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Abstract
Metabolic homeostasis reflects the complex output of endocrine, autonomic, and behavioral
control circuits that extend throughout the central nervous system. Brain regions that control food
intake and energy expenditure are privy to continuous visceral sensory feedback signals that
presumably modulate appetite, satiety, digestion, and metabolism. Sensory signals from the
gastrointestinal tract and associated digestive viscera are delivered to the brain primarily by vagal
afferents that terminate centrally within the caudal nucleus of the solitary tract (NST), with signals
subsequently relayed to higher brain regions by parallel noradrenergic and peptidergic projection
pathways arising within the NST. This article begins with an overview of these ascending
pathways identified in adult rats using a standard anterograde tracer microinjected into the caudal
visceral sensory region of the NST, and also by immunocytochemical localization of glucagon-
like peptide-1. NST projection targets identified by these two approaches are compared to the
distribution of neurons that become infected after inoculating the ventral stomach wall with a
neurotropic virus that transneuronally infects synaptically-linked chains of neurons in the
anterograde (i.e., ascending sensory) direction. Although the focus of this article is the anatomical
organization of axonal projections from the caudal visceral NST to the hypothalamus and limbic
forebrain, discussion is included regarding the hypothesized role of these projections in
modulating behavioral arousal and coordinating endocrine and behavioral (i.e., hypophagic)
responses to stress.

Keywords
glucagon-like peptide-1; noradrenergic; hypothalamus; phaseolus vulgaris leucoagglutinin;
transneuronal viral tracing

1.0 Introduction
Metabolic homeostasis reflects the complex output of endocrine, autonomic, and behavioral
control circuits that extend throughout the central nervous system (CNS). Brain regions that
control energy intake and expenditure are privy to continuous interoceptive feedback from
the body that can modulate appetite, satiety, digestion, and metabolism. Interoceptive signals
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from the gastrointestinal tract and associated digestive viscera are delivered to the brain
primarily by vagal afferents that terminate centrally within the medullary dorsal vagal
complex (DVC), comprising the dorsal motor nucleus of the vagus (DMV), nucleus of the
solitary tract (NST), and area postrema (AP) (Rinaman, 2003a). In addition to vagal inputs
from gastrointestinal and other thoracic and abdominal viscera, DVC neurons receive direct
and indirect interoceptive signals from olfactory, glossopharyngeal, trigeminal, facial, and
spinal afferent systems. A strong topography is evident in the terminal arborizations of
primary visceral afferents, with inputs from the gut terminating within the caudal medial
NST (Altschuler et al., 1989; Shapiro and Miselis, 1985). In addition to synaptic inputs, the
AP and a significant portion of the caudal medial NST contain fenestrated capillaries,
allowing blood-borne factors (e.g., toxins, cytokines, hormones, and osmolytes) to alter local
neural activity within the DVC and other brainstem targets (Cunningham et al., 1994).

A major product of integrated DVC neural activity is the modulation of autonomic vagal
parasympathetic outflow to the stomach, small intestine, pancreas, and other digestive
viscera (Altschuler et al., 1992). In addition, and as summarized in this review, ascending
axonal projections from neurons within the caudal medial (i.e., gastrointestinal) NST target
virtually every pontine, diencephalic, and telencephalic circuit node that has been implicated
in the central control of energy homeostasis (Horst and Streefland, 1994), highlighting
gastrointestinal interoception as a potentially critical modulator of neural circuit activity
throughout the brain. Ample evidence supports the view that descending projections from
hypothalamus to caudal brainstem provide critical control over the initiation and termination
of food intake and feeding-related autonomic adjustments (Berthoud, 2002; Berthoud et al.,
2006; Coll et al., 2007; Smith, 2000; Smith, 2003; Woods and D'Alessio, 2008; Zheng et al.,
2005). Ascending projections from NST to hypothalamus are clearly involved in regulating
hormone release from the anterior and posterior pituitary in response to gastrointestinal and
other visceral sensory signals (Rinaman, 2007). Conversely, the influence of these ascending
projections in regulating food intake is less firmly established (Luckman and Lawrence,
2003; Renner et al., 2010). Appetite and satiety are clearly modulated both by external (i.e.,
environmental) and internal (i.e., physiological) contexts, and, therefore, are only loosely
dependent on past or current visceral sensory feedback signals.

Results from neuroanatomical studies performed primarily in rats have revealed potential
pathways by which visceral sensory feedback signals can reach the hypothalamus and limbic
forebrain, and thereby potentially affect the ways in which these forebrain regions control
food intake. This article begins with an overview of ascending axonal projections from
neurons within the caudal visceral NST to higher brain regions in adult rats. For this
purpose, projections were identified using a standard anterograde tracer microinjected into
the caudal NST, and also by immunocytochemical localization of glucagon-like peptide-1
(GLP-1). GLP-1-positive fibers within the brain arise exclusively from non-noradrenergic
(NA) neurons within the caudal visceral NST and closely adjacent reticular formation
(Larsen et al., 1997; Merchenthaler et al., 1999; Rinaman, 1999b; Vrang et al., 2007),
thereby providing a clear view of ascending pathways arising from this small group of
phenotypically distinct neurons. Projection pathways identified by these two approaches also
are compared to the distribution of CNS neurons that become infected/labeled after
inoculating the ventral stomach wall with H129, a neurotropic α-herpesvirus virus that
transneuronally infects synaptically-linked chains of neurons in the anterograde direction
(Rinaman and Schwartz, 2004).

The focus of this report is the anatomical organization and neurochemical phenotypes of
ascending projections from the caudal gastrointestinal region of the NST in rats. Although
some discussion of the hypothesized roles of these ascending projections is included where
relevant, the reader is referred to several recent comprehensive reviews for more detailed
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information regarding the involvement of particular diencephalic and limbic forebrain
regions in the central neural control of food intake and energy expenditure (Berthoud, 2002;
Berthoud, 2008; Broberger, 2005; Woods and D'Alessio, 2008).

2.0 Ascending visceral pathways: standard anterograde tracing from the
noradrenergic (NA) region of the caudal NST

Since most neural pathways conveying interoceptive signals from body to brain involve a
synaptic relay within the NST, a description of the central projections of NST neurons
effectively reveals most CNS recipients of viscerosensory information (Bailey et al., 2006;
Horst et al., 1989; Horst and Streefland, 1994; Ricardo and Koh, 1978), albeit without
identifying the central targets of organ-specific sensory signals. A multitude of anterograde
and retrograde tract-tracing studies, performed largely in rats, have demonstrated that
neurons within the caudal visceral NST1 have axons that project directly to a large number
of central targets distributed across the medulla, pons, midbrain, hypothalamus, and limbic
forebrain. Similarly, the present report documents the distribution of labeled axonal
projections in a representative adult male Sprague-Dawley rat killed 10 days after unilateral
iontophoretic injection of an anterograde neural tracer, Phaseolus vulgaris leucoagglutinin
(PhAL, 2.5%) (Gerfen and Sawchenko, 1984), into the caudal visceral NST. Coronal brain
sections (35 µm thick) were cut from the caudal medulla through the rostral extent of the
corpus callosum, and a one-in-six series was processed for immunoperoxidase localization
of PhAL. The distribution of PhAL-positive fibers was then mapped along the rostrocaudal
neural axis using a light microscope equipped with a digital video camera and computerized
tracing software.

Figure 1 depicts the caudal NST-centered PhAL injection site, and PhAL-positive fibers
emanating from it. Immunoperoxidase labeling was so dense within the injection site (Fig. 1,
gray shaded area) that it could not be accurately traced. To more precisely localize
individual neurons that took up tracer within the injection site, an alternate set of sections
from the same rat was processed for dual immunofluorescent localization of PhAL and the
NA synthetic enzyme, dopamine beta hydroxylase (DbH) (Fig. 2). Neurons concentrating
PhAL were restricted to the medial subnucleus of the NST at the rostrocaudal level of the
area postrema (AP). The injection site overlapped the NST region that contains the A2 NA
cell group, and a subset of PhAL-concentrating neurons were identified as DbH-positive
(Fig. 2). Dual immunofluorescence labeling confirmed that the brainstem and forebrain
distribution of PhAL-positive fibers overlapped with DbH immunolabeling; a few examples
are shown in Figure 2. Conversely, the injection site in this rat did not label neurons within
the medial commissural NST region (adjacent to the AP) that contains aldosterone-sensitive
hydroxysteroid dehydrogenase-2 (HSD2) neurons. HSD2-positive NST neurons are
implicated in the central control of sodium appetite (Geerling et al., 2006a;Geerling and
Loewy, 2007), and appear to project to a discrete subset of the brain regions that receive
input from NA and GLP-1-positive NST neurons (Geerling and Loewy, 2006).

The large majority of NST neurons that project to the hypothalamus and limbic forebrain are
NA neurons of the overlapping A2/C2 cell groups (Sawchenko and Swanson, 1981;
Sawchenko and Swanson, 1982a; Sawchenko and Swanson, 1982b), with remaining
projection neurons primarily comprising smaller and separate populations of HSD2- and
GLP-1-positive neurons (Geerling et al., 2006b; Larsen et al., 1997). NA projections from
the caudal NST to higher brain regions are probably mostly glutamatergic, based on
extensive colocalization of tyrosine hydroxylase (the rate-limiting enzyme for catecholamine

1The rostral gustatory NST gives rise to a largely distinct and more limited set of efferent projections (Norgren et al., 2003).
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synthesis) and DNPI, the rat homolog of VGLUT2 (Stornetta et al., 2002). Despite a long
scientific history supporting the involvement of central NA signaling in the central control
of food intake and energy expenditure (Leibowitz et al., 1988; Ritter et al., 1975), it still is
not clear whether or how NA inputs to the hypothalamus are involved in day-to-day
regulation of energy balance. Conversely, there is ample evidence that NA inputs are
invoved in hormonal and behavioral arousal responses to visceral stimuli. Medullary NA
inputs to the hypothalamus provide critical control over the activity of stress-responsive
corticotropin releasing hormone (CRH)-containing neurons within the PVH, at the apex of
the HPA axis (Al-Damluji, 1988; Alonso et al., 1986; Banihashemi and Rinaman, 2006;
Bienkowski and Rinaman, 2008; Gaillet et al., 1991; Kiss and Aguilera, 1992; Liposits et
al., 1986; Rinaman, 2007). NA terminals also synapse directly onto thyrotropin releasing-
hormone-positive neurons within the PVH (Füzesi et al., 2009), implicating NA pathways
from the NST in metabolic responses to visceral stimuli. The results of phenotypically-
specific lesioning experiments have demonstrated that NA inputs to the PVH are critical for
the ability of systemic cholecystokinin-8 (CCK), lipopolysaccharide, lithium chloride, or
yohimbine to activate Fos expression in PVH neurons, including CRH-positive neurons
(Banihashemi and Rinaman, 2006; Bienkowski and Rinaman, 2008; Rinaman, 2003b;
Rinaman and Dzmura, 2007). Interestingly, however, NA inputs to the PVH are unnecessary
for the ability of CCK to inhibit food intake (Ritter et al., 2001). Indeed, the entire forebrain
appears to be unnecessary for CCK-induced hypophagia (Grill and Smith, 1988). Although
glucoprivic feeding induced by systemic 2-deoxyglucose is abolished in rats after bilateral
destruction of NA inputs to the PVH (Ritter et al., 2001), it is unclear whether the same
ascending pathways are important for the control of food intake under non-stressful,
physiological conditions. Instead, it seems that ascending NA projections from the caudal
NST may be recruited primarily during situations of real or perceived homeostatic
challenge. As a case in point, experimental evidence supports the view that central prolactin
releasing peptide (PrRP) signaling is involved in stress-related hypophagia (Lawrence et al.,
2000; Lawrence et al., 2002; Lawrence et al., 2004), and PrRP is co-expressed by a subset of
NA neurons within the NST that project to hypothalamic and limbic forebrain targets,
including the PVH, paraventricular thalamic nucleus, DMH, medial preoptic area, peri-
VMH, and BST (Renner et al., 2010; Yano et al., 2001).

The distribution of PhAL-positive fibers reveals that neurons within the caudal visceral NST
project both contralaterally and ipsilaterally, although ipsilateral projections are more
prominent (Figs. 3–10). Table 2 lists most of the brain regions that contained PhAL-positive
fibers in this experimental case. The reader also is referred to similar anterograde tracing
results reported earlier in adult rats (Horst et al., 1989;Horst and Streefland, 1994). Within
the medulla, axons arising from neurons within the caudal visceral NST densely occupy the
rostral gustatory NST (Fig. 3). Labeled axons also pass through the dorsal- and ventrolateral
reticular formation (Figs. 3–4) while generally avoiding more medial regions of the medulla
and pons. Within the pons, PhAL-positive fibers occupy the locus coeruleus (LC) and
subjacent Barrington’s nucleus (B; Fig. 4). Caudal visceral NST inputs to the medial and
lateral parabrachial nuclei (PBN), including the Kölliker-Fuse (KF) subnucleus, are
especially dense (Fig. 2B,Fig. 4–Fig. 5) (for more detail, see (Karimnamazi et al., 2002)).
The PBN has at least 12 distinct subnuclei, some of which project to central targets that do
not receive direct input from the NST (Fulwiler and Saper, 1984;Herbert et al., 1990;Moga
et al., 1990;Saper and Loewy, 1980). For example, NST inputs to the internal lateral PBN,
which provides a diffuse input to the intralaminar thalamic nuclei, may be involved in
arousal responses to gastrointestinal and other visceral stimuli, while NST inputs to the
external medial PBN may contribute to conscious appreciation of visceral sensation via
thalamic relays to visceral cortex.

Rinaman Page 4

Brain Res. Author manuscript; available in PMC 2011 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Within the midbrain, PhAL-positive fibers from the caudal visceral NST occupy the
periaqueductal gray, particularly its ventral portion (Fig. 5). Labeled fibers also cluster
within the serotonin-rich dorsal raphé (Fig. 5), and overlap the dopamine-rich ventral
tegmental area (Fig. 6). The density of PhAL-positive fibers increases within the
diencephalon (Figs. 7–8). Midline thalamic targets most notably include the paraventricular
nucleus of thalamus. Hypothalamic targets include the lateral hypothalamic area (LHA),
posterior hypothalamus, posterior periventricular nucleus, tuberomammillary nuclei (both
dorsal and ventral), tuberal nucleus, dorsomedial nucleus, arcuate nucleus (ARH; Fig. 2C),
paraventricular nucleus of the hypothalamus (PVH; including both magnocellular and
parvocellular subregions; Fig. 2D), and supraoptic nucleus (SO). Interestingly, PhAL-
labeled fibers tend to avoid the ventromedial hypothalamic nucleus (VMH), which has
classically demonstrated roles in the central control of feeding and metabolism (King,
2006;Plata-Salaman, 1998). However, similar to neurons within the PVH and LHA
(Jeanningros, 1984;Jin et al., 1993;Ueta et al., 1991), VMH neurons are activated by gastric
distension via a vagal sensory pathway (Sun et al., 2006). NST inputs to VMH neurons may
arrive on their distal dendrites which surround the VMH nucleus, where PhAL- (and
GLP-1-)-positive fibers are present (see Fig. 12). More laterally within the subcortical
telencephalon, PhAL-positive fibers cluster within the central nucleus of the amygdala and
substantia innominata. More rostrally and dorsally, a small number of labeled fibers are
present within the stria terminalis. Labeled fibers and varicosities also are observed within
the dorsolateral horizontal limb of the diagonal band of Broca. Fibers and varicosities
terminate densely within both the dorsal and ventral bed nucleus of stria terminalis (BST;
Fig. 2E), and less densely within the medial and median preoptic nuclei, the organum
vasculosum of the lamina terminalis, the medial septum, and the nucleus accumbens (ACB)
(Figs. 9–10). The direct inputs from NST to ACB (ventral striatum) are of particular interest,
given the prominent role of this limbic brain region in appetitive motivation (Kelley,
2004;Zheng et al., 2007).

No PhAL-positive fibers were observed within medial or lateral visceral cortex in this
experimental case or in other similar PhAL tracing experiments from our laboratory,
supporting previous reports that visceral sensory signals are relayed to the visceral cortices
via the thalamus and other brain regions, including the LC and LHA. Wilder Penfield’s
cortical stimulation studies in humans revealed subjective sensations of oropharyngeal,
esophageal, and gastrointestinal sensation organized in a topographic sensory homunculus
within Brodmann’s area 13, running ventrally from the tongue sensory area into the
operculum and insular cortex (Penfield and Faulk, 1955). Cechetto and Saper reported a
similar topographic pattern of visceral sensory responses in rats, involving regions of insular
cortex that corresponded to viscerotopically organized inputs from the thalamus (Cechetto
and Saper, 1987). In addition, the LC, LHA, and midline thalamic nuclei each have direct
but diffuse cortical projections that likely participate in arousal and overall cortical “tone,”
and each of these regions receives visceral sensory input relayed directly from the caudal
visceral NST in rats (Figs. 4, 7–8). In addition to receiving direct inputs from the caudal
medial NST, the basal forebrain cholinergic corticopetal system also receives inputs relayed
via the nucleus paragigantocellularis and LC (Bernston et al., 1998; Berntson et al., 2003).
This cholinergic system is implicated in cortical arousal, attention, and anxiety, and is
considered a widespread regulatory modulator that serves to enhance or amplify cognitive
processing.

3.0 Ascending projections from the caudal visceral NST:
immunocytochemical localization of GLP-1

GLP-1 is expressed by a relatively small number of neurons located within the caudal
visceral NST (Fig. 11) and adjacent dorsal reticular formation (Jin et al., 1988;Larsen et al.,
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1997;Merchenthaler et al., 1999). GLP-1-positive neurons are not adrenergic, but co-express
β inhibin 1, somatostatin, and met-enkephalin (Sawchenko et al., 1990). Their ascending
axonal projections largely parallel NA projections from the caudal NST. Indeed, all brain
regions that contain GLP-1-positive fibers and terminals in adult rats also contain DbH-
immunopositive fibers and terminals; however, the converse is not always true (personal
observation), as the caudal NST is not the only source of NA fibers and terminals within the
brain.

Central GLP-1 signaling pathways are implicated in the central control of food intake,
glucose homeostasis, and HPA axis and autonomic responses to stress (Holst, 2007; Imeryuz
et al., 1997; Kinzig et al., 2003; Nakade et al., 2007; Rinaman, 1999a; Sandoval et al., 2008;
Tang-Christensen et al., 2001; Turton et al., 1996). GLP-1-positive terminals robustly
innervate corticotropin releasing hormone (CRH)-positive neurons within the hypothalamic
PVH (Sarkar et al., 2003), the apex of the HPA stress axis, as well as oxytocin (but not
vasopressin) -positive neurons within the PVH and supraoptic nucleus (Rinaman and Rothe,
2002). GLP-1 modulates the activity of hypocretin/orexin-positive (but not melanin-
concentrating hormone-positive) neurons within the LHA (Acuna-Goycolea and Pol, 2004),
implicating GLP-1 signaling in behavioral arousal and reward-based feeding (Borgland et
al., 2009; Cason et al., 2010 (in press)). In addition to their prominence within the PVH and
LHA, GLP-1 receptors also are located within the ARH, along with GLP-1-positive fibers
(see Fig. 12) (Alvarez et al., 1996; Merchenthaler et al., 1999).

GLP-1-positive NST neurons that project to the hypothalamus are activated by interoceptive
stimuli that stimulate the HPA stress axis and also inhibit food intake in rats (Rinaman,
1999b), and central antagonism of GLP-1 receptors is sufficient to attenuate the hypophagic
effect of lithium chloride (Rinaman, 1999a; Seeley et al., 2000). It remains unclear whether
GLP-1 signaling within the forebrain, brainstem, or both regions is important for the control
of food intake under natural conditions. Food intake is inhibited in rats after lateral or third
ventricular administration of synthetic GLP-1 or agonist, or after microinjection of GLP-1 or
agonist into the PVH, LHA, DMH, or VMH (Donahey et al., 1998; Schick et al., 2003).
While these observations do not constitute evidence that endogenous GLP-1 plays a role in
day-to-day body energy homeostasis, the available evidence does support the view that
GLP-1 signaling pathways participate in stress-related hypophagia and activation of the
HPA axis.

As seen in Table 2, every brain region that contained labeled fibers after PhAL injection into
the caudal visceral NST also contained GLP-1-positive fibers. The distribution of GLP-1-
positive fibers within the diencephalon and telencephalon is illustrated in Figure 12. As
previously reported, GLP-1 positive fibers are relatively dense within the PVH (Fig. 13C),
ARH (Fig. 13B), SO, DMH (Fig. 13A), PVT, and dorsal and ventral BST (Larsen et al.,
1997;Merchenthaler et al., 1999;Rinaman, 1999b;Sarkar et al., 2003) (Fig. 12). GLP-1-
positive fibers also occupy the ventral striatum (ACB; Fig. 13D).

4.0 Ascending gastric sensory pathways: viral transneuronal anterograde
tracing

Standard anterograde and retrograde tracing techniques are useful tools with which to survey
the inputs and outputs of various brain regions. However, light microscopic tracing using
PhAL or other standard tracers cannot by itself demonstrate synaptic connections between
labeled projection neurons and their targets. Further, PhAL tracing experiments like the one
illustrated in Figures 1–10 cannot discriminate projections that carry gastrointestinal-related
signals from those that carry cardiovascular or other visceral sensory information. In an
attempt to isolate the postsynaptic targets of gastric-specific ascending sensory projections,
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we turned to a novel transneuronal anterograde tracer, the H129 strain of herpes simplex
virus-1 (Dix et al., 1983). H129 undergoes anterograde transneuronal transport in cebus
monkeys after inoculation of primary motor cortex (Kelly and Strick, 2003; Zemanick et al.,
1991) and in mice after inoculation of tooth pulp (Barnett et al., 1995) or the vitreous body
of the eye (Sun et al., 1996). We found that H129 also has utility as an anterograde
transneuronal viral tracer in rats, effectively revealing CNS regions that receive relayed
gastric viscerosensory input (Rinaman and Schwartz, 2004). After H129 inoculation of the
ventral stomach wall in adult male Sprague-Dawley rats, H129-immunopositive cells and
fibers were present within the medullary DVC (including the caudal medial NST and medial
DMV), thoracic spinal dorsal root entry zone, and thoracic spinal laminas I and II. In rats
with longer post-inoculation survival times, additional spinal, brainstem, diencephalic, and
telencephalic regions contained H129-positive cells (summarized in Table 2). Interestingly,
some of the brain regions that contained transneuronal H129 labeling do not appear to
receive direct projections from the caudal visceral NST, as evidenced by the absence of both
PhAL anterograde labeling and GLP-1 immunopositive fibers in those regions (Table 2). For
example, H129 labeling within visceral cortices presumably arose from the thalamus, LHA,
and/or other brain region that contained H129-positive neurons and projects to visceral
cortex. Further, transneuronal H129 transport from the stomach wall included ascending
spinal visceral pathways in addition to pathways arising from the DVC, and so some H129
labeling is likely of spinal origin.

It seems curious that relatively little transneuronal H129 infection was observed within the
ventrolateral BST, a forebrain region that receives particularly dense NA (Banihashemi and
Rinaman, 2006; Myers et al., 2005) and GLP-1 inputs from the caudal NST (Fig. 12). H129
labeling also was not obvious within the ACB, another direct target of NA and GLP-1-
positive projections from the caudal NST. Speculatively, the absence of H129 labeling in
these regions may be due to a relatively low density of synaptic contacts. Transneuronal
H129 infection depends on the presence of synaptic contacts for viral transport to occur
from axon terminal to postsynaptic target; therefore, H129 transneuronal tracing cannot
reveal forebrain neurons that are subject to visceral sensory modulation through local
“paracrine” release of neurotransmitter from axon varicosities. Indeed, fewer than 20% of
NA axon terminals within the ventrolateral BST form synaptic contacts (Phelix et al., 1992),
and a hallmark of NA terminals within the medial PVH, ventrolateral BST, and other
forebrain regions that receive dense inputs from the A2 region of caudal NST is the
predominance of axonal varicosities that do not form synaptic contacts (Balcita-Pedicino
and Rinaman, 2007). An absence of synaptic contacts, however, does not indicate an
absence of neural signal transmission.

5.0 Conclusion
The CNS is privy to a plethora of peripheral neural and humoral signals that reflect current
digestive status and energy availability, energy needs, and energy stores. Body energy
homeostasis depends on the organism’s ability to integrate and respond adaptively to these
signals by modulating current and future energy intake and expenditure. Clearly, descending
projections from the hypothalamus and limbic forebrain to the DVC and other caudal
brainstem regions are critical in the central control of digestion and feeding. The robust
anatomical representation of reciprocal projections from the caudal visceral NST to feeding-
related regions of the hypothalamus and limbic forebrain supports the view that these
projections also are important in the central control of food intake. However, the available
evidence indicates that signals carried to the forebrain may be important primarily for
arousal and coordination of physiological and behavioral (i.e., hypophagic) responses to
homeostatic challenge, rather than for modulating feeding and/or energy expenditure on a
day-to-day basis. Future studies should challenge this assessment to determine whether or
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not it is accurate, and to further reveal the physiological importance of visceral sensory
signaling from gut to brain.
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Figure 1.
Iontophoretic PhAL injection site within the caudal DVC in an adult male Sprague-Dawley
rat. The dark gray shaded area in the upper panel depicts the region of the tracer injection
site, which contained PhAL immunoperoxidase labeling that was too dense to accurately
draw. See Figure 2 for immunofluorescence labeling of PhAL-concentrating neurons in an
adjacent tissue section. Labeled fibers throughout the rest of the section in the upper panel
(and in Figures 3–10) arise from PhAL-concentrating neurons located within the injection
site. The lower panel is a nearby Nissl-stained tissue section from the same rat. The
approximate rostro-caudal level of each section (relative to bregma, in mm) is indicated,
based on a standard rat brain atlas (Swanson, 2004). See Table 1 for abbreviations.
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Figure 2.
Dual immunofluorescent localization of PhAL (green) and the noradrenergic synthetic
enzyme, DbH (red). A: Individual NST neurons concentrating PhAL (green) within the
iontophoretic tracer injection site (see Figure 1). A subset of these PhAL-positive neurons
are DbH-positive (arrows point out 3 examples). B: PhAL-labeled fibers within the KF
subregion of the lateral parabrachial nucleus. C: PhAL-labeled fibers within the
hypothalamic ARH. D: PhAL-labeled fibers within the PVN. E: PhAL-labeled fibers within
the BST. Note that each photomicrograph depicts PhAL and DbH immunofluorescent
labeling photographed at only one focal plane through the section. See Table 1 for
abbreviations.
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Figure 3.
Anterogradely transported PhAL from the caudal DVC (see Figures 1 and 2A for injection
site) to more rostral regions of the medulla. The approximate rostro-caudal level of each
section (relative to bregma, in mm) is indicated, based on a standard rat brain atlas
(Swanson, 2004). Upper left = caudal, lower right = rostral. See Table 1 for abbreviations.
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Figure 4.
Anterogradely transported PhAL from the caudal DVC (see Figures 1 and 2A for injection
site) to the pons. The approximate rostro-caudal locations of each section relative to bregma
are indicated, based on a standard rat brain atlas (Swanson, 2004). Upper left = most caudal,
lower right = most rostral. See Table 1 for abbreviations.
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Figure 5.
Anterogradely transported PhAL from the caudal DVC (see Figures 1 and 2A for injection
site) to more rostral regions of the pons and midbrain. The approximate rostro-caudal level
of each section (relative to bregma, in mm) is indicated, based on a standard rat brain atlas
(Swanson, 2004). Upper left = caudal, lower right = rostral. See Table 1 for abbreviations.
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Figure 6.
Anterogradely transported PhAL from the caudal DVC (see Figures 1 and 2A for injection
site) to more rostral regions of the midbrain and caudal hypothalamus. The approximate
rostro-caudal level of each section (relative to bregma, in mm) is indicated, based on a
standard rat brain atlas (Swanson, 2004). Top = caudal, bottom = rostral. See Table 1 for
abbreviations.

Rinaman Page 19

Brain Res. Author manuscript; available in PMC 2011 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Anterogradely transported PhAL from the caudal DVC (see Figures 1 and 2A for injection
site) to the hypothalamus and amygdala. The approximate rostro-caudal level of each section
(relative to bregma) is indicated, based on a standard rat brain atlas (Swanson, 2004). Upper
left = caudal, lower right = rostral. See Table 1 for abbreviations.

Rinaman Page 20

Brain Res. Author manuscript; available in PMC 2011 September 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Anterogradely transported PhAL from the caudal DVC (see Figures 1 and 2A for injection
site) to more rostral regions of the hypothalamus and amygdala. The approximate rostro-
caudal level of each section (relative to bregma, in mm) is indicated, based on a standard rat
brain atlas (Swanson, 2004). Upper left = caudal, lower right = rostral. See Table 1 for
abbreviations.
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Figure 9.
Anterogradely transported PhAL from the caudal DVC (see Figures 1 and 2A for injection
site) to more rostral regions of the amygdala, substantia innominata, and bed nucleus of the
stria terminalis. The approximate rostro-caudal level of each section (relative to bregma, in
mm) is indicated. Upper left = caudal, lower right = rostral. See Table 1 for abbreviations.
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Figure 10.
Anterogradely transported PhAL from the caudal DVC (see Figures 1 and 2A for injection
site) to more rostral regions of the bed nucleus of the stria terminalis and nucleus
accumbens. The approximate rostro-caudal level of each section (relative to bregma, in mm)
is indicated, based on a standard rat brain atlas (Swanson, 2004). Top = caudal, bottom =
rostral. See Table 1 for abbreviations.
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Figure 11.
GLP-1 immunoperoxidase labeling of neuron cell bodies within the caudal medullary DVC
(A and B, approximately 15.0 and 14.0 mm caudal to bregma, respectively). See Table 1 for
abbreviations.
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Figure 12.
Distribution of GLP-1-immunopositive fibers within the diencephalon and limbic forebrain.
The approximate rostro-caudal level of each section (relative to bregma, in mm) is indicated,
based on a standard rat brain atlas (Swanson, 2004). Top = caudal, bottom = rostral. See
Table 1 for abbreviations.
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Figure 13.
GLP-1-positive fibers (brown) within the hypothalamic DMH (A), ARH (B), and PVH (C),
and within the ventral striatum (D). Blue-black nuclear Fos immunolabeling is the result of
lithium chloride (0.15M, 1% BW, i.p.) administration 90 min before perfusion fixation. See
Table 1 for abbreviations.
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Table 1
Abbreviations used in text and figures

Anatomical terminology after Swanson (Swanson, 2004).

3, third ventricle

ac, anterior commissure

ACB, nucleus accumbens

AHA, anterior hypothalamic area

AI, agranular insular cortex

AMB, nucleus ambiguus

AP, area postrema

ARH, arcuate nucleus of hypothalamus

B, Barrington’s nucleus

BST, bed nucleus of stria terminalis

cc, central canal

ccg, corpus callosum genu

CEA, central nucleus of amygdala

CM, central medial nucleus of thalamus

CNS, central nervous system

COA, cortical amygdalar nucleus

DbH, dopamine β hydroxylase

DMH, dorsomedial nucleus of hypothalamus

DMV, dorsal motor nucleus of the vagus

DR, dorsal raphé nucleus

DVC, dorsal vagal complex (i.e., AP, NST and DMV)

GLP-1, glucagon-like peptide 1

GRN, gigantocellular reticular nucleus

HPA, hypothalamic-pituitary-adrenal

HSD2, 11-β-hydroxysteroid dehydrogenase type 2

HSV-1, herpes simplex virus type 1

IMD, intermediodorsal nucleus of thalamus

ISN, inferior salivatory nucleus

KF, Kölliker-Fuse subnucleus of PBN

LC, locus coeruleus

LHA, lateral hypothalamic area

LPO, lateral preoptic nucleus of hypothalamus

LS, lateral septum

MD, mediodorsal nucleus of thalamus

MDRN, medullary reticular nucleus

ME, median eminence

MEPO, medial preoptic nucleus of hypothalamus

MnPO, median preoptic nucleus of hypothalamus

MPO, medial preoptic area

MRN, midbrain reticular nucleus
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MS, medial septum

NA, noradrenergic (i.e., DbH-positive)

NST, nucleus of the solitary tract

OVLT, organum vasculosum of the lamina terminalis

OT, oxytocin

PAG, periaqueductal gray

PARN, parvicellular reticular nucleus

PAT, paratrigeminal nucleus

PERI, perirhinal cortex

PGRN, paragigantocellular reticular nucleus

PH, posterior hypothalamus

PhAL, phaseolus vulgaris leucoagglutinin

PRN, pontine reticular nucleus

PrRP, prolactin-releasing peptide

PBN, parabrachial nucleus

PVH, paraventricular nucleus of hypothalamus

PVp, posterior periventricular nucleus of hypothalmus

PVpo, preoptic periventricular nucleus of hypothalamus

PVT, paraventricular nucleus of thalamus

RC, retrochiasmatic nucleus of hypothalamus

RN, red nucleus

SI, substantia innominata

SFO, subfornical organ

SO, supraoptic nucleus of hypothalamus

SPVC, spinal nucleus of trigeminal

st, stria terminalis

subLC, sucoeruleus

TM, tuberomammilary nucleus of hypothalamus

TU, tuberal nucleus of hypothalamus

VLM, ventrolateral medulla

VII, facial motor nucleus

VTA, ventral tegmental area

XII, hypoglossal motor nucleus

ZI, zona incerta
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Table 2

Central targets of axonal projections from the caudal visceral NST identified in adult rats using three different
approaches. See Table 1 for abbreviations. +, labeling present; ++, labeling moderate; +++, labeling dense.

CNS Division
    NUCLEUS

PhAL-
labeled

axons from
caudal

medial NST

GLP-1-
immunopositive

fibers

H129
transported

from
stomach

wall

Medulla

DMV +++ + +++

cNST +++ + +++

rNST +++ + +

PAT + + ++

RO + ++ +

RPA + + +

MDRN ++ + +

PARN ++ + ++

SPV + + +

AMB ++ ++ ++

PGRN ++ + +

ISN + + +

GRN ++ + +

PRN ++ + +

VII + + +

Pons

LC + + +

subLC + ++ ++

B ++ ++ +

PRN ++ + +

PBN +++ +++ ++

KF +++ +++ ++

Midbrain

PAG ++ + +

MRN + + +

DR + + +

VTA + + +

Diencephalon

thalamus

IMD + +

CM + +

MDm ++ +

PVT ++ +++ +
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CNS Division
    NUCLEUS

PhAL-
labeled

axons from
caudal

medial NST

GLP-1-
immunopositive

fibers

H129
transported

from
stomach

wall

hypothalamus

PH + + +

LHA ++ + ++

PVp + ++ +

TU + + +

TM + ++ +

DMH +++ +++ +

ARH + + +

PVH +++ +++ ++

SO + ++

ZI + +

RC ++ ++

PVpo + ++ +

MEPO + ++ +

MPO + + +

LPO ++

SFO ++

ME + ++

OVLT + ++

Telencephalon

subcortical

CEA ++ + ++

SI ++ ++ +

dlBST ++ ++ ++

vlBST +++ +++ +

MS + + +

LS + +

ACB + +

cortical

PERI +

AI +
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