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Summary

Natural killer (NK) cells are critical to the immune response to viral
infections. Their functions are controlled by receptors for major histo-
compatibility complex (MHC) class I, including NKG2A and killer-cell
immunoglobulin-like receptors (KIR). In order to evaluate the role of MHC
class I receptors in the immune response to hepatitis C virus infection we
have studied patients with chronic HCV infection by multi-parameter flow
cytometry directly ex vivo. This has permitted evaluation of combinatorial
expression of activating and inhibitory receptors on single NK cells. Indi-
viduals with chronic HCV infection had fewer CD56dim NK cells than
healthy controls (4·9 � 3·4% versus 9·0 � 5·9%, P < 0·05). Expression levels
of the inhibitory receptor NKG2A was up-regulated on NK cells from indi-
viduals with chronic hepatitis C virus (HCV) (NKG2A mean fluorescence
intensity 5692 � 2032 versus 4525 � 1646, P < 0·05). Twelve individuals
were treated with pegylated interferon and ribavirin. This resulted in a
down-regulation of NKG2A expression on CD56dim NK cells. Individuals
with a sustained virological response (SVR) had greater numbers of
NKG2A-positive, KIR-negative NK cells than those without SVR
(27·6 � 9·6% NK cells versus 17·6 � 5·7, P < 0·02). Our data show that
NKG2A expression is dysregulated in chronic HCV infection and that
NKG2A-positive NK cells are associated with a beneficial response to pegy-
lated interferon and ribavirin therapy.
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Introduction

Hepatitis C is a common chronic viral infection. The virus
poses a significant challenge to the immune system, as the
majority of individuals exposed to hepatitis C virus (HCV)
are unable to clear HCV spontaneously, develop a chronic
infection and are predisposed to cirrhosis and hepatocellular
carcinoma. This failure to mount a successful immune
response is multi-factorial in nature and includes abnor-
malities in T, B and dendritic cell responses.

Natural killer (NK) cells are lymphocytes that can interact
directly with virus-infected host cells, activate dendritic cells
and also secrete T helper type 1 (Th1) cytokines to augment
cytotoxic T cell responses [1]. Their functions are controlled
by multiple activating and inhibitory receptors, and they
integrate signals derived from these receptors to determine
whether or not they become activated. NK cells are enriched

in the liver in comparison to peripheral blood [2] and a
number of studies have documented abnormalities of NK
cells in chronic HCV infection. These include changes in NK
cell frequency, activity and subpopulation [3–8].

Key activating receptors on NK cells are the natural cyto-
toxicity receptors (NKp46, NKp44 and NKp30) and NKG2D.
Key inhibitory receptors are the killer-cell immunoglobulin-
like receptors (KIR) and NKG2A. These inhibitory receptors
have major histocompatibility complex (MHC) class I
ligands, and in particular the KIR exhibit substantial popu-
lation diversity. The KIR bind polymorphic MHC-A, -B and
-C class I molecules [9] and NKG2A binds human leucocyte
antigen (HLA)-E [10]. The inhibitory NK receptor KIR2DL3
in combination with its group 1 HLA-C ligands is associated
with spontaneous resolution of HCV infection [11,12].

Natural killer cell receptors are expressed abnormally in
HCV infection. In chronic HCV infection both up- and
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down-regulation has been reported of the natural cytotox-
icity receptors NKp30 and NKp46 on peripheral NK cells
[13,14]. More recently, low levels of NKG2D on peripheral
blood NK cells in HCV infection have been demonstrated
[15], which may be related to the finding that HCV can
down-regulate MHC class I-related chain A (MICA), a
ligand for NKG2D [16]. Additionally, individuals with
chronic HCV infection have higher frequencies of NK cells
expressing the inhibitory receptor NKG2A [13,17], and
expression of this receptor on CD56dim NK cells correlates
inversely with HCV viral load [18]. Conversely, inhibitory
KIR expression is normal or low in chronic HCV infection
[15].

A number of abnormalities of NK cell function in HCV
infection have been reported. Initial studies showed that NK
cells had lower levels of cytotoxicity which normalized
during successful interferon (IFN)-a therapy [3,4,6].
However, a more recent study did not replicate these findings
[7] and in vitro, NK cells have been shown to degranulate
more readily to both cytokines and receptor cross-linking
[15]. Additionally they have an abnormal cytokine profile,
secreting low levels of IFN-g, and relatively higher levels of
interleukin (IL)-10 [14,15]. HCV also expresses a peptide
that stabilizes HLA-E on the cell surface [19]. As HLA-E is
the ligand for NKG2A, this could lead to increased inhibition
of NK cells. However, the frequency of NKG2A expressing
NK cells correlates inversely with HCV RNA, suggesting that
this subset is protective in HCV infection [18]. These con-
flicted findings may be caused by differences in the protocols
used to stimulate NK cells, the use of fresh or frozen NK cells
and the genetic heterogeneity of the populations studied.

IFN-a is a cytokine that, in combination with ribavirin,
forms the cornerstone of current anti-HCV therapies. IFN-a
acts both on infected cells to reduce viral replication and on
cells of the immune system. It is a potent stimulus to NK cell
IFN-g production and cytolytic function [20,21]. Successful
treatment with IFN-a may restore low levels of NK cell
cytotoxicity and result in an increase in intrahepatic NK cells
[4,16]. However, the effects of this cytokine on NK cell recep-
tor expression in vivo has not yet been determined. Natural
killer cells express MHC class I receptors stochastically, and
this generates a complex repertoire of NK cells expressing
different combinations of receptors within a single
individual. This may account for heterogeneity in the
response to HCV infection [22]. The aim of this study was
therefore to determine the role of the KIR and NKG2A
receptors in chronic HCV infection and in the outcome of
treatment for HCV.

Materials and methods

Patients

The study was approved by the Local Research Ethics
Committee. Thirty-five patients (21 male, mean age 44

years) infected chronically with HCV and 15 healthy controls
(nine male, mean age 36 years) were studied. All HCV-
positive individuals were positive for anti-HCV by second-
generation enzyme-linked immunosorbent assay (ELISA)
and were confirmed viraemic using HCV COBAS Amplicor
Monitor version 2·0 (Roche, Burgess Hill, Sussex, UK). The
mean viral load was 3·83 ¥ 106 iu/ml. HCV genotyping was
performed using quantitative polymerase chain reaction
(PCR) (iQur® Ltd, Southampton, UK). Thirteen individuals
had genotype 1 infection, and the remainder had either
genotypes 2 or 3 infection (the iQUR® assay does not dis-
tinguish genotype 2 from genotype 3). Two individuals had
biopsy-confirmed cirrhosis. Individuals were treated with a
combination of pegylated interferon-a2a 180 mg once
weekly in combination with 1200 mg or 1000 mg ribavirin
daily, according to weight, for a total of 48 weeks if they had
genotype 1 infection or 24 weeks for genotypes 2/3 infection.

HLA genotyping

Genomic DNA was extracted from peripheral blood lym-
phocytes using the QIAamp™ blood kit (Qiagen, Crawley,
UK). HLA typing was performed by direct sequencing of
PCR products [23]. HLA types which were not resolved by
sequencing or which gave unusual results were also tested
by sequence specific oligonucleotide probe typing [PCR–
sequence-specific oligonucleotide probe (PCR–SSOP)],
using a commercial kit (Dynal, RELI SSO™, Wirral, UK).

Flow cytometry

NK cell phenotyping was performed directly ex vivo. One
hundred ml whole blood was incubated for 15 min with the
following antibodies: CD158b,j-fluorescein isothiocyanate
(FITC) (KIR2DL2/2DL3/2DS2), CD56-phycoerythrin (PE)-
Cy7, CD3-allophycocyanin (APC)-Cy7 (BD Biosciences-
Pharmingen, Oxford, UK), CD158e1-biotin (3DL1) and
streptavidin–peridinin chlorophyll (PerCP) (Abcam, Cam-
bridge, UK), CD158a,h-APC (KIR2DL1/2DS1), NKG2A-PE,
NKp30-PE, NKp46-PE (Beckman Coulter, High Wycombe,
UK) and NKG2D-PE (R&D Systems, Inc., Minneapolis, MN,
USA). Red cells were lysed using FACS Lysing Solution™
(BD Biosciences) and the lymphocytes washed three times
in phosphate-buffered saline (PBS) prior to analysis on a
FACSCanto flow cytometer (Becton Dickinson) using diva
software (Becton Dickinson).

Statistical analysis

Phenotyping analysis between healthy and HCV-infected
individuals was performed using GraphPad Prism version 5
(GraphPad, La Jolla, CA, USA). Statistical comparisons
were made using the Mann–Whitney U-test unless stated
otherwise.
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Results

Low numbers of NK cells and changes in receptor
frequency are associated with chronic HCV infection

In order to enumerate accurately the NK cells from individu-
als with chronic HCV we performed a direct ex-vivo analysis
of fresh CD3-CD56+ NK cells from 35 HCV-infected donors

and 15 uninfected controls. Individuals with chronic HCV
infection had significantly fewer CD56dim NK cells than
healthy controls (4·9 � 3·4% versus 9·0 � 5·9%, P < 0·05)
(Fig. 1a and b). No difference was found in the frequencies of
CD56bright NK cells between the two populations. Analysis
of MHC class I receptor expression on CD56dim NK cells
indicated that individuals with chronic HCV had
fewer CD158a,h-positive NK cells than healthy controls
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individuals (triangles) as determined by flow cytometry. (a) Strategy for the six-colour flow cytometry, gating on CD56dim, CD3- NK cells to
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(21·7 � 11·2% versus 31·1 � 10·4%, P < 0·025) (Fig. 1c).
The frequencies of other MHC class I receptors, including
NKG2A, was similar among both populations. The lower
frequency of CD158a,h was not associated with a specific
subpopulation of NK cells that expressed other MHC class I
receptors. As recent work [24] has shown that subpopula-
tions of NK cells in the mouse can undergo expansion in a
receptor specific pattern, and that these ‘adaptive’ NK cells
have enhanced responses, we determined the HLA type of
the individuals and the frequencies of their NK cells express-
ing cognate receptors for MHC class I. However, there was no
expansion of either NK cells expressing a KIR cognate for the
HLA class I alleles of that individual or those expressing
NKG2A, which interacts with HLA-E (Fig. 1d). Interestingly,
we noted that overall individuals with group 1 HLA-C allo-
types had more NK cells expressing a cognate receptor for
HLA-C than those without a group 1 HLA-C allotype. This
was present in both individuals with chronic HCV (41·8%
versus 20·2%, P < 0·005) and healthy controls (47·7% versus
28·0% P < 0·03) (Fig. 1e). Thus the difference in expression
of a cognate HLA-C receptor between individuals with
group 1 and group 2 HLA-C allotypes is generalizable to
uninfected individuals. This implies that healthy individuals
who acquire HCV and have group 1 HLA-C allotypes will
have more NK cells expressing a cognate HLA-C receptor
than those with group 2 HLA-C allotypes. As spontaneous
resolution of HCV infection is associated with group 1
HLA-C allotypes, then resolution of infection may correlate
with the number of NK cells expressing a receptor cognate
for HLA-C.

Levels of activating and inhibitory receptor expression
is elevated in HCV infection

Previous work [13,17,18] has implicated NKG2A+ NK cells
in the pathology of HCV, and as we observed no abnormali-
ties in the frequency of NKG2A-expressing NK cells we
determined the level of NKG2A as indicated by the mean
fluorescence intensity (MFI) of surface NKG2A on the NK
cells (Fig. 2a). The MFI of NKG2A was increased sig-
nificantly on NKG2A-positive NK cells within both the
total CD56dim and CD56bright subsets of NK cells in indi-
viduals with chronic HCV infection (5692 � 2032 versus
4525 � 1646, P < 0·05; 11 307 � 3509 versus 8549 � 3495,
P < 0·025, respectively) (Fig. 2b). It was not increased on
NKG2A-positive T cells (8785 � 2978 versus 8051 � 2354),
indicating that these differences are specific to NK cells, and
are also not caused by an artefact of the flow cytometry. Our
previous work has shown that KIR2DL3 (recognized by the
CD158b,j antibody) is associated with protection from
chronic HCV infection [11]. In order to determine if the KIR
have an influence on the over-expression of NKG2A in our
patient population we determined the levels of NKG2A on
the subpopulations of CD158a,h and CD158b,j NK cells that
co-expressed NKG2A. The increase in NKG2A was most sig-

nificant in the CD158a,h+/CD158b,j- (4827 � 1880 versus
3600 � 1425, P < 0·025) and the CD158a,h-/CD158b,j-

(6527 � 2303 versus 5081 � 2082 P < 0·05) subpopulations
(Fig. 2c).

The natural cytotoxicity receptors NKG2D, NKp30 and
NKp46 are expressed on all mature NK cells [25] and are
responsible for recognition of some tumour targets and
virally infected cells [26,27]. In order to determine if the
abnormalities of NKG2A expression were specific to this
inhibitory receptor or reflective of more general changes in
the CD158a,h-positive population, we compared the levels
of expression of these receptors on the different subpopula-
tions of NK cells. We found that in chronic HCV infection
the levels of expression of both NKp30 and NKp46 were
elevated across all subpopulations of CD56dim NK cells, but
those of NKG2D were unaltered (Fig. 2d–f).

Pegylated IFN-a and ribavirin normalizes NKG2A, but
not natural cytotoxicity receptors (NCR) expression

The effect of pegylated IFN and ribavirin (PEG/Rib) on NK
cell receptor expression was determined in 12 patients
undergoing treatment for HCV. Flow cytometry analysis was
performed during the first 12 weeks of treatment (Fig. 3a).
In our treatment protocol this is the time-frame within
which individuals who have a sustained virological response
(SVR) have a significant decline in viral load [28]. Overall
NKG2A expression declined rapidly by week 2 on the
CD56dim NK cells to an average of 0·58 times the pre-
treatment levels. This decrease was less significant on
the CD56bright NK cells (mean fold change compared to
baseline 0·84 � 0·02 versus 0·59 � 0·02 (CD56dim NK cells),
P = 0·001) and also on T cells (mean fold change =
0·88 � 0·21, P < 0·002 versus CD56dim NK cells (Fig. 3b).
Furthermore, this was not specific to subpopulations of NK
cells that expressed specific KIR, as it was also found on NK
cells that expressed no KIR (Fig. 3c). By contrast, the expres-
sion of the activating receptors remained relatively
unchanged on NK cells (Fig. 3d–f). However, there was a
slight decline in expression of the activating receptor
NKG2D on T cells which reached significance by week 12
(mean fold change 0·42 � 0·18 compared to the baseline
level (P < 0·05) (Fig. 3g). This implies that in the early phase
of PEG/Rib therapy there is a change in the relative balance
between activating and inhibitory receptors, which favours a
loss of the inhibitory signal from the HLA-E : NKG2A
system on NK cells, but not on T cells.

Sustained virological response is associated with the
baseline frequency of NKG2A+KIR- NK cells

Successful treatment with pegylated-IFN/Rib is associated
with an SVR in which HCV RNA remains undetectable for at
least 6 months following cessation of therapy, and usually
continues into the long term [29]. Individuals with and
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without SVR had similar levels of decline in NKG2A expres-
sion (not shown) and so we therefore studied the association
of the baseline NK cell phenotype with treatment outcome.
Twenty-nine of the 35 individuals completed treatment and
23 had an SVR. There was a non-significant trend towards

individuals with SVR having a higher frequency of CD56dim

NKG2A+ NK cells (Fig. 4a). Subset analysis indicated that
this was due to KIR-NKG2A+ NK cells (27·6 � 9·6% (SVR)
versus 17·6 � 5·7 (no SVR), P < 0·02), i.e. cells inhibited only
by HLA-E, and not those inhibited by MHC-B and -C
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(Fig. 4b). No other baseline phenotypic parameter was asso-
ciated significantly with outcome.

As KIR-NKG2A+ NK cells are associated with SVR, we
determined if these cells increase in frequency during the
early phase of PEG/Rib therapy (Fig. 4c–e). There was a
trend towards an increase in KIR-NKG2A+ NK cells
(P > 0·1), and a significant decline in KIR+NKG2A- NK cells
(P = 0·005). However, these changes occurred later during
treatment at weeks 8–12, and were not associated with SVR.
Consideration of the HLA type of the individuals demon-
strated no association with HLA-C and no expansions of NK
cells that expressed a KIR specific for the HLA-C allele of that
individual.

Discussion

The role of MHC class I receptors and NK cells in HCV
infection relates to both frequency of specific subpopula-
tions of NK cells and also receptor expression levels. Previ-
ous work has yielded conflicting results, and this may be due
in part to differences in preparation such as freezing or in
cytokine stimulation [13,14]. We have therefore analysed NK
cell receptor expression on NK cells in chronic HCV infec-

tion directly ex vivo in order to avoid such bias in receptor
subpopulations. The use of multi-parameter flow cytometry
has allowed the simultaneous evaluation of multiple recep-
tors on single NK cells in order to provide insights into the
relative contribution of receptors with different MHC class I
ligands. Overall, we found that NKG2A-positive NK cells
were associated with a beneficial response to treatment. In
vitro this subset of NK cells can lyse vaccinia-infected targets
in the context of autologous MHC class I [30]. Thus this
specific subset of NK cells has been shown to have anti-viral
activity.

The most marked changes were noted in levels of NKG2A
expression, which occurred on both CD56bright and CD56dim

NK cells. This increase in NKG2A expression on NK cells
may be representative of chronic activation of NK cells,
which can be induced by cytokines such as IL-12 or IL-21
[31,32]. In studies using NK cell clones the inhibition medi-
ated by NKG2A was weaker and more variable than that
mediated by KIR [33]. Thus our observed changes may have
functional consequences for the inhibition of NK cells. Con-
versely, during treatment with PEG/Rib, the decline in
NKG2A levels may reverse this increased inhibition and
hence allow a more ready activation of the NKG2A-positive

Fig. 3. The effect of pegylated interferon and

ribavirin on expression of inhibitory and

activating receptors. (a) Flow cytometry plot of

natual killer (NK)G2A expression pretreatment

and at week 2 on CD3-CD56bright and

CD3-CD56dim NK cells, showing the change in

mean fluorescence intensity. (b) Fold change in

mean fluorescence intensity of NKG2A on all

NKG2A-positive CD56dim NK cells (squares),

CD56bright NK cells (triangles) and

CD3+NKG2A+ T cells (circles) during the first

12 weeks of therapy. The chart shows the

comparison of the expression level of NKG2A

at the indicated weeks compared to the baseline

level. Expression of NKG2A declined most

rapidly on the CD56dim NK cells compared to

the CD56bright NK cells and CD3+ T cells.

Statistical analysis was performed using the
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NK cells. This change is more likely to be important on NK
cells that are not inhibited by other inhibitory receptors, and
hence is consistent with our observation that the frequency
of KIR-negative, NKG2A-positive NK cells are associated
with a successful outcome of PEG/Rib therapy.

We noted a rapid decline in expression of NKG2A, but not
activating receptors, following the administration of PEG/
Rib. However, this change did not correlate with outcome.
This is not unexpected,as many factors influence the outcome
of PEG/Rib therapy for HCV, the most notable of which is the
viral genotype. This change in expression preceded alter-
ations in NK cell subsets, which did not occur until weeks
8–12 following therapy; thus it is most probably a direct effect
on NKG2A receptor expression. NK cells express multiple
inhibitory receptors for MHC class I, and so NK cells express-
ing NKG2A as their sole inhibitory receptor are the ones that
will have their activating/inhibitory receptor balance affected
the most by a reduction in NKG2A expression.As we observed
no change in activating receptor expression, this implies that
these cells have this balance altered in favour of activation.
Consistent with the hypothesis that these are a protective
subset of NK cells we found that individuals with SVR have
more KIR-NKG2A+ NK cells than those without SVR, a quan-
titative model of NK cells in viral infections as has been

observed for murine cytomegalovirus (MCMV) [34]. Recent
work has demonstrated that NK cells have a number of adap-
tive properties, including antigen specificity, clonal expan-
sion, long-lived progeny and recall responses [35]. We saw a
trend towards an increase in the number of KIR-NKG2A+ NK
cells during PEG/Rib therapy, which is consistent with a role
in the anti-HCV response.

From our data it is not clear as to the mechanism by which
interferon and/or ribavirin affects expression of NKG2A on
NK cells. It may be a direct effect on NK cells due to changes
in the cytokine milieu, or to interactions with other cells of
the immune system that can subsequently effect NK cell
receptor expression. In chronic HCV, but not HBV, infection
NKG2A expression correlates with necroinflammatory score
[18], which is consistent with our observations. However,
longitudinal analysis of individuals with chronic HBV infec-
tion treated with IFN and in vitro culture experiments may
be helpful in determining the disease specificity and mecha-
nisms behind our in vivo observations of NKG2A expression.

Genetic studies have focused upon the KIR system in HCV
infection, and in chronic HCV infection we have noted
specific changes in the frequency of NK cells expressing
CD158a,h, but not CD158b,j. These markers are not specific
for inhibitory KIR and currently there are no reagents avail-
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Fig. 4. The association of sustained virological response to pegylated interferon and ribavirin with the frequency of specific subpopulations of

natural killer (NK) cells. (a) Pretreatment frequencies of CD56dim NK cells expressing the indicated receptors in individuals with (filled squares) and

without (filled circles) sustained virological response (SVR) plotted on the left Y-axis. Also shown are the frequencies of the CD56bright NK cells from
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treatment. Statistical comparisons were made using the analysis of variance (anova) test. For all panels P-values of less 0·05 are indicated.
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able to distinguish the activating from the inhibitory forms
of these receptors. The majority of these cells express the
inhibitory receptor, as determined by biochemical studies
and the analysis of NK cell clones [36–38]. In particular, a
comprehensive analysis of NK cell clones demonstrated that
all cells expressing CD158a,h were inhibited by group 2
HLA-C allotypes and similarly for CD158b,j and group 1
HLA-C allotypes [33]. Thus it appears that in our analysis
the KIR2DL1 subset of NK cells is perturbed in chronic HCV
infection relative to the KIR2DL2/KIR2DL3 subset. Differ-
ences in our data compared to that of Oliviero et al. [15], in
which changes in KIR3DL1 were most prominent, are related
most probably to genetic differences among the patient
populations studied, especially as allelic diversity of
KIR3DL1 is associated with marked differences in the level of
expression [39]. However, in their study there was also a
lower frequency of CD158a,h-positive NK cells in individu-
als with chronic HCV compared to healthy donors, although
this did not reach statistical significance. Similarly, Bonorino
et al. noted non-significant lower levels of CD158a,h but not
CD158b,j in individuals with chronic HCV [18].

Overall, we did not observe an influence of HLA-C on the
frequency of NK cells in chronic HCV infection compared to
healthy controls, although we did observe that individuals
with a group 1 HLA-C ligand had more NK cells expressing
a KIR cognate for HLA-C allele than those without. This was
found both in healthy donors and in HCV-infected
individuals. This is a quantitative correlate of the protective
effect of NK cells in spontaneously resolving HCV infection.
The diversity of the KIR system provides one rationale for
differences in response among individuals, but this does not
preclude the NKG2A system from being important. Indeed,
it has been shown that individuals with spontaneously
resolved HCV infection have lower numbers of NKG2A/C/
E-positive NK cells than those with chronic HCV infection
[17]. Furthermore, the mature NK cell repertoire is influ-
enced both by KIR and MHC class I genotype [40]. Thus the
interplay between the two receptor systems is complex and
likely to synergize in infections, such that both receptors
systems are important in the anti-HCV response. Our
data, however, demonstrate the importance of the NKG2A:
HLA-E system in the response to pegylated interferon and
ribavirin, and thus highlights the anti-viral role of this evo-
lutionarily conserved receptor : ligand system.
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