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Abstract
Many test statistics are asymptotically equivalent to quadratic forms of normal variables, which

are further equivalent to Tzzleﬂizf with z; being independent and following N(O, 1). Two
approximations to the distribution of T have been implemented in popular software and are widely
used in evaluating various models. It is important to know how accurate these approximations are
when compared to each other and to the exact distribution of T. The paper systematically studies
the quality of the two approximations and examines the effect of A;'s and the degrees of freedom d
by analysis and Monte Carlo. The results imply that the adjusted distribution for T can be as good
as knowing its exact distribution. When the coefficient of variation of the Z;'s is small, the rescaled

statistic 7,=dT'/ (2,4:1/11') is also adequate for practical model inference. But comparing Tr against

Xf, will inflate type | errors when substantial differences exist among the 4;'s, especially, when d is
also large.
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1. Introduction

In many statistical problems, the statistics for testing null hypotheses are asymptotically
equivalent to quadratic forms of normal variables, which may not follow a chi-square
distribution. Examples include the general likelihood ratio (LR) statistic when the
distribution is misspecified (Foutz & Srivastava, 1977; Vuong, 1989); the Pearson chi-
square statistic for contingency tables when the true covariance matrix of the estimated cells
cannot be consistently estimated (Rao & Scott, 1984); test statistics in covariance structure
analysis when the discrepancy function is specified using the normality assumption but the
true underlying population distribution of the sample is unknown (Shapiro, 1983); test
statistics for dimension reduction in inverse regression when the underlying distribution of
the predictors is unknown (Li, 1991, 1992; Bura & Cook, 2001; Cook & Ni, 2005); the
likelihood ratio statistic in testing the number of components in a normal mixture model
when the null hypothesis holds (Lo, Mendell & Rubin, 2001). The quadratic forms are also
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the building blocks for the commonly used F-statistics in ANOVA and regression. The
distribution of a quadratic form of normal variables can be characterized by a linear
combination of independent chi-square variates, each with one degree of freedom. Because
the exact distribution of a linear combination of independent chi-square variates is difficult
to obtain in general, various approximations to its distribution have been proposed (Solomon
& Stephens, 1977). Two relatively simple ones are widely used in practice, one is to rescale
the involved statistic, the other is to adjust the chi-square distribution. The purpose of this
paper is to study these two distribution approximations using analysis and Monte Carlo. In
section 2 we review the two approximations, their use in practice, and existing studies. The
necessity and framework for the current study are also made clear after the review. In
section 3 we study the effect of the coefficients on the approximations. Section 4 presents
Monte Carlo results. Conclusion and discussion are provided in section 5.

2. Two Approximations to the Distribution of Quadratic Forms

Let x ~ Np(0, I') and T = X"Wx be a quadratic form in x. The matrix I is typically of full
rank while W is nonnegative definite. Let the rank of W be d and the nonzero eigenvalues of
WT be 24, 42, ..., A¢. There exists

Tox Wx= % 1.2
=X WX= S AT (1)

where zj ~ N(0, 1) and are independent. Let c:E;“:l/l,-/d, the first approximation to the

distribution of T is to rescale T by Tg = ¢ 1T and compare T against Xf, for inference. We
will use the notation

T, ~X(21 orT~C)(§ @)

to imply approximating the distribution of T by Xﬁ or that of T by c/\/ﬁ. It is obvious that
E(TR) = d, so that the rescaling is actually a mean correction. A more sophisticated
correction is to also adjust the degrees of freedom of the chi-square distribution as in

L2
T " ayy, (3)

where a and b are determined by matching the first two moments of T with those of a)(i.
Straightforward calculation leads to

¥4 22 (Z‘.’ /l')z

_ =iz _ i

a==; and b= YERURE
A XA

These approximations were originally proposed by Welch (1938) and further studied by
Satterthwaite (1941) and Box (1954). When both I' and W can be consistently estimated, c,
a and b will be estimated as

(W) /d, e[ (WEY'| e (WE). =] e (WE) e (W'
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In dealing with the effect of survey design on analyzing multiway contingency tables, Rao
and Scott (1984) noted that the approximations in (2) and (3) are practically adequate. In the
context of covariance structure analysis, Satorra and Bentler (1988, 1994) proposed using
the two approximations when T is the normal distribution based LR statistic. Monte Carlo
results in Hu, Bentler and Kano (1992) showed that the approximation in (2) performed very
well. The rescaled statistic Tg in (2) has been in standard software (EQS, LISREL, MPLUS)
for many years and used in numerous publications by researchers in psychology, education,
sociology, medicine, business, etc. The adjusted distribution for T in (3) has also been in
popular software (e.g., EQS, MPLUS) and widely used in analyzing data with violation of
distribution conditions.

Although these two approximations have been used for inference on a variety of models,
their relative merits are not well-understood. In the context of covariance structure analysis,
Fouladi (1997, 2000) reported that (3) performs better than (2). In testing the dimensionality
of the space of the effective predictors using inverse regression, Bura and Cook (2003) also
found that (3) performs better than (2). However, Bentler and Xie (2000) found that (2)
performs much better than (3). These conclusions are based on examples and simulated type
| errors, not the overall distribution approximation. Satorra and Bentler (1994) reported a
few percentiles of T and Tg using a small simulation, they did not contrast the two
approximations. As we shall see, the performance of the two approximations depends on the
values of the coefficients A;'s in (1). None of the above studies have controlled these
coefficients. Actually, in any of these contexts, it is rather difficult to control the Aj's when I
and W are derived from models. Even when all the 4i's can be specified, their effect on (2)
and (3) will be confounded with sampling errors due to finite sample sizes.

In practice, the significance of a statistic is reported either using its p-value or indicating
whether the null hypothesis is rejected at a certain level. For the statistic Tg, the p-value is
the probability

P(T,=1,),

where tg is the observed value of Tg and the probability is evaluated according to the true
distribution of Tr. Because the true distribution of Tg is unknown, the reported p-value in

the output of a software is calculated using Xf, according to (2). Obviously, for the p-value to
make sense, the true distribution of Tg needs to be well approximated by Xfi in the interval

[tr, ©0). Because tr € [0, ©0), the overall distribution of T needs to be well described by Xfi
in order to trust the reported p-value. Similarly, the overall distribution of T needs to be well

described by a)(i in order for the p-value based on (3) to make sense. When the statistic is
used for purely hypothesis testing, the reference distribution needs to describe the tail
behavior of the statistic well in order to properly control type I errors. In this paper, we will
contrast the approximations (2) and (3) in both tail behavior and the overall distribution. We
will also study how these approximations perform when compared to a statistic that exactly
follows a chi-square distribution. When studying them through a LR or Pearson chi-square
statistic, we will not be able to separate the approximation of the distribution of the statistic
with that of a quadratic form from those in (2) and (3). So we will only study (2) and (3)
when W and I' or the Z;'s in (1) are given. Using known 4;'s also allows us to easily design
conditions on their relative size, which has the strongest effect on the two approximations.
We will discuss the implication and limitation of the obtained results in the concluding
section.
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3. Effect of the Coefficients A's on the Approximating Distributions

In this section we study the effect of the A;'s on the approximations in (2) and (3) by analysis,
and relate the a and b to the coefficient of variations of the 4;'s. We will also introduce the
Kolmogorov-Smirnov distance and a related measure of mean distance between two
distributions, which will be used to study the performance of the two approximations in the
next section by Monte Carlo.

Consider when A1 =4p = ... =1g=4,thenc =4, a=1and b = d, and the approximations in
(2) and (3) are perfect. When all the 4;'s in (1) change proportionally, i.e., 4; becoming z4;,
then T changes to zT; ¢ changes to zc; a changes to za and b remains the same. In such a
case, the qualities of the approximations in (2) and (3) do not change. So it is the relative
sizes of the J;'s that affect the two approximations.

When =2, 4; is a constant while the ;s change, the distribution of =, ;27 will change. But
the scaling factor ¢ remains the same. So the quality of the approximation in (2) is affected
as variations occur among the A;'s. It is obvious that the relative sizes of the A;'s also affect
the approximation in (3). To see how a and b change when the A;'s change, we rewrite b as

where 7;=4;/%, A;. Because X 7;=1, X2 77 reaches its minimum when zy = 7y = ... =g =
1/d. This implies that b reaches its maximum value at d when all the 7;'s are equal; b

decreases as the J;'s depart from each other. Because abzzle/li, when holding Zle/li
constant, a will increase when the A;'s depart from each other. Of course, when 2?:1/1,-
decreases, it is very likely that both a and b decrease.

We may use the coefficient of variation of the 4;'s,

fot (- 210}
= (-2 /d}
oV (/DZSD(/I): ’

A A

to measure the relative variations among the /;'s, where Pl :Ele/li/d. When CV(1) =0, both
the approximations in (2) and (3) are perfect. They become poorer as CV(4) increases.
Actually, both a and b are closely related to CV(4). It follows from

_2
d 32 d )2
Eizl/li/d_/l —d T4

_2

CVZ() =
A (Z?=1/l" )2

-1

and ab=x2_ A; that

b=——anda= A [CVZ (1) +1].
CVZ () +1 [ @ ]
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So the approximations in (2) and (3) are equivalent only when CV(1) = 0. The distribution
approximation in (2) can be regarded as approximating (3) by treating CV(4) = 0 even when
it is not. So we would expect that the difference between (2) and (3) becomes obvious when
CV(4) increases.

The approximation will also depend on the degrees of freedom. As d increases, according to
the central limit theorem, the distribution of T may even be approximately described by a

normal distribution, and so may aX,Z,, Tr and Xﬁ- Thus, we may expect that the
approximations in (2) and (3) will improve as d increases, which will be examined by Monte
Carlo in the next section.

We will use the well-known Kolmogorov-Smirnov (KS) statistic to evaluate the overall
distribution approximations in (2) and (3). The KS statistic measures the distance between
the empirical distribution function (EDF) F(t) and the proposed target distribution function
G(t); F(t) will be reserved for the true cumulative distribution function (CDF) of T. Suppose
we have N independent observations on T. Let the ordered statistics be (1) <tp) < ... tn),
the KS is calculated by

i—1
— G
N (1)

1<i<N

KS=max KS; with KS;=max { , ‘% -G (t(i))’} .

Because KS is determined by one point on the real line, it does not tell us the whole picture
of the approximation. For example, with one statistic and a given distribution we may have
KS; =.2 and KS;j < .001 for i > 1; with another statistic and a given distribution we may
have KS; = .1 for all i. Then, KS = .2 for the first statistic and KS = .1 for the second
statistic. However, the distribution description for the first statistic is better than that for the
second statistic except at the left tail. Another measure that better characterizes the overall
discrepancy between F(t) and G(t) is the average or the mean of the KS;,

N
MKS= X KS;/N.

This statistic was proposed in Yuan, Hayashi and Bentler (2007). We will use it in the next
section to study the distribution approximations in (2) and (3). The maximum value of the
KS is 1.0, which implies that F(t) and G(t) do not have any overlap. To see the maximum
value of MKS, we may assume that F(t) is above G(t) or G(ty)) = 1.0, then KSj =1 — (i —
1)/N and

MKS =42 [1- ]
:1—#[M—N]z%.

. The KS and MKS will be used to measure the distance between the EDF of Tg and the
CDF of x7 as well as that between the EDF of T/a and the CDF of y7, in the next section.

4. Monte Carlo Results

In this section we use Monte Carlo to study the effect of CV(1) and d on the two
approximations in (2) and (3). First, we let CV(4) change with a fixed d; next, we let d

Br J Math Stat Psychol. Author manuscript; available in PMC 2011 May 1.
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change; then we let both d and CV/(4) change. We will start with the overall distribution and
then turn to the tail behavior as reflected by type I errors.

4.1 Overall distribution

Let d = 2 and the vector of the 4j's = (1, k). The CV(4), KS and MKS for k = 2 to 10, with N
= 2000 replications, are reported in Table 1(a). The KS and MKS under Xﬁ are obtained by

comparing a simulated chi-square variate to the chi-square distribution Xfi, they represent
what KS and MKS are like under a perfect situation. Because KS does not depend on F(t)

(Serfling, 1980, p. 62), we can also regard that KS and MKS under Xlz, correspond to the
discrepancy between the EDF of T and the CDF of T. The KS and MKS under C)(fi
correspond to the approximation in (2), those under a/\/f, correspond to the approximation in

(3). Because applied researchers commonly use the nominal Xf, as the reference distribution
for the LR statistic without checking the distribution of the sample, we also include

L2
T xy (4)

in the study. The KS and MKS corresponding to (4) are reported under L)(j, where L is for
“linear combination” of chi-square variates.

When k = 2, CV(2) = .333, the KS under cy? is the smallest, the MKS under cy? is also
comparable to that for the ideal case. As k or CV(4) increases, the KS and MKS under X§
fluctuate; the KS and MKS under c)(fi also fluctuate, but they tend to increase; those under

a)(,% also tend to increase, but the speed is a lot smaller; those under L)(f, are always the
greatest. The biggest number in each column is marked in boldface, which indicates how

large KS and MKS can be under the worst case. Because the greatest number under Xfi is

just by chance and the great numbers under L/\/f,, chi and a/\g,% are due to systematic errors in
addition to chance, comparing these numbers gives us the information on the quality of the
approximation in (2), (3) and (4). The KS corresponding to (4) is about 15 times of the

perfect case; that corresponding to c)(f, is 4 times of the perfect case; that corresponding to

axi is about twice of the perfect case. Comparisons of the largest MKS's are similar to those
of the KS's. Each number in the last row of Table 1(a) is the average of the previous rows,
according to which the approximation in (3) is a lot better than that in (2). Actually, only
when k = 2 does the approximation in (2) enjoy smaller KS and MKS than those for (3); we
put this condition in boldface in the first column of the table.

To see the effect of the degrees of freedom on the approximations in (2) and (3), we next

’ ’ ’ ’
study the conditions of d = 6 with Ak:(lw k13) and d = 10 with Ak:(ls’ kls) , Where 1;
represents a vector of j 1's. The KS and MKS are reported in Tables 1(b) and (c),
respectively. Although the degrees of freedom increased, the CV()) for a given k is the same

due to the same two distinct Aj's. The patterns of KS and MKS under LXf, and cxﬁ in Tables
1(b) and (c) are about the same as in (a), they tend to increase as CV(A) increases. However,

the KS and MKS under a)(,% may just fluctuate. Actually, the greatest KS or MKS under a)(,%
in either Table 1(b) or (c) is smaller than that under x3. Comparing the averaged KS or
MKS at the bottom of Tables 1(a), (b) and (c), we notice that those corresponding to Xj tend

Br J Math Stat Psychol. Author manuscript; available in PMC 2011 May 1.
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to be stable as d changes, since the distribution of KS does not depend on F; the KS and
MKS corresponding to ¢y also appear not affected when d changes; the KS and MKS
corresponding to L)(fi obviously increase when d increases; those corresponding to a)(f, tend
to decrease as d increases. At d = 10, with three decimals, the average KS under axi is
identical to that under x2, and so is the average MKS.

Mean and covariance structure analysis typically involves many variables, the degrees of
freedom can be much larger than those studied in Table 1; there can be many predictors in
regression and the degrees of freedom can also be very large in testing the number of
principal Hessian directions when using inverse regression. It is most likely that, as the
dimension increases, the corresponding CV(}) also change. To further compare the two
approximations in (2) and (3) under these conditions, we choose (a) d = 10 with ten
conditionson Aj's: v = (1, 1.1, 1.2, ...,1.9), % =(1,1.2,14, ...,28), ..., A;0=(1, 2,3, ...,
10)"; (b) d = 30 with ten conditions on Aj's: A1 = (1,1.1,1.2, ..., 3.9, %, =(1,1.2, 1.4, ...,
6.8), ..., M0=(1, 2, 3, ..., 30); and (c) d = 50 with ten conditions on Aj's: X, = (1, 1.1, 1.2,
.., 5.9),%=(112,14,...,108), ..., M0=(1, 2,3, ..., 50)". The KS and MKS using N =
2000 as well as the associated CV/()) are reported in Tables 2(a), (b) and (c), respectively.

Except when d = 10 and k = 5 where KS and MKS under cy? are smaller than those under
both x2 and a3, all the other KS and MKS corresponding to the approximation in (3) are
smaller than those corresponding to the approximation in (2). The KS and MKS under axi in
Table 2(a) are almost as small as those under Xﬁ; the average KS and MKS under a)(i in
Table 2(b) are even smaller than those under x2, due to sampling errors. The average KS
and MKS under a)(i are identical to those under sz in Table 2(c). As d and CV(}) increase,

the KS and MKS under LX§ reach their maximum; then it is meaningless to approximate the
linear combination of chi-square variate by the nominal chi-square distribution.

In the practice of principal components and factor analysis, when ordering the eigenvalues
of a sample covariance matrix from large to small, it often happens that the first few drop
dramatically in size, the remaining ones slowly decrease. The phenomenon that most smaller
eigenvalues sit on a line is called the scree test in factor analysis (see Gorsuch, 1983, pp.
165-169). We also include the following conditions to mimic such a phenomenon: d = 10
andA9=1(1,1.1,1.2, ...,1.7, 1.8, 10)", 9 eigenvalues are evenly spaced except the largest
one;d=20and Ay =(1,1.1,1.2, ..., 2.6, 2.7, 10, 20)’, 18 eigenvalues are evenly spaced
except the largest two; ..., d =100 and M0 =(1,1.1,1.2, ..., 9.7, 9.8, 9.9, 10, 20, 30, ...,
100)’, 90 eigenvalues are evenly spaced except the largest ten. Table 3 contains the CV(}) as
well as the KS and MKS for these conditions. The CV(1) increases as d increases, the KS

and MKS under y2 remain stable as they should be; those under Ly? reach their maximum
values after d = 50 or 40; the KS and MKS under ¢y tend to increase due to the increase of

CV(M); but the KS and MKS under a)(lz, tend to decrease due to the increase of d although
CV(}) also increases.

We may conclude from Tables 1 to 3 that, when controlling CV(}), the approximation in (2)
is almost not affected by the degrees of freedom while the approximation in (3) improves as
the degrees of freedom increase. For a given d, when CV() increases, the approximation in
(2) tends to become worse; the approximation in (3) also tends to become worse when d is
small. At a large d, the approximation in (3) is almost not affected by the change of CV(1).

Br J Math Stat Psychol. Author manuscript; available in PMC 2011 May 1.
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4.2 Type |l errors

Type | errors for each distribution description are obtained under the same conditions as
those for the overall distribution approximation. We also use the same notation as
introduced in the previous subsection. For each condition we report type | errors
corresponding to nominal level o = .01, .025, .05 and .10, which are most widely used in the
applied literature.

Tables 4(a) to (c) contain Monte Carlo type | errors corresponding to the conditions in
Tables 1(a) to (c), respectively. Each table also contains the average of the absolute
differences (AAD) between the Monte Carlo type | errors and the nominal level a across all
the conditions of CV(A)'s for each distribution description.

Because type | errors under Xfi are obtained by referring a chi-square random variable to the
critical value from its true distribution, we may regard the differences between the Monte
Carlo type I errors and the nominal level as due to sampling error. As expected, the Monte

Carlo type | errors under Ly are much greater than the nominal level, due to half of the Aj's

being greater than 1.0. Not expected is that all the Monte Carlo type I errors under cX,f, are
substantially greater than the nominal level, indicating poor approximation for (2) at the tail.

The AAD under chI ranges from 3 to 8 times of that under ng- The Monte Carlo type |
errors under a)(lz, fluctuate around the nominal levels, and are very comparable to those under
ax;. For the twelve AADs under ay7, four of them equal those under ay?; three are slightly
greater than those under a,\/,z,; five are slightly smaller than those under a)(ﬁ. Comparing the
AADs in Tables 4(a) to (c), we find that the AAD under ¢y increases with d and so does the
AAD under Ly But the AADs under ay;, are stable as are those under y?.

We may notice that, under x3, the AAD tends to increase as increases. This is because the
variance of the Monte Carlo type | error, given by a(1 — a)/N, is an increasing function of «
on the interval of [0, .5]. The smaller variance at a smaller leads to the smaller AADs.
Similarly, the super behavior of the Monte Carlo type | errors in Tables 4(b) and (c) for the
approximation in (3) might be explained by Var(T/a) = 2b, and b < d unless CV(A) = 0.

Tables 5(a) to (c) contain the Monte Carlo type | errors corresponding to the conditions in
Tables 2(a) to (c), respectively. Similar to those in Table 4, the Monte Carlo type | errors
under ay;, fluctuate around the nominal levels and are comparable to those under x3. As

expected, all the Monte Carlo type | errors under LXj are way above the nominal levels.
Except at a = .10 for the condition of k = 3 in Table 5(a), all the Monte Carlo type | errors

under ¢y in Table 5 are above the nominal levels. The AADs under cy are 2 to 9 times of
those under Xf,. Comparing the AADs in Tables 5(a) to (c), we notice that those under c)(f,
increase with d, while those under ay; are stable as are those under x2.

Table 6 contains the Monte Carlo type | errors corresponding to the conditions in Table 3.

Those under cX§ obviously depart more from the nominal levels than in the previous tables,
those corresponding to the greater CV(1)'s are more than 10 times of the nominal level when
o.= .01, more than 5 times of the nominal level when « = .025, more than triple of the
nominal level when o = .05, and more than twice of the nominal level when o = .10. The

AAD under cy? is from 14 to 38 times of the AAD under y2. At a = .01, .025, the Monte
Carlo type I errors under a)(z are also systematically greater than the nominal levels,

Br J Math Stat Psychol. Author manuscript; available in PMC 2011 May 1.
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indicating that the statistic T has a heavier tail than that of a)(z in the extreme right tail. At a
=.05, .10, the Monte Carlo type I errors under a)(i are very comparable to those under XZ-
At o = .10, the AAD under ay; is even smaller than that under 2.

We may conclude from Tables 4 to 6 that, the tail approximation in (2) gets worse as the
degrees of freedom increase or CV()) increases; both lead to greater type | errors. At the
nominal levels a = .01, .025, .05 and .10, with CV(A) < .8, the approximation in (3) controls
type | errors as well as knowing the true distribution of T . The approximation in (3) also
controls type | errors as well as knowing the true distribution of T at o = .05 and .10 for
greater CV(A)'s. However, at o = .01 or .025 and with CV/(A) > 1, the approximation in (3)
may lead to greater type | errors than the nominal levels.

5. Discussion and Conclusion

In this paper, we quantified the conditions that may affect the two widely used
approximations. The quality of the two approximations was studied by varying and
controlling the conditions. Because the true CDF, F(t), of a quadratic form is hard to
evaluate, we used the EDF F(t) to estimate it. In addition to using Monte Carlo, one may use
a numerical method to approximate F(t), which can be defined through an integral with an
infinite upper limit. The procedure involves replacing the infinity limit by a finite number
and followed by a numerical integration (see Farebrother, 1990). Errors will occur when
replacing the infinite limit by a finite limit and when using a numerical method to calculate
the area under a continuous curve. The amount of error depends on the chosen upper limit
and the number of rectangles or trapezoids used in the numerical integration, it also depends
on the value of x. The amount of computation in the numerical method can be huge although
the error can be made arbitrarily small. Comparing to using numerical method to evaluate
F(t), the Monte Carlo EDF &(t) approximates F(t) with E[®(t)] = F(t). The mean square
error (MSE) in d(t) can be characterized by

MSE:E[F (x) — F(x)]2:Var [f (x)] =F () [1-F((x)]/N < 1/4N).

With N = 2000 in the study, there exists MSE < 1/(8000) = .000125. The MSE can be made
smaller if we choose a larger N. But N = 2000 is enough for our purpose, that is, we can
clearly tell the pros and cons of each of the two approximations under varied conditions.

The overall distribution approximations in (2) and (3) are comparable when both CV(4) and
the degrees of freedom are small. The approximation in (3) generally performs better,
especially when d is large. When CV/(4) is not large, say less than 0.5 and d is greater than
10, the overall distribution approximation in (3) can be as good as knowing the exact
distribution of T. The approximation in (3) also describes the right tail of the T in (1) as well
as knowing the exact distribution of T. The approximation in (2) does not describe the right

tail of the T in (1) well. In particular, the right tail of Tg is heavier than that of X(zz- Either a
larger d or a larger CV(1) makes the approximation of the tail behavior in (2) worse.

The results in section 4 suggest that, unless all the J;'s are equal, (3) should be used to
describe the distribution of T instead of (2). In practice, we will not have the 4;'s and thus do
not know whether CV(4) = 0 or not. Analytical result (see Muirhead, 1982, p. 388) implies
that larger sample eigenvalues J;'s tend to over-estimate their population counterparts and
smaller ones tend to under-estimate their population counterparts. Thus, even when CV(1) =
0, we still have a positive CV(/). Further study on how to test CV(%) = 0 will be valuable for
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properly choosing the two approximations. With real data, it is unlikely for CV(1) = 0. The
adjusted statistic is preferred before a reliable procedure for testing CV(4) = 0 is available.

In Monte Carlo studies with LR or other statistics, it may happen that the A;'s are equal (see
Yuan & Bentler, 1998). Then the approximation in (2) uses the correct assumption about the
Aj's and thus it will perform better than that in (3). Conflicting results on controlling type I
errors by the two approximations (e.g., Fouladi, 1997, 2000; Bentler & Xie, 2000; Bura &
Cook, 2003) would most likely be resolved if the population A;'s were known.

Although many test statistics are asymptotically equivalent to quadratic forms, the two
approximations are most widely used in mean and covariance structure analysis. As
mentioned in sections 1 and 2, the rescaled statistic is available in EQS, LISREL and
MPLUS; the adjusted statistic is available in MPLUS and in recent builds of EQS. The
command “Method=xx, Robust;” in model specification for EQS computes both the rescaled
and adjusted statistics for any estimator “xx” such as xx=ML or xx=GLS (see Bentler, in
press, p. 8, 289). The same command is applicable to nonnormal continuous data,
categorical data, and nonnormal missing data as well as various model types such as
multilevel models and correlation structures. In MPLUS, the command for computing the
rescaled statistic is “ESTIMATOR=MLR;”, “ESTIMATOR=MLM;” or
“ESTIMATOR=WLSM;”, depending on data type and estimation method used; the
command for generating the adjusted statistic is “ESTIMATOR=MLMV,;” or
“ESTIMATOR=WLSMV;”, depending on data type and estimation method used (see
Muthén & Muthén, 2006, p. 426). In LISREL the sample estimate of the asymptotic
covariance matrix is computed with PRELIS and saved in a file with suffix “ACC.” This is
then read into LISREL, where the scaled statistic “C3” is computed as a correction to “C2,”
which is asymptotically equivalent to a quadratic form. The rescaled statistic is available for
methods ULS, GLS, ML, and DWLS, as defined in LISREL (Jéreskog et al., 2000, Ch. 4).

A test statistic is asymptotically equivalent to a quadratic form only under the hypothesis of
a correctly specified modell. So the results in section 4 are on type I errors. They are also
related to type Il errors or power. For example, the results in Tables 4 to 6 suggest that the

right tail of TR is heavier than that of X(zz- If one uses T,;\/f, for inference when CV/(4) is large,
then the power will be artifically inflated. With misspecified models, a test statistic,
including the LR statistic, cannot be asymptotically described by quadratic forms in general
(see Yuan et al., 2007).

The paper has focused on the quadratic form in (1) with given W and I" or Z;'s. In practice, a
statistic is only approximated by a quadratic form rather than equals a quadratic form. The
discrepancy between the quadratic form and the corresponding statistic depends on the
sample size and the underlying population distribution; and it approaches zero as the sample
size goes to infinity. Similarly, W and I'" or A;'s will have to be estimated when applying
either of the approximations in (2) or (3) for real data analysis. The discrepancy between the
estimates /j's and /;'s will also depend on the sample size and the underlying population
distribution. When the underlying population distribution is unknown, we will not be able to
quantify either of the discrepancies at a finite sample size. Such a difficulty is associated
with almost all statistical inferences beyond the regression model with normally distributed
errors.

IModel misspecification and distribution misspecification are different in this characterization. For example, regardless of the
distributions of the factors and errors/uniquenesses in the common factor model, a three-factor model may be misspecified as a two-
factor model; the distribution for the observed variables may be correctly or incorrectly specified as multivariate normal.
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Despite the discrepancies, the obtained results in this paper agree well with many simulated
results at finite sample sizes. For example, for the normal distribution based LR statistic and
340 conditions studied by Fouladi (2000), at o = .05, the mean rejection rate of the
approximation in (2) is .143, almost triple of the nominal level; while the mean rejection rate
of the approximation in (3) is .067, only slight greater than the nominal level. Although
Fouladi (2000) did not report CV(4), the results in the previous section and the substantial
difference between the two approximations imply that many of the conditions must have
CV(4) substantially different from 0. Yuan and Bentler (1998) studied the approximation (2)
for the normal distribution based LR statistic and reported the population CV(4). When
CV(4) =0 or .089, type I errors of the approximation (2) is very close to the nominal level
when the sample size is greater than 500. However, at CV/(4) = 2.38, type | errors of the
approximation in (2) move away/departure from the nominal level as the sample size
increases.

Although we are unable to remove the discrepancy between the LR statistic and the
quadratic form, the obtained results does provide us a clear picture on which statistic to
choose. While recommending the approximation in (3), we need to emphasize that, even
when CV(/ = 0, close distribution description of T by (3) as reported in Tables 1 to 3 or type
| errors as reported in Table 4 to 6 may not be obtainable unless the sample size is huge.
Actually, at smaller sample sizes, the LR statistic over-rejects the correct model
substantially even when the population distribution is correctly specified (e.g., Bentler &
Yuan, 1999). With using the approximation in (3), what we can expect is that the test
controls type | errors as well as when the distribution is correctly specified when referring
the LR test to the nominal chi-square distribution. Without studying the approximation in
(2), many simulation studies in the literature endorsed the approximation in (2) when the
sample size is moderate (e.g., Hu et al., 1992). The results in this paper together with those
reported in Fouladi (1997,2000) imply that the approximation in (3) will perform better than
that in (2) at both moderate sample sizes and large sample sizes. The approximation in (3)
may even describe the behavior of T better than that in (2) at smaller sample sizes, but it
needs to be studied on a cases-by-case basis.

The results in this section allows the separation of sampling error from systematic errors for
inference based on (2) or (3). At a smaller n and with a CV/(4) substantially greater than 0,
the performance of the statistic in (2) suffers from both sampling error and the systematic
error. If the sampling error is positive, then (2) will lead to serious over-rejection of the
correct model. If sampling error is negative, then (2) may lead to slight-over rejection or
slight under-rejection (see Table 10 and 11 of Yuan & Bentler, 1998). At a relative large n,
inference based on (2) will lead to over-rejection unless CV(4) is small. The over-rejection
or under-rejection of (3) will be mainly at smaller sample sizes.

Information can be obtained by working with a specific statistic at a given model using
simulation. But it is very likely that simulated conditions may not reflect those in real data
analysis. When the chosen statistic is the LR statistic, say based on the normal distribution,
it is relatively easy to simulate conditions that all the ;'s are equal. It is rather difficult to
simulate conditions with varying CV(4)'s, as given in the previous section. If the sample size
n is relatively large, both the discrepancies will be small, then the results obtained here will
be applicable to real data analysis.
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