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Abstract
Protein domains are structural and fundamental functional units of proteins. The information of
protein domain boundaries is helpful in understanding the evolution, structures and functions of
proteins, and also plays an important role in protein classification. In this paper, we propose a
support vector regression-based method to address the problem of protein domain boundary
identification based on novel input profiles extracted from AAindex database. As a result, our
method achieves an average sensitivity of ~36.5% and an average specificity of ~81% for multi-
domain protein chains, which is overall better than the performance of published approaches to
identify domain boundary. As our method used sequence information alone, our method is simpler
and faster.
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Introduction
Protein domains are importantly independent units of protein tertiary structures and have
been studied extensively in recent decades. Edelman et al. studied the structures of
immunoglobulins and first proposed some important hypothesizes on domain structures
(Edelman 1973; Porter 1973). Wetlaufer (1973) subsequently proposed the concept of
domain and defined domains as stable, compact, and autonomously folding structures of
proteins based on a thorough investigation of immunoglobulins. A domain can span an
entire polypeptide chain or be a subunit of a chain which can be folding into a stable tertiary
structure independently (Levitt and Chothia 1976).

Typically, most domains have a single continuous polypeptide segment, while a few others
consist of several discontinuous segments. Furthermore, many protein chains consist of
more than one structural domains, all of them form independently compact structures
(Wetlaufer 1973). Moreover, it is observed that a large protein may get its optimal protein
folding by domain formation, when giving an observed random distribution of hydrophobic
residues in large proteins (George and Heringa 2002a, b). Actually, each domain contains an
individual hydrophobic core that is built from secondary structures (Zhou et al. 1999).
Residues in hydrophobic core are more conserved than residues at the surface in a protein
family unless the latter are involved in the functions of the protein (Zhou et al. 1999).

Previous works on the prediction of protein domain boundaries are roughly classified into
two categories: template-based methods (Altschul et al. 1997; Cheng et al. 2006; Gewehr
and Zimmer 2006; Marchler-Bauer et al. 2007; Marsden et al. 2002; Orengo et al. 1997) and
ab initio methods (Copley et al. 2002; Dumontier et al. 2005; Galzitskaya and Melnik 2003;
George and Heringa 2002b; Nagarajan and Yona 2004; Sikder and Zomaya 2006; Sim et al.
2005; Suyama and Ohara 2003). Template-based methods aim to predict domain boundaries
using sequence alignment (Marchler-Bauer et al. 2007), secondary structure alignment
(Cheng et al. 2006; Marsden et al. 2002), or other profile alignments. They align target
profiles against profiles in a domain database. Among template-based methods, conserved
domain database (CDD) (Marchler-Bauer et al. 2007) locates residues in domain boundaries
using a search tool, reverse position-specific BLAST (RPS-BLAST). With CDD method,
firstly, query sequences are compared to databases of position-specific scoring matrices
(PSSMs). Secondly, E values are obtained in much the same way as in the PSI-BLAST
application (Altschul et al. 1997). Overlapping domain hits are finally obtained by the sort
of the E values. DomSSEA (Marsden et al. 2002) predicts domain boundaries by aligning
the predicted secondary structures of target sequences against a database of observed
secondary structures of chains that have known domain boundaries (Orengo et al. 1997).
SSEP-Domain method predicts domains with the alignment information of secondary
structures and profile–profile as well as pattern searches (Gewehr and Zimmer 2006).

Most ab initio methods aim to identify protein domain boundaries based on the information
of the properties of residues in protein chains using various machine learning techniques.
Among them, CHOPnet addresses some issues in domain annotation with evolutionary
information, amino acid composition, and amino acid flexibility (Copley et al. 2002);
SnapDRAGON predicts domain boundaries using a distance geometry-based folding
technique with a 3D domain assignment algorithm (George and Heringa 2002b);
Galzitskaya and Melnik (2003) propose a simple approach to identify domain boundaries in
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proteins using side chain entropy of a residue region; DomCut’s method predicts inter-
domain linker regions using amino acid sequence information (Suyama and Ohara 2003);
Nagarajan and Yona (2004) propose a neural network-based method to detect domain
structure of a protein, which uses the information from multiple sequence alignments
analysis, position-specific properties of amino acids, and predicted secondary structures;
PRODO (Sim et al. 2005) uses a neural network method with information from position-
specific scoring matrix (PSSM) generated by PSI-BLAST (Altschul et al. 1997); Armadillo
aims to predict domain boundaries by converting protein sequences to smoothed numeric
profiles based on domain linker propensity index (DLI) from amino acids’ composition
(Dumontier et al. 2005); Dovidchenko et al. (2007) propose a simple and fast method with
the use of a minimal number of amino acid sequence alone; DomainDiscovery detects
domain boundaries by the use of support vector machines with sequence information
including a PSSM, secondary structure, solvent accessibility information and inter-domain
linker index (Sikder and Zomaya 2006); DOMpro applies recursive neural network to
predict domain boundaries with evolutionary information, solvent evolutionary information,
solvent accessibility information, and secondary structure (Cheng et al. 2006); Ye et al.
(2007) present a Back-Propagation (BP) neural network approach to predict the domain
boundaries with various property profiles; recently, Yoo et al. (2008) develop a new
improved general regression network (IGRN) model to detect domain boundaries using a
PSSM, secondary structure, information, and inter-domain linker index.

However, the accuracy of predicting multi-domain boundaries is considerably less than 40%
in spite of great development on domain boundary prediction in the past years by the use of
a large number of machine learners. Therefore, novel machine learning-based approaches
should be developed to accurately identify protein domain boundaries.

Most previous work in the prediction of domain boundaries has been on the so-called
“classification problem”. In this case, residues are assigned to one of two states, domain
boundary or non-domain boundary, with arbitrary cutoff thresholds. However, the selection
of thresholds is neither objective nor optimal, and the decomposition of residues into two
classes decreases the prediction accuracy. To overcome such disadvantages, we predict
domain boundary value for each residue. That is, our method predicts a series of real values
representing residues in a protein sequence (also regarded as the boundary profile). In this
paper, we develop an accurate, fast, and reliable ab initio protein domain boundary
predictor, named as DomSVR, by the use of support vector regression (SVR) starting from
protein sequence alone. The method just uses profiles extracted from AAindex database
(Kawashima et al. 2008). Our proposed method DomSVR achieves an average sensitivity of
~36.5% and an average specificity of ~81% for multi-domain protein chains, which is
overall better than the performance of published approaches to identify domain boundary.
As our method used sequence information alone, our method is simpler and faster.

Methods
Dataset preparation

Our model is trained and tested on the dataset extracted from DOMpro method (Cheng et al.
2006). In this paper, we only consider proteins with more than one domain. Finally, 354
multi-domain proteins are used to evaluate our proposed method of protein domain
boundary prediction. In the dataset, sequence identity of each two protein chains is less than
25%. Moreover, all protein chains contain more than 40 amino acid residues. The dataset
consists of 282 two-domain chains, 50 three-domain chains, and 22 chains having more than
three domains. The dataset can be found at our website:
http://mail.ustc.edu.cn/~bigeagle/DomSVR/index.htm.
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Creation of amino acid physicochemical profiles for inputs of SVR predictor
In this work, we encode input vectors of SVR predictor using amino acid profiles extracted
from AAindex database (Kawashima et al. 2008). First, we need to assign physical and
chemical properties to amino acid residues. Vectors of suitable amino acid physicochemical
properties will then be created and be used for the domain boundary assignment. The
physicochemical properties of amino acid residues include inter-residue contact energy,
secondary structure, residue charge, and other properties. In addition, the simple forms of
the vectors make the entire algorithm robust, fast, and easy to apply.

The AAindex database contains a large number of experimental indexes, representing a
large variety of physicochemical and biological properties of the amino acids. The
AAindex1 section of the amino acid index database collects published indices together with
the result of cluster analysis using the correlation coefficient as the distance between two
indices (Kawashima et al. 2008). The section currently contains 544 indices, excluding all
empirically derived propensities of amino acids. Taking all these 544 amino acid properties
as input features for a predictor may cause over-fitting. In order to distinguish and separate
significant data and then construct our profile vectors, we applied principal component
analysis (PCA) (Jolliffe 2002) on these properties. PCA is often used to reduce the
dimensionality of a given dataset to lower dimensions for analysis. It can then produce a
new set of principal components, which account for the top largest variations of the original
data. PCA takes linear combinations of the data complying with the rule that the first
principal component accounts for the maximum variation, the second principal component
accounts for the next maximum variation which is subject to being orthogonal to the first
one, the third one has the third maximum variation subject to being orthogonal to the first
two, and so on. Nineteen principal components were created which account for 99.99% of
the variance in the AAindex1 dataset. Among those components, the top four components
account for 93.78% of the experimental data variation. Using only four principal component
vectors as shown in Table 1, the entire original dataset of properties is described with an
approximate 6.22% loss of variation. Thus, the dimensionality of the original data is
significantly reduced. The first principal component, PrinComp1, which solely accounts for
55% of the data variation, has a strong correlation to inter-residue contact energy property
(Miyazawa and Jernigan 1999). The second component, PrinComp2, is correlated to
secondary structure propensities of amino acids (Munoz and Serrano 1994). The third
component, PrinComp3, is correlated to entire chain composition of amino acids (Fukuchi
and Nishikawa 2001). Finally, PrinComp4 is mainly correlated to conformational and
nucleation properties of individual amino acids (Rackovsky and Scheraga 1982).

For protein chain with L residues, in the case of Prin-Comp1 profile, each residue is encoded
as the central residue in a sliding window with nine residues along the peptide chain. Then,
the central residue is represented by a 1 × 9 vector, and the value for each element of the
vector corresponds to specific amino acid type in PrinComp1. Therefore, the protein chain is
represented by a L × 9 matrix which corresponds to a real value vector L × 1, where each
residue is assigned to a real value that measures the sequence distance between the residue
and the central residue of its closest domain boundary.

The targets of SVR predictor
The identification of domain boundaries for each protein chain can be viewed as a binary
regression problem. Each residue along the polypeptide chains is encoded by AAindex
amino acid profiles and assigned a real target value. Following the conventions used in prior
work (Cheng et al. 2006; Liu and Rost 2004; Marsden et al. 2002), suppose that residues
within more than 20 continuous amino acids of a domain boundary are regarded as domain
boundary residues, and non-domain boundary residues otherwise.
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Actually SVR is particularly suitable for solving such regression problem. Assigned real
value to a residue as target can be more efficient and effective than the assignment of
classification value 1 or 0 as target. In this work, a residue is assigned to a domain boundary
(DB) value, which measures the residue distancing away from its closest domain boundary
in sequence. The assignment for residue i is shown in the following form:

(1)

where DBi denotes the DB value for residue i, cbm indicates the sequence position of central
residue m in domain boundary cb if cb existed, cnbn means the sequence position of central
residue n in non-boundary cnb, while rstart and rend stand for the sequence positions of the
starting and the end residues in the non-boundary sequence, respectively.

The form of Eq. 1 is a triangular distribution with respect to residue position in primary
sequence. Central residue in domain boundary is assigned to a bigger value, while the more
far away from the boundary the more small value the residue is assigned to. Finally, the
target vector DB also needs to be normalized to equalize itself.

For each residue in protein chains, in summary, vector to be input into SVR is represented as
an array Xi, where each element in the array corresponds to amino acid type of each
AAindex profile, while the corresponding target DBi is another real value which is assigned
by Eq. 1 in terms of the sequence distance between residue i and its closest domain
boundary. Similar to most other machine learners, DomSVR method aims to learn the
mapping from the input array X onto the corresponding target array DB. Suppose that O is
an output array of SVR, DomSVR is trained to make the output O as close as possible to the
target DB.

Approach
Support vector regression aims to apply support vector machine to regression problems by
introducing an alternative loss function. Likely as SVM approach (Chen et al. 2007), linear
regression of SVR is performed in a high-dimensional feature space mapped from complex
data with a non-linear mapping (Gunn 1998). With SVR, a ε-insensitive loss function is used
where only errors greater than a predefined parameter ε are considered in the loss function.
Readers can refer to (Drucker et al. 1996; Gunn 1998) for more details.

Consider the problem of learning a set of data, (Xi, DBi), such that Xi ∈ ℜn is an input vector
which characterizes a residue along protein chains, and DBi ∈ ℜ is a real target value which
represents its associated boundary value measuring the separation between the residue i and
the closest domain boundary in sequence, with a linear function,

(2)

The optimized parameters w and b can be obtained by minimizing the following objective
function:
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(3)

where C is a regularization constant that balances training errors and model complexity, and
ξ− and ξ+ are slack variables representing upper and lower constraints which used to
measure the deviation of samples outside the ε-insensitive zone.

In this work, we adopt an ε-insensitive loss function,

(4)

To solve the optimization problem, therefore, two Lagrange multipliers αi and  are applied
and the solution is given by

(5)

where Qij = K(xi, xj)≡∅(xi)T ∅ (xj).

Finally the decision function is

(6)

Once the Lagrange multipliers αi and  and the bias b are determined from the training data,
Eq. 6 can be applied to predict the domain boundary values for a test protein chain.

As a result, our model infers the domain boundary regions from predictions of domain
boundary values for a test protein chain. The larger the prediction value is, the more possible
the corresponding residue is belonging to domain boundary. In this work, a series of
continuous residues are considered to be in domain boundary if the residue amount is more
than 20 and their DB values are larger than other neighboring ones. At the same time, a
series of continuous residues with bigger DB values are ignored if the residue amount is less
than 5. Moreover, two inferred boundary regions that separate less than 10 residues should
be merged into one region. The test chain is then cut into domain regions linked by
boundary region (regions).

Evaluation measures
To evaluate our method, three measurements are used to evaluate the performance of the
predictor: criteria of sensitivity (Sen), specificity (Spec), and accuracy (Acc) (Baldi et al.
2000; Saini and Fischer 2005). They are defined as follows:
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(7)

where TP denotes the number of true positives (residues in domain boundaries), FP denotes
the number of false positives, TN stands for the number of true negatives (residues in non-
domain boundaries), and Ntotal stands for the number of total residues.

When assessing predictor with respect to domain boundary, evaluation is based on the above
measures of Sen and Spec and, for the assessment with respect to domain number, measure
of accuracy is the ratio of the number of chains whose domain number was predicted
correctly to that of total protein chains.

Results
Domain boundary distribution

In this work, there are total 354 protein chains, each of which contains more than one
domain. Figure 1 shows the distribution of sequence positions of residues at the center of
domain boundaries. Most domain boundaries are far from the start and the end of the protein
sequences. The distribution is helpful for limiting random noise of outputs from domain
boundary prediction methods and further improves the identification rate of domain
residues.

Figure 2 shows chain length distributions of multi-domain chains in the non-redundant set.
From Fig. 2, the length distributions of multi-domain chains are not discrete, which has
implications in domain prediction. As chain length increases, the likelihood of the chain
having a multi-domain conformation almost increases. Most two-domain chains contain
100–200 amino acids. Most of three-domain chains contain 200–700 amino acids.
Furthermore, chains containing more than 800 amino acid residues always have four or
more domains.

The output from domain boundary predictor is quite noisy. To limit random noises that
come from false positive hits and false negative hits, smoothing technique is used to correct
the random fluctuation of outputs for neighboring residues (Goodall 1990). The smoothing
technique is accomplished by averaging over a window around each residue position. For
instance, Fig. 3 shows a case study of prediction for protein chain PDB:1qu6A, where each
residue is assigned a state (boundary/not boundary) by a cutoff threshold at 0.5 to the output
of model. A residue will be assigned to 1 (boundary state) when the corresponding output is
larger than the threshold and, 0 (not boundary state) otherwise. After smoothing the outputs
for each residue, the center of the domain boundary was predicted at residue 80 and the
domain number was also correctly predicted. Figure 3 also illustrates how smoothing
technique helps reducing noises found in the raw outputs from the model. It is evident from
Fig. 3 that the domain boundary threshold used to define the two classes (domain boundary
and non-domain boundary) strongly affects the absolute classification results.

Performance of the PCA profiles
Figures 4, 5, 6, 7, and 8 show the ROC analysis of protein chains in CATH according to
class membership, with the top four principal components being used as property
descriptors. Based on CATH architecture, protein chains in our dataset are classified into
four classes, i.e., mainly alpha, mainly beta, alpha and beta, and fewer secondary structure
(SS). If all domains of a protein chain belong to one CATH class, the chain is classified into
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the same class. Inversely, if domains of a protein chain belong to different CATH classes,
the chain is classified into class “Others”.

It is clearly shown that all the four profiles behave similar in their predictive ability. The
average accuracy increases with the increase of the threshold, and all predictors reach high
accuracy near the value of 0.7 for all protein classes. However, many key differences of
their performance should be noted. An increase of the cutoff threshold positively affects
performance of the domain boundaries prediction. The tradeoff for the increase of the
sensitivity is the dramatic decrease of the specificity for almost all the four principal
component profiles, as illustrated in Figs. 4, 5, 6, 7, and 8. In other words, from Eq. 7, the
decrease of false domain boundary residues leads to the dramatic increase of false domain
residues. In general, however, the decrease of the specificity (the same as the increase of the
1 – specificity being shown in the figures) will lead to the decrease of the sensitivity starting
from a point in ROC curve. The point for mainly alpha proteins is near specificity 0.55 (i.e.,
1 – specificity = 0.45), 0.6 for mainly beta proteins, 0.75 for alpha–beta proteins, and 0.7 for
fewer SS proteins.

From Fig. 5 we can observe that for the set of mainly alpha proteins, PrinComp1 provides
good predictions compared to other three profiles. This could be an indication that inter-
residue contact energy is very important. Predictions using the first profile are also
important for fewer SS proteins. Furthermore, predictions from PrinComp4 are important for
mainly beta proteins but show poor prediction for alpha–beta proteins and all alpha proteins.
PrinComp2 shows a much lower prediction performance for fewer SS proteins and other
proteins.

It has also been observed that the sensitivities of predictions from PrinComp2 are the same
as those from PrinComp3 for mainly alpha, mainly beta, and alpha–beta proteins in CATH.
The specificities of predictions from PrinComp2 are the same as those from PrinComp1 for
mainly alpha, mainly beta, and alpha–beta proteins in CATH. More importantly, all the four
profiles show good predictions for mainly beta proteins compared to other proteins in
CATH. The fewer SS proteins also show the same results although containing fewer
numbers of proteins.

Performance with respect to protein classes
Tables 2 and 3 show the performance comparisons of the model on protein chains in our
dataset classified by CATH and SCOP architectures, respectively. In the case of CATH
architecture, protein chains are classified into seven classes in terms of the composition of
secondary structure (SS), i.e., all alpha, all beta, alpha/beta, alpha + beta, multi-domain
proteins, membrane and cell surface proteins, and small proteins. In this work, similar to the
above discussion, all domains of a protein chain belonging to one SCOP class have the chain
to be classified into the class. Inversely, all domains of a protein chain belonging to different
SCOP classes may make the chain being classified into class “Other”.

When being classified by SCOP, small protein chains, although having six members, show
the best performance. The overall sensitivity and the accuracy are around 0.666 and 0.75
from all the four profiles. However, all beta proteins and alpha + beta proteins have the
second best sensitivities and accuracies. Proteins in other classes have sensitivity and
specificity of 0.413 and 1 from all the four profiles, respectively. It has also been observed
that the sensitivities of predictions from PrinComp2 tend to be the same as those from
PrinComp3 and PrinComp4 for all alpha, all beta, alpha/beta, alpha + beta proteins when
being classified by SCOP database.
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As a result, the PrinComp1 profile shows a good prediction for all proteins compared to the
other three profiles. Moreover, predictions from PrinComp3 are very similar to those from
PronComp4. The reason behind the similarity of the predictions between PrinComp3 and
PrinComp4 is that even though the two profiles are correlated to entire chain composition of
amino acids and conformational properties of individual amino acids, they may also share
other physicochemical properties from the original 544 properties set in AAindex1 database.
In general, using all the four principal components leads to higher prediction accuracy.

Not all protein chains demonstrate similar behavior in the domain boundary prediction. It is
noted that for some chains such as 1tf3A and 1dx5I, DomSVR predicts a very few number
of false positives and false negatives, which lead to higher sensitivity and specificity
performance. For protein chains such as 1hf2B, 1cfb0, and 1jr3E, our method make bad
predictions, close to zeros for sensitivities and specificities with all the four profiles.

The important conclusion from these figures and tables is that PrinComp1, which as stated
above is related to inter-residue contact energy, provides the most reliable prediction. This is
due to the fact that in general PrinComp1 has the largest domain boundaries of predictions
compared to the other three profiles. The average sensitivity of predictions over all protein
chains is 0.365 for PrinComp1, 0.356 for PrinComp2, 0.359 for PrinComp3, and 0.358 for
Prin-Comp4; the average specificity of predictions for all protein chains is 0.808 for
PrinComp1 and 0.8 over all other three profiles.

Accuracy for different chains comparison with other methods
Our DomSVR method aims to predict domain boundaries for protein chains containing more
than one domain. However, it is also suitable for the identification of one-domain protein
chain. To make the comparison with other methods, we trained DomSVR predictor on our
dataset integrating with other 963 one-domain chains, and then evaluated it both with
respect to one-domain chains and multi-domain chains on CAFASP-4 and CASP7
benchmark datasets. The experiments on one-domain proteins were similar to those on
multi-domain proteins. The dataset of one-domain chains is also available at our website:
http://mail.ustc.edu.cn/~bigeagle/DomSVR/index.htm.

The detailed comparison with other similar methods is shown in Table 4 based on the
PrinComp1 profile. Table 4 shows 13 previous predictors evaluated in the Critical
Assessment of Fully Automated Structure Prediction 4 (CAFASP-4) (Saini and Fischer
2005), where some statistical data are extracted from DOMpro paper (Cheng et al. 2006).
The evaluation dataset of CAFASP-4 consists of 41 one-domain CASP6 targets and 17 two-
domain CASP6 targets (58 targets in total). The targets in CA-FASP-4 dataset are divided
into two main divisions: homology modeling and fold recognition targets. Twenty one-
domain chains and 7 two-domains chains are homology modeling targets, and 21 one-
domain chains and 10 two-domain chains are fold recognition targets. In the CAFASP-4,
seven predictors belong to the category of template-based methods, which have an
advantage due to this evaluation set contains only comparative modeling and fold
recognition targets (no new fold targets). Our method achieves higher sensitivity and
specificity than other ab initio predictors when averaging over all of the targets. Moreover,
in spite of our model outperforms even better than some template-based methods such as
ADDA, Inter-ProScan, and Dompred-Domssea, it performs worse than other template-based
methods such as Dopro, SSEP-Domain, and Robetta-Ginzu.

Table 5 shows the performance comparison of the 14 domain boundary predictors, random
predictor, and our DomSVR predictor with PrinComp1 profile on the selected CASP7
dataset. Currently, the dataset contains 95 peptide chains where some chains were removed
by assessors of CASP7. It consists of 62 one-domain chains, 30 two-domain chains, 2 three-
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domain chains and 1 four-domain chain. In this work, we made comparison of our method
and 14 predictors in the CASP7 assessment by evaluated on one-domain chains, two-domain
chains, and even chains containing more than two domains. All the prediction data for the 14
predictors are created from CASP7 http://www.predictioncenter.org/casp7/. In Table 5, the
accuracy is calculated as the ratio of the number of chains with correctly predicted domain
number to that of chains for one-domain, two-domain, three-domain, or all-domain category.
In this case, template-based predictors outperform ab initio-based predictors due to the
advantage of containing similar fold targets in their template set. Statistically, our method
performs better than other ab inito-based predictors and even better than some template-
based predictors, such as HHpred1, HHpred2, and DomSSEA. In addition, our method also
makes better prediction than a meta predictor, Meta-DP, which integrated several predictors
in order to obtain better predictions than the use of single predictor (Saini and Fischer 2005).

One important aspect should be noted that split-domain in chain involved in CAFASP-4 and
CASP7 datasets is treated as one single domain due to the complex domain topology. For
the CAFASP-4 database, there are five such targets, T0226, T0248, T0268, T0279, and
T0280. In the case of target T0226, predictors Robetta-Rosettadom, Biozon, and DOMpro
make correct predictions of domain number but predict the domain boundary between the
first split of the split-domain and another domain as non-boundary. Our method makes a
similar prediction as DOMpro predictor. Other predictors in CADASP-4 make wrong
predictions of domain number for target T0226. For other four targets, all predictors perform
similar. For the CASP7 dataset, there are 18 such targets containing 17 two-domain chains
and 1 three-domain chains. Some methods in CASP7 identify split-domain as two or more
domains and some other ones correctly predict one split of the domain. Table 4 demonstrates
prediction performance excluding the targets having split-domain on CAFASP-4 dataset,
while Table 5 shows prediction performance involving in 18 split-domain targets on CASP7
dataset. We evaluate the predictors on the condition that split-domain in one chain is treated
as one domain. Performance of each method is varied with and without involving these split-
domain targets, and the comparison excluding such targets is shown in Table 6. Note that no
method can make correct predictions for three-domain chains and, additionally, in Tables 5
and 6 all predictions for the 1 four-domain chain are not correct.

However, predictions may be changed if the evaluation is with respect to both domain
boundary and domain number, but not with respect to domain number alone. Suppose that a
chain is correctly predicted if its domain number was predicted correctly and the predicted
domain boundaries distance from the true boundaries less than ±20 residues in primary
sequence. In this case, accuracies of our method are 82.26, 40, 33.33, and 67.37% for one-
domain, two-domain, three-domain, and all-domain categories, respectively, which are a
little less than the case of those with respect to domain number alone. In detail, the
predictions of domain boundaries for targets T0330 and T0379 are wrong although the
predictions of domain number were correct by our model. Target T0330 consists of two
domains: one domain is split into two so-called split-domains containing residues from
SER2 to LYS16 and from THR92 to THR229, while the other one is located from VAl17 to
ILE91. As a result, the predicted domain boundary is located from residue LEU115 to
residue ILE154. Actually, some residues of the target were missed in the structure-
determined experiments, and the target structure also contains several “non-standard”
groups. All of these make the prediction of domain boundary hard. In the case of target
T0339, it also consists of two domains: one domain is split into two split-domains
containing residues from MSE1 to LEU16 and from LEU84 to GLN207, while the other one
is located from ASN17 to PHE83. Containing “non-standard” groups and missed residues
makes the same effect on the prediction of domain boundary as the Target T0330.
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To make sure the prediction is accurate, a random predictor was constructed and the
prediction performance based on CASP7 dataset is appended to the last row of Tables 5 and
6. In the case of evaluation on CASP7, the random predictor was constructed in the same
form of CASP7 dataset which consists of 62 one-domain chains, 30 two-domain chains, and
three chains having three or more domains. To better simulate the real random sampling test,
we ran the random predictor 10,000 times and one average accuracy of 52.61% was
achieved. From the Table 5, most of methods outperform the random one except for
predictors “chop” and “chop_homo”. In the case of evaluation on CASP7 without chains
having split-domain, random predictor was created and ran in the same way. The dataset
consists of 62 one-domain chains, 13 two-domain chains, and two chains with three or more
domains. The last row of Table 6 can be seen on average accuracy of 67.75% for random
predictor. From Table 6, predictors “chop”, “chop_homo”, and NN_PUT_lab perform worse
than random predictor.

Moreover, we assess both template-based and ab initio predictors on the CASP7 dataset,
respectively. Figure 9, respectively, illustrates domain number comparison of such two
categories of predictors, our model, and random predictor, with and without split-domain
chains. The overall accuracies of domain number prediction for the template-based and ab
initio predictors are 72.53 and 56.96%, respectively; while the accuracies are respectively
79.19 and 64.06% if excluding split-domain chains.

As discussed above, it can be found that our SVR model outperforms other predictors
despite of obtaining a lower accuracy for three-domain chains, probably due to the small
number of three-domain chains in CASP7 dataset. Actually, more one-domain chains and
less chains with two or more domains may make the prediction overestimated. In addition,
the small number of chains in CAFASP-4 and CASP7 datasets may also aggravate the trend.
Therefore, the evaluation based on a small size of dataset cannot fully reflect the advantages
and disadvantaged of these methods. As a result, lager benchmark dataset is more desirable
to compare these similar methods in the future.

A case study of domain boundary prediction
In order to illustrate the prediction of domain boundaries directly, protein chain 1qu6A (the
same protein discussed as Fig. 3) is taken as a case of domain boundary prediction and
shown in Fig. 10. The protein chain has 179 residues and consists of two double-stranded
RNA (dsRNA)-binding domains linked by a domain boundary ranging from residue LYS85
to GLY104 (shown in Fig. 10). The protein 1qu6, categorized as kinase PKR (protein kinase
RNA-regulated), is an interferon-induced enzyme that plays a key role in the control of viral
infections and cellular homeostasis (Nanduri et al. 1998). Protein kinase PKR is activated by
a distinct mechanism that involves dsRNA binding in its N-terminal region in an RNA
sequence-independent fashion. The structure of dsRNA-binding domain exhibits a dumb-
bell shape comprising two tandem linked dsRNA-binding motifs both with an alpha-beta-
beta-beta-alpha fold. The structure may reveal a highly conserved RNA-binding site on each
dsRNA-binding motif and suggests a novel mode of protein–RNA recognition. The central
linker between the two dsRNA-binding motifs is highly flexible, which may enable the two
motifs to wrap around the RNA duplex for cooperative and high-affinity binding and
advance the overall change of PKR conformation and its activation (Nanduri et al. 1998).
The domain boundary prediction for this protein chain is demonstrated in Fig. 10. In this
case, our approach predicted the domain boundary actually but a little extension to several
residues, ranging from residue VAL77 to residue THR120.
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Conclusions
In this paper, we addressed the problem of domain boundaries prediction from sequence
information alone. Amino acid residue profiles were taken from AAindex database using
PCA technique to extract necessary physicochemical properties. The profiles were then used
to train and test our predictor by the form of input vectors. As a result, our method achieves
a sensitivity of 36.5% and a specificity of 80.8%. Our method is also evaluated on two
datasets: the CAFASP-4 dataset and the CASP7 benchmark dataset. On the CAFASP-4 test
dataset, our method performs better than the template-based method InterProScan and
comparably to all other template-based methods with respect to specificities. Moreover, our
method performs significantly better than all other ab initio methods for domain boundary
prediction. On the CASP7 test dataset, our method is able to outperform all the other ab
initio methods for two-domain protein chains and slightly worse than some other methods
for one-domain protein chains. However, the overall accuracy of our model is the best. It
should be noted that the purpose of the comparison is just to estimate the current state-of-
the-art of domain boundary prediction instead of ranking these methods, because predictors
used different scales of protein set from the CA-FASP-4 and CASP7 datasets to evaluate
themselves.

In general, we are not only interested in the overall performance of domain boundary
prediction, but also interested in how the prediction accuracy varies across different protein
classes by CATH and SCOP architectures. Three hundred and fifty-four protein chains
representing all major classes from CATH and SCOP have been chosen for training and
testing our method. Mainly beta proteins and fewer SS proteins achieve better prediction
compared to other proteins when classifying by CATH. When being classified by SCOP,
small proteins show the best sensitivities although containing six protein chains. However,
all beta proteins and alpha + beta proteins achieve the second best sensitivities and
accuracies. PrinComp1, having strong correlation to inter-residue contact energy property, is
the one that the predictor achieves the most reliable results from. The model also achieves
very accurate predictions from PrinComp2, PrinComp3, and Prin-Comp4, but the number of
correctly predicted domain boundary residues from them is smaller than the model gets from
PrinComp1.

The DomSVR algorithm described in this work gives good results for most of proteins in
our dataset taken from PDB database. The successful application of SVR approach in this
study suggests that SVR can accurately describe the relationship between primary sequence
and domain boundaries using amino acid information alone. The predicted domain
boundaries can be used for classification of proteins and understanding the evolutions,
structures and functions of proteins, which motivate us to improve the algorithm and apply it
to other protein chains. In future work, we expect that the improved version of our predictor
can test more protein chains and reevaluate the chains that have already been tested with our
current predictor.
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Fig. 1.
Distribution of sequence positions of residues at the center of domain boundaries. Blue dot
denotes two-domain chain while red dot stands for protein chain containing more than two
domains
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Fig. 2.
Chain length distributions as observed in the CATH representative set used in this study.
Intervals were calculated with a width of 100 residues. The domain frequencies were used to
calculate probabilities of predicted domain sizes
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Fig. 3.
Comparison of raw and smoothing outputs from SVR model for protein chain 1qu6A. The
protein chain has 179 residues and contains two domains lined by a domain boundary. The
center of the domain boundary is at residue 94. The two types of outputs are normalized to
the range [0, 1]. The two square curves denote the two kinds of residue labels. One is true
labels describing residues’ states (boundaries/not boundaries); the other is predicted labels

Chen et al. Page 17

Amino Acids. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
ROC analysis for mainly alpha proteins with respect to threshold
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Fig. 5.
ROC analysis for mainly beta proteins with respect to threshold
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Fig. 6.
ROC analysis for alpha–beta proteins with respect to threshold
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Fig. 7.
ROC analysis for fewer secondary structures proteins with respect to threshold
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Fig. 8.
ROC analysis for other proteins with respect to threshold
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Fig. 9.
Performance comparison based on CASP7 dataset. No left-diagonal striped bars are shown
in the right graph for template-based, ab initio, and DomSVR predictors, since the
prediction accuracies for three-domain chains are zeros
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Fig. 10.
Comparison of natural versus predicted domain boundaries for protein chain 1qu6_A. The
domain boundary (true or predicted) is shown as space filling grey spheres. a True domain
boundary for protein chain1qu6A, b Predicted domain boundary for protein chain1qu6A
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Table 5

Performance comparison with other methods on CASP7 benchmark dataset (%)

Predictor 1-D 2-D 3-Da All-D

DomSVRb 82.26 (51/62) 46.67 (14/30) 33.33 (1/3)c 69.47 (66/95)

chopb 53.66 (22/41) 28.57 (6/21) 0 (0/3) 43.08 (28/65)

chop_homob 58.33 (21/36) 36.36 (8/22) 0 (0/3) 47.54 (29/61)

DomFOLDb 97.96 (48/49) 20.69 (6/29) 0 (0/3) 66.67 (54/81)

DPSb 78.95 (30/38) 42.31 (11/26) 0 (0/3) 61.19 (41/67)

Distillb 77.42 (48/62) 46.67 (14/30) 33.33 (1/3) 66.32 (63/95)

NN_PUT_lab 77.59 (45/58) 10.34 (3/29) 33.33 (1/3) 54.44 (49/90)

BAKER-ROSETTADOM 88.52 (54/61) 80 (24/30) 0 (0/3) 82.98 (78/94)

DomSSEA 97.44 (38/39) 30.77 (8/26) 33.33 (1/3) 69.12 (47/68)

FOLDpro 98.36 (60/61) 76.67 (23/30) 33.33 (1/3) 89.36 (84/94)

HHpred1 96 (48/50) 14.29 (4/28) 33.33 (1/3) 65.43 (53/81)

HHpred3 94.12 (48/51) 17.24 (5/29) 33.33 (1/3) 65.06 (54/83)

Ma-OPUS-DOM 87.8 (36/41) 76.92 (20/26) 33.33 (1/3) 81.43 (57/70)

Robetta-Ginzu 83.61 (51/61) 86.67 (26/30) 33.33 (1/3) 82.98 (78/94)

Meta-DP 97.56 (40/41) 14.81 (4/27) 0 (0/3) 61.97 (44/71)

Random predictor 65.21 (40.43/62) 31.51 (9.45/30) 3.17 (0.0951/3) 52.61 (49.98/95)

a
“1-D”, “2-D”, and “3-D” denote that each tested protein chain is a 1-domain one, 2-domain one, and chain with three or more domains,

respectively. In addition “All-D” stands for all tested protein chains

b
Ab initio method

c
The numbers in parentheses denote correctly predicted chains and the amount of chains used to the prediction
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Table 6

Performance comparison with other methods on CASP7 benchmark dataset excluding chains having split-
domain (%)

Predictor 1-D 2-D 3-Da All-D

DomSVRb 82.26 (51/62) 53.85 (7/13) 0 (0/2)c 75.32 (57/77)

chopb 53.66 (22/41) 22.22 (2/9) 0 (0/2) 46.15 (24/52)

chop_homob 58.33 (21/36) 33.33 (3/9) 0 (0/2) 51.06 (24/47)

DomFOLDb 97.96 (48/49) 25 (3/12) 0 (0/2) 80.96 (51/63)

DPSb 78.95 (30/38) 60 (6/10) 0 (0/2) 72 (36/50)

Distillb 77.42 (48/62) 46.15 (6/13) 0 (0/2) 70.13 (54/77)

NN_PUT_lab 77.59 (45/58) 16.67 (2/12) 0 (0/2) 65.28 (47/72)

BAKER-ROSETTADOM 88.52 (54/61) 53.85 (7/13) 0 (0/2) 80.26 (61/76)

DomSSEA 97.44 (38/39) 40 (4/10) 0 (0/2) 82.35 (42/51)

FOLDpro 98.36 (60/61) 69.23 (9/13) 0 (0/2) 90.79 (69/76)

HHpred1 96 (48/50) 9.09 (1/11) 0 (0/2) 77.78 (49/63)

HHpred3 94.12 (48/51) 16.67 (2/12) 0 (0/2) 76.92 (50/65)

Ma-OPUS-DOM 87.8 (36/41) 60 (6/10) 0 (0/2) 79.25 (42/53)

Robetta-Ginzu 83.61 (51/61) 69.23 (9/13) 0 (0/2) 78.95 (60/76)

Meta-DP 97.56 (40/41) 30 (3/10) 0 (0/2) 81.13 (43/53)

Random predictor 80.54 (49.92/62) 16.98 (2.21/13) 1.25 (0.025/2) 67.75 (52.17/95)

a
“1-D”, “2-D”, “3-D”, and “All-D” are the same as in Table 5

b
Ab initio method

c
The numbers in parentheses denote correctly predicted chains and the amount of chains used to the prediction
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