Skip to main content
. Author manuscript; available in PMC: 2011 May 1.
Published in final edited form as: Br J Math Stat Psychol. 2009 Sep 29;63(Pt 2):273–291. doi: 10.1348/000711009X449771

Table 3.

Kolmogorov-Smirnov (KS) distances and the mean KS (MKS) between the empirical distributions of the statistics and their proposed distributions, λd = (1, 1.1, 1.2, …, 1 + .1[dd/10 − 1], 10, 20, …, d)′, 2000 replications.

KS
MKS
d CV(λ) χd2 Lχd2 cχd2 aχb2 χd2 Lχd2 cχd2 aχb2
10 1.147 0.022 0.519 0.116 0.062 0.010 0.328 0.067 0.030
20 1.352 0.022 0.838 0.154 0.054 0.008 0.472 0.083 0.029
30 1.462 0.022 0.960 0.157 0.042 0.010 0.498 0.088 0.024
40 1.531 0.017 0.993 0.181 0.051 0.007 0.500 0.098 0.023
50 1.579 0.029 1.000 0.172 0.039 0.014 0.500 0.096 0.018
60 1.613 0.013 1.000 0.171 0.033 0.005 0.500 0.093 0.016
70 1.640 0.018 1.000 0.185 0.034 0.008 0.500 0.100 0.018
80 1.660 0.012 1.000 0.190 0.041 0.004 0.500 0.103 0.024
90 1.677 0.028 1.000 0.191 0.029 0.008 0.500 0.103 0.014
100 1.691 0.019 1.000 0.191 0.029 0.005 0.500 0.107 0.013
Ave 1.535 0.020 0.931 0.171 0.041 0.008 0.480 0.094 0.021

λ10 = (1, 1.1, 1.2, …, 1.7, 1.8, 10)′, λ20 = (1, 1.1, 1.2, …, 2.6, 2.7, 10, 20)′, …, λ100 = (1, 1.1, 1.2, …, 9.7, 9.8, 9.9, 10, 20, 30, …, 100)′.