and synthetic analogs, has focused on the positive
inotropic response (enhanced contraction) of heart preparations, and on the inhibition of
isolated kidney enzyme (Na,K-ATPase). Thus, the bulk of knowledge about the structure-
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activity relationships is relevant to the heart, or to (renal) Na+ pumps with an α1 catalytic
subunit. Overall, the inotropic response appears to be correlated with the ability to bind and
inhibit the Na+ pump. Introduction of various substitutions in the steroid nucleus and lactone
ring indicate that the configuration of the steroid is crucial for these effects.

The classic adrenocortical, ovarian and testicular steroids lack the cis-trans-cis fusion of the
AB, BC, and CD rings found in the CTS (Fig. 3 and Table 1), and do not bind to, or inhibit,
the Na+ pump. Certain steroids with trans-trans-cis ring fusions are cardiotonic [154,155],
while those with cis-trans-trans ring fusions (e.g., common bile salts, 14α-digitoxigenin and
14α-artebufogenin) are either inactive or very weak [156,157]. Addition of one or more sugars
to the cardenolide steroid nucleus increases the potency, while inversion of the lactone
configuration at C17 from β to α [158], or saturation (e.g., dihydroouabain and dihydrodigoxin)
of the lactone ring, reduces the cardiotonic activity 10-30 fold. These fundamental
relationships, obtained with cardiac preparations, have been widely assumed to be valid in
other physiological systems.

Both ouabain and digoxin, when administered acutely in vivo, and often in high doses, induce
vasoconstriction [95,159-164]. Nanomolar ouabain, however, augments myogenic
constriction in rodent isolated arteries [36,42,65,165,166]. The first experimental evidence of
a previously-unrecognized cardenolide structure-activity relationship was the observation that
the prolonged administration of digoxin, also an Na,K-ATPase inhibitor [167], does not raise
BP in normal rats, whereas ouabain does (Fig. 2) [168]. This result has been confirmed by
several investigators [99,100,169,170]. Moreover, while digoxin itself does not raise BP
[171], digoxin and a related CTS, digitoxin, are very effective in lowering the elevated BP in
rats with ouabain-induced hypertension (Fig. 2) [99,100]. Importantly, digoxin also is known
to lower BP in hypertensive humans [172]. These remarkable observations can only be
explained by structural differences between the Strophanthus (e.g., ouabain) and Digitalis
steroids, even though they are ostensibly similar Na+ pump inhibitors. The sugar(s) is(are) not
crucial for these effects: the aglycone of ouabain, ouabagenin (Table 1), is also pro-
hypertensive [173], while Rostafuroxin, a derivative of digitoxigen [174], is anti-hypertensive
in humans and rats [105,106]. Thus, differences in the steroid moieties of digoxin/digitoxin
and ouabain account for their disparate effects on long term BP. Excluding the common oxygen
at C3, ouabain is hydroxylated in positions 1,5,11,14 and 19, while digoxin is hydroxylated in
positions 12 and 14 (Table 1). The major structural difference between the two steroids
therefore lies in the extensive hydroxylation of ouabain in the A and B rings (and well away
from the lactone ring) and the 12 hydroxyl group in digoxin. Like digoxin and ouabain,
Rostafuroxin has a steroid nucleus that is cis-trans-cis fused and has a 14β hydroxyl group.
However, it lacks the ouabain hydroxyls at positions 1,5,11 and 19 and the lactone has been
replaced with a doubly unsaturated furane [174].

In sum, the key structural components that underlie the long term pressor activity of the
cardenolides appear to include a steroid nucleus whose rings are fused in a cis-trans-cis
configuration with oxygenation of the AB ring at C5. The depressor activity of the cardenolides
appears to be linked with the cis-trans-cis steroid configuration, deoxygenation of the AB ring
at C5 and substituents at C17 that augment potency as Na+ pump inhibitors including
unsaturated 5- and 6-member lactone rings. Many of the naturally occurring cardenolides are
mixtures of structural features at opposite ends of the steroid nucleus that confer prolonged
pressor and depressor activity in vivo. Synthetic analogs with either improved pressor or
depressor activity, the latter exemplified by Rostafuroxin, may be of clinical relevance. Clearly,
the physiology and pharmacology of these agents is still full of surprises.
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9. The “PLasmERosome”: a structural basis for ouabain's action
The roles of the different α subunit isoforms were clarified by the discovery that, in the various
cell types, Na+ pumps with the α2 or α3 subunit were confined to PM microdomains situated
adjacent to “junctional” sarco-/endoplasmic reticulum (jS/ER) (Fig. 1) [117,118]. Na/Ca
exchangers are confined to the same PM microdomains (Fig. 1) [118], as are various TRPC
proteins [175] that are components of ROCs and SOCs [176-178]. In contrast, Na+ pumps with
an α1 subunit are more ubiquitously distributed in the PM, but are apparently excluded from
these PM microdomains [122,179,180]. The functional as well as structural interrelationship
of these transport proteins is supported by the remarkable observation that α2 (but not α1)
Na+ pumps, NCX1, and TRPC6 and -1, are all upregulated by prolonged ouabain
administration, both in vivo and in vitro [176].

The PM microdomains are separated by only 12-20 nm from the jS/ER [181], and these
structures form a functional unit, the “PLasmERosome” [182,183]. The volume of cytosol in
the junctional space (J) between the PM and jS/ER of a single PLasmERosome (Fig. 1) is on
the order of only 10-19 to 10-18 liters, and diffusion of Na+ and Ca2+ between this space and
bulk cytosol is restricted. Thus, standing Na+ and Ca2+ concentration gradients between these
compartments and bulk cytosol can be maintained [51,127,131,179,184,185].

Differences in Na+ pump α subunit isoform kinetics are the key to PLasmERosome function.
Rodent α1 has an unusually low affinity for ouabain (KOuabain > 100 μM, vs < 0.05 μM in
humans) [112,131]; thus, nanomolar ouabain inhibits only the α2 Na+ pumps in rodent arterial
myocytes. Even in humans, however, where α1 Na+ pumps have high affinity for ouabain,
partial inhibition of Na+ pumps by nanomolar ouabain will elevate [Na+] in the junctional space
much more than in bulk cytosol. The reason is that the affinity of α2 Na+ pumps for Na+ is
much lower (KNa ≈ 22 mM) than is the affinity of α1 Na+ pumps (KNa ≈ 12 mM) [121].

The broad distribution of α1 Na+ pumps implies that they control, primarily, [Na+] in bulk
cytosol. In contrast, pumps with an α2 (in smooth muscle, for example) or α3 catalytic subunit
regulate local [Na+] in the junctional space. Thus, these α2/α3 Na+ pumps control the local
Na+ electrochemical gradient that influences Ca2+ transport by the adjacent NCX. The ROCs
and SOCs located here (Fig. 1) are cation-selective channels that admit Na+ as well as Ca2+

[50]. This organizational arrangement (Fig. 1) links Na+ metabolism to cell Ca2+. Thus, the
transporters in the PLasmERosome regulate not only [Ca2+] in the junctional space, but S/ER
Ca2+ stores and global Ca2+ signaling in the cells as well [182,183]. Therefore, modulation of
α2 Na+ pumps in arterial myocyte PLasmERosomes by EO can influence arterial tone and BP.
In the ensuing discussion we summarize data from recent experiments in which genetic
engineering and pharmacological manipulation of mouse Na+ pumps and NCX have been used
to examine the roles of these transporters in the long-term control of BP.

10. How does ouabain (EO) elevate blood pressure? The downstream effector
mechanisms
α2 Na+ Pumps

The fact that chronic administration of exogenous ouabain induces hypertension in rodents has
already been mentioned. The questions we now address are: How does ouabain (or EO) elevate
BP? Is it due to inhibition of smooth muscle α2 Na+ pumps, as implied by the preceding
discussion?

We have reported that acute application of nanomolar ouabain to isolated, pressurized rodent
arteries with myogenic tone augments the tone. The EC50 is on the order of 1 nM ouabain in
intact arteries, and even lower in arteries without endothelium [36,42].
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If circulating ouabain (or EO) elevates BP by inhibiting arterial smooth muscle (ASM) α2
Na+ pumps, reduced expression of α2 Na+ pumps should have a similar effect. Indeed, mice
with a null mutation in one α2 Na+ pump allele (α2+/-) [128] express ∼50% of the normal
complement of α2 in arteries [36,127] and have elevated BP (Fig. 3) [36,165]. Mice with a null
mutant α1 allele (α1+/-) express half the normal complement of α1 Na+ pumps, but have normal
BP (Fig. 4) [36,165]. Moreover, mesenteric small arteries from the α2+/-, but not α1+/- mice,
exhibit augmented myogenic reactivity and myogenic tone (MT).[36] The α2+/- mice are also
“salt-sensitive”: a high salt diet increases BP much more in these mice than in their wild type
littermates (Fig. 4).

The α2+/- mice are “global” single allele null mutants, but it is important to determine if the
effects are the result of reduced α2 Na+ pump activity/expression in ASM. Recently, we found
that expression of a short N-terminal segment of the α2 Na+ pump was dominant negative (DN)
for expression of full-length α2 pumps [180]. Therefore, we generated mice (α2SM/DN) that
expressed the N-terminal segment with a smooth muscle (SM)-specific myosin heavy chain
promoter [186]. These mice, with greatly reduced α2 Na+ pump expression in artery smooth
muscle, have elevated BP (Fig. 4). Conversely, mice that overexpress α2, but not those
overexpress α1, Na+ pumps in smooth muscle, have, on average, significantly reduced BP
compared to wild type (WT) mice (Fig. 4) [187].

The roles of ouabain/EO and α2 Na+ pumps in elevating BP was also examined in two other
ways. We tested Rostafuroxin, which antagonizes the inhibitory action of ouabain on Na,K-
ATPase [188]. In isolated arteries, Rostafuroxin counteracts the augmentation of MT by
nanomolar ouabain, but not the (ouabain-independent) augmenting effect of reduced α2
expression on MT [36]. Rostafuroxin also lowers BP in ouabain-induced hypertension [105,
106] and in nearly 50% of humans with essential hypertension [105].

Alternatively, mice that expressed mutant, ouabain-resistant α2 pumps (α2R/R) [75,115,189]
are resistant to ACTH-induced hypertension [75,115] as well as to ouabain-induced
hypertension [189]. These results demonstrate that ACTH-induced and ouabain-induced
hypertension depend a high-affinity cardiotonic steroid binding site on the α2 Na+ pump. The
hypertension also depends upon a water-soluble ligand that binds to this site because the plasma
level of this ligand (presumably EO) is increased by ACTH and, like ouabain [89], bind to
Digibind with high affinity [189].

The studies on mice with genetically altered α2 Na+ pumps reveal that arterial myocyte α2
Na+ pumps mediate the effects of EO and play a role in the long-term regulation of BP.
Genetically or pharmacologically reduced α2 activity elevates BP, whereas increased α2
activity lowers BP. It is not yet clear, however, how to reconcile these results with the evidence
that isoouabain, with a saturated lactone ring tethered to C14 of steroid ring D, is
hypertensinogenic, but a poor inhibitor of α1 Na+ pumps [173]. One possibility is that CTS
structure-function relations may be different for α1 and α2 Na+ pumps.

NCX Type-1
The next question is: By what specific mechanism does the altered α2 Na+ pump activity
influence BP? The answer appears to lie in Na/Ca exchange, which directly links Na+ to
Ca2+ metabolism and is a distal regulator of cytosolic Ca2+. There are two classes of Na/Ca
exchangers, those that co-transport K+ with Ca2+ (NCKX), and those that do not (NCX)
[190]. Although NCKX has been found in ASM [191]. the dominant exchanger in arterial
myocytes is NCX. There are three mammalian NCX isoforms (NCX1-NCX3), each the product
of a different gene [192]. NCX1, which is expressed in ASM, has multiple splice variants;
NCX1.3 is the dominant variant in ASM [193].
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Studies on primary cultured rat arterial myocytes indicated that inhibition of Na+ pumps by
nanomolar ouabain augments Ca2+ signaling without elevating bulk cytosolic Na+ [182]. Even
knockout of α2 Na+ pumps in cultured cells (astrocytes) had only minimal effect of bulk
cytosolic Na+, but a large effect on Ca2+ signaling [194]. These results are consistent with a
functional linkage between α2 (but not α1) Na+ pumps and NCX1, and local reduction of the
trans-PM Na+ gradient when α2 activity is reduced, as implied by the PLasmERosome model
(Fig. 1). Also, recent pharmacological and genetic engineering studies reveal that NCX1
influences not only arterial myocyte Ca2+ metabolism, but long-term vascular tone and BP as
well.

Mice in which NCX1 is overexpressed in smooth muscle (NCX1SM/Tg) have elevated BP that
is markedly increased by a high salt diet (i.e., the mice are “salt-sensitive”) (Fig. 4) [166]. The
elevated BP in the NCX1 overexpressors on high dietary salt is abolished by SEA0400, a
selective NCX1 inhibitor [195], but not if the overexpressed NCX1 contains a G833C mutation
[166], which specifically antagonizes the action of SEA0400 [196].

To perform the converse experiment, mice with floxed NCX1 (NCX1flx/flx) [197] were crossed
with mice containing a Cre recombinase gene under the control of the smooth muscle myosin
heavy chain promoter [186] to generate smooth muscle-specific NCX1 knockout
(NCX1SM-/-) mice. These NCX1SM-/- mice have abnormally low blood pressure (Fig. 4), and
isolated, pressurized small arteries from these mice have abnormally low MT[198]. Indeed,
SEA0400 also lowers BP by about 5-10 mm Hg in WT mice [166] and reduces MT by about
10% in isolated arteries from these mice [36,166]. Thus, NCX1 activity apparently makes a
small, but direct, contribution to normal MT and BP. SEA0400 also attenuated the increased
MT in arteries from α2+/- mice [36], indicating that NCX1 mediates effects that are distal to
those of the α2 Na+ pumps. The BP and MT data from α2+/- and NCX1SM-/- mice support the
view that MT in isolated arteries is an in vitro reflection of BP [34] and, most likely, TPR.

The mice with genetically engineered NCX1 demonstrate that this exchanger contributes to
long-term BP regulation: increased NCX1 expression increases BP, while knockout of NCX1
reduces BP. This view is also supported by the effects of NCX blockers in several rodent models
of salt-dependent or ACTH-induced hypertension. In DOCA+salt hypertensive rats,
spontaneously hypertensive rats (SHR) on a high salt diet, and Dahl salt-sensitive rats on high
salt, SEA0400 markedly reduced BP [166]. Also, KB-R7943, a less potent blocker, prevents
ACTH from elevating BP in mice.[75] Moreover, although a null mutation in one NCX1 allele
has negligible effect on BP (NCX+/- in Fig. 4) or MT[198], it does prevent the induction of
hypertension by DOCA+salt [166]. Importantly, SEA0400 does not lower BP in several salt-
independent rat hypertension models: SHR on a normal salt diet, stroke prone-SHR, and the
renin-dependent two-kidney/one-clip rat [166]. The implication is that NCX1 contributes to
the pathogenesis of salt-dependent hypertension, but not to salt-independent hypertension. As
detailed elsewhere [65], these findings reveal that NCX1, along with SACs and L-type VGCs,
contribute to the elevated [Ca2+]CYT that generates and maintains MT and, thus, influences
TPR and BP.

11. The central role of Ca2+ signaling
At the outset, we noted that arterial myocyte contraction depends, ultimately, upon the
availability of cytosolic Ca2+, and the sensitivity of the contractile apparatus to that Ca2+.
NCX1, under the control of the Na+ gradient generated by the adjacent α2 Na+ pumps, helps
regulate myocyte Ca2+ homeostasis (Fig. 1). For example, nanomolar ouabain-induced
increases in MT are associated with increases in myocyte [Ca2+] [36]; conversely, reduction
of MT by SEA0400 is associated with reduced myocyte [Ca2+] [166]. Thus, α2 Na+ pumps
and NCX1 are relatively distal mechanisms in the final common path that links salt to
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vasoconstriction and hypertension. Indeed, all upstream vasoconstrictor and vasodilator
mechanisms (neural and humoral) must, inevitably, be influenced by the activity of these two
transporters [165].

As an alternative, it was recently suggested that activation of Rho/Rho kinase via the G12-
G13-mediated G protein-coupled receptor pathway, which modulates the Ca2+ sensitivity of
the contractile apparatus in ASM, is selective for salt-dependent hypertension [199].
Interference with the G12-G13 pathway, however, whether at the agonist receptor level [200],
or at the level of Rho kinase [201], also lowers BP in salt-independent models such as the
stroke-prone spontaneously hypertensive rat (SPSHR) [200] and the NO synthase-inhibited rat
[201]. In our view, the findings of Wirth and colleagues [199] better fit the view that, once
salt-sensitive NCX1-mediated Ca2+ entry has occurred [65], the G12-G13 pathway becomes a
critical determinant of the increases in vascular tone and BP. The G12-G13 pathway is,
therefore, downstream, and distinct from the key salt-sensitive steps in Na+-dependent
hypertension.

12. Acute versus chronic effects of ouabain on the vasculature and blood
pressure

Much of the preceding discussion concerns, primarily, the acute actions of ouabain on the
vasculature. Nanomolar ouabain increases the myogenic reactivity of normal rodent arteries
with a time course of seconds to minutes, and with an apparent EC50 (concentration for half-
maximal effect) of 0.6-1.3 nM [36,42]. A comparable effect is observed in arteries isolated
from rats with ouabain-induced hypertension [42]. Nevertheless, in vivo ouabain
administration (∼15-30 μg/kg/day), whether by injection, subcutaneous pellet, or osmotic
minipump, elevates BP very slowly. BP usually rises with a delay, and takes about 14-21 days
to plateau (Fig. 2) [97,99]. A likely explanation for this slow rise, despite the increased
myogenic reactivity, is that normal feedback mechanisms defend the BP and counteract the
elevation. Important examples include the baroreceptor reflex and local endothelium-initiated
vasodilator mechanisms [33]. With maintained administration, however, the BP slowly begins
to rise (Fig. 2) [97,99] as the chronic effects of ouabain become manifest and feedback controls
are down-regulated or reset.

Ca2+ signaling is altered by prolonged ouabain treatment in both arterial smooth muscle and
endothelium, but in different directions. Arterial smooth muscle from rats with ouabain-
induced hypertension exhibits up-regulation of the protein components of the “Ca2+ signaling
pathway” that includes the α2 Na+ pumps, NCX1, and TRPC6 and TRPC1 (the latter are
components of ROCs and SOCs, respectively; see Fig. 2) [176]. The consequently enhanced
Ca2+ signaling further augments myogenic reactivity and vasoconstrictor-evoked responses
[42].

Acute administration of low dose ouabain also promotes Ca2+ signaling in the endothelium,
and thereby augments vasodilator mechanisms such as the response to acetylcholine [126].
Importantly, however, these endothelial mechanisms are impaired in arteries from rats with
ouabain-induced hypertension [126]. In other words, at the local (vascular) level, prolonged
exposure to ouabain enhances the vasoconstrictor mechanisms in the arterial smooth muscle
while, simultaneously, downregulating the endothelial feedback mechanisms that normally
help prevent the BP from rising. The net effect, of course, is the development of hypertension.

These findings may have much broader relevance to the pathogenesis of hypertension. In many
forms of human and animal hypertension, including the DOCA-salt model and the Dahl salt-
sensitive model (both of which are associated with high EO levels), endothelial vasodilator
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mechanisms [202-205] and baroreflexes [206-208] are impaired, while vasoconstrictor
responses are augmented [44,203,205].

13. Coda
In this review, we have explored some of the critical steps that link salt retention to the elevation
of BP. Recent results, especially those from chemical analyses of human and rodent plasma
samples, and from genetic engineering and pharmacological studies in rodents and rodent
arteries, are summarized above. These studies give new insight into some of the molecular
events that help regulate cytosolic Ca2+ and vascular tone. The data provide compelling
evidence that EO, smooth muscle α2 Na+ pumps, NCX1, and TRPC channel proteins, are key
molecular links in the pathway that leads from salt retention to hypertension.

These findings provide a framework, but the story is far from complete. A key area where
knowledge is lacking is at the early steps between plasma volume expansion and the release
of EO. The astonishing difference between the actions of ouabain and digoxin on BP
demonstrate that cardenolide structure-activity relationships need to be better understood. Even
the central role of the kidneys is still not completely resolved: For example, the renal and extra-
renal arteries make apparently independent (and equal) contributions to the long-term
regulation of BP [34,209], but how the distal mechanisms, discussed above, affect the renal
and extra-renal vasculature and renal function, and thereby contribute to BP control, is still
unexplored. The progress outlined here should help identify new directions for hypertension
research to resolve these issues.
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Fig. 1.
Model of the plasma membrane-junctional sarco-/endoplasmic reticulum (PM-jS/ER) region,
the PLasmERosome, showing the location of key transport proteins involved in local control
of jS/ER Ca2+ stores and Ca2+ signaling. The PLasmERosome consists of a PM microdomain,
the adjacent jS/ER (with SERCA, IP3R and ryanodine receptors, RYR), and the intervening
‘diffusion-restricted’ junctional space (J). The PM microdomain contains agonist receptors,
ARs (GPCRs), ROCs and SOCs (composed of various transient receptor potential channel
proteins or TRPCs), α2 (in smooth muscle) or α3 Na+ pumps, and NCX. Activation of GPCRs
and release of G-proteins (GPs) stimulates phospholipase C (PLC) to produce IP3 and
diacylglycerol (DAG). DAG may activate ROCs directly. Na+ may enter locally, through
ROCs, SOCs or, perhaps, SACs (not shown) to promote Ca2+ entry via NCX. Shading indicates
relative Na+ and/or Ca2+ concentrations. Other regions of the PM contain α1 Na+ pumps and
PMCA. Other abbreviations are defined in the text. Reprinted with permission [184].
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Fig. 2.
Oubain, but not digoxin, induces hypertension; digoxin and digitoxin reverse ouabain-induced
hypertension. Rats were infused with vehicle (■), ouabain, 15 μg/kg/day (▼), or digoxin, 30
μg/kg/day (▲), for 42 days. From days 35 to 42, three groups of 8 ouabain-infused rats received
a secondary infusion of digoxin, 30 μg/kg/day (●), digitoxin, 30 μg/kg/day (○), or vehicle (▼).
Mean blood pressures (MBP) were obtained by tail cuff at weekly intervals or as indicated.
*P<0.05 vs ouabain; ***P<0.001 vs ouabain; #P<0.005 vs vehicle; **P<0.001 vs digoxin.
Reprinted with permission [99].
Effects of Ouabain, Digoxin and Digitoxin on BP
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Fig. 3.
Prototypical cardenolide steroid skeleton. The primary feature is a steroid skeleton with the
rings fused in a cis-trans-cis arrangement. The cardenolides discussed here have a 14βOH, an
unsaturated lactone ring attached via C17 in the β configuration, and a methyl group at C18.
When present, sugars are attached via the steroid 3βOH group. See Table 1 for the list of
substituents in ouabain, ouabagenin, digoxin, digitoxin and Rostafuroxin. Reprinted with
permission [99].
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Fig. 4.
Relative blood pressures of mice with genetically-engineered α2 Na+ pumps and NCX1. The
data from several sources, are normalized to the BPs of the respective control wild type (WT)
mice. Mice with a null mutation in one α2 Na+ pump allele (α2+/-) [36] or smooth muscle-
specific α2 knockdown (α2SM/DN) (Song, Chen, Zhang, Lee, Kotlikoff and Blaustein,
unpublished), or increased smooth muscle-specific NCX1 overexpression (NCX1SM/Tg)
[166], had significantly elevated BP. A high salt diet augmented the elevated BP in α2+/- mice
(4% NaCl × 2 weeks) and NCX1SM/Tg mice (8% NaCl + 1% NaCl in tap water × 4 weeks).
Smooth muscle-specific overexpression of α2 Na+ pumps (α2SM/Tg)[187] or knockdown of
NCX1 (NCX1SM-/-) [198] significantly reduced BP. * = P < 0.05, ** = P < 0.01 vs WT or the
respective genotypes on a normal (0.5%) salt diet. Reprinted with permission [65].
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