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Abstract
Defects in pituitary gland organogenesis are sometimes associated with congenital anomalies that
affect head development. Lesions in transcription factors and signaling pathways explain some of
these developmental syndromes. Basic research studies, including the characterization of
genetically engineered mice, provide a mechanistic framework for understanding how mutations
create the clinical characteristics observed in patients. Defects in BMP, WNT, Notch, and FGF
signaling pathways affect induction and growth of the pituitary primordium and other organ
systems partly by altering the balance between signaling pathways. The PITX and LHX
transcription factor families influence pituitary and head development and are clinically relevant.
A few later-acting transcription factors have pituitary-specific effects, including PROP1, POU1F1
(PIT1), and TPIT (TBX19), while others, such as NeuroD1 and NR5A1 (SF1), are syndromic,
influencing development of other endocrine organs. We conducted a survey of genes transcribed
in developing mouse pituitary to find candidates for cases of pituitary hormone deficiency of
unknown etiology. We identified numerous transcription factors that are members of gene families
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with roles in syndromic or nonsyndromic pituitary hormone deficiency. This collection is a rich
source for future basic and clinical studies.

Keywords
bHLH; beta helix-loop-helix; HMG; high mobility group; T-box; forkhead; hypopituitarism

Introduction
Human growth insufficiency

Height of 2 or more standard deviations (SD) below the mean for age and sex is defined as
short stature. Metabolic or endocrine disorders usually cause proportionate short stature,
while skeletal defects often cause disproportionate short stature [1-4]. The sitting height to
standing height ratio can be used to distinguish proportionate and disproportionate short
stature in cases where the distinction is not immediately obvious. Skeletal and
hypothalamic-pituitary axis-based growth insufficiencies occur with similar frequencies.
Genetic causes of growth hormone deficiency (GHD) are thought to occur in approximately
1/4,000 to 1/10,000 births [5,6]. These can be syndromic, including pituitary and head
defects as well as defects in the development of other organs, or non-syndromic, with
pituitary gland-specific effects (Table 1). Because the pituitary gland is critical for the
development and function of many other organs, all defects in pituitary organogenesis cause
secondary effects on target organs. Syndromic pituitary deficiencies include effects on non-
pituitary tissues that are not within the expectations for secondary effects on target organs.
Genetic defects in the GH gene itself and mutations in the growth hormone releasing
hormone receptor (GHRHR) cause isolated GHD (IGHD), but most cases of IGHD are
idiopathic (reviewed in: [7]). Patients with mutations in the growth hormone receptor gene
(Laron dwarfism, a growth hormone insensitivity syndrome) have a clinical presentation
similar to patients with IGHD, but they have elevated levels of GH and are treated with
insulin like growth factor because they are unable to respond to GH therapy (Reviewed in:
[8]).

The availability of recombinant growth hormone has generally led to effective correction of
growth insufficiency in children with multiple or IGHD due to pituitary developmental
defects, but it is not always efficacious for some idiopathic short stature patients or for other
problems associated with syndromic pituitary hormone deficiency (i.e. septo-optic dysplasia
and other severe craniofacial abnormalities) [9-13]. Thus, treatment of children with
pituitary hormone deficiency can be challenging, as well as expensive.

Are mouse studies informative for clinical endocrinologists?
Studies in genetically engineered and mutant mice have advanced the understanding of the
mechanisms underlying pituitary organogenesis defects that lead to short stature [14,15]. In
many cases, genes discovered in the mouse led to the discovery of lesions in human patients
and have revealed the mechanism of action and genetic hierarchy of control of pituitary cell
specification and growth [16]. For example, the discovery of the etiology of the Snell and
Ames dwarf mutations (Pou1f1 and Prop1, respectively), and characterization of the
phenotypes of genetically engineered mice with mutations in Tpit (officially Tbx19), Hesx1,
Lhx3 and Lhx4, paved the way for identification of the mutated human genes. Some genes
necessary for normal growth in mice, i.e. Aes, have not yet been reported to have lesions in
human patients, but there can be a considerable lag between discovery in mice and
identification of rare human patients [17,18].

Davis et al. Page 2

Mol Cell Endocrinol. Author manuscript; available in PMC 2011 July 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The ability of mouse mutants to predict the correct human patient characteristics for
screening is remarkable, as evidenced by Pou1f1, Prop1, Tpit, Hesx1, Lhx3 and Lhx4,
although the correspondence is imperfect. For example, LHX4 mutations cause similar
hormone deficiencies in humans and mice, and while the mouse mutations are recessive and
cause perinatal lethality, the human mutations are haploinsufficient and viable [19-23].
PROP1 mutations are another example of an imperfect correspondence between the mouse
and human features. In mice, lesions in Prop1 cause pituitary hypoplasia and congenital
pituitary hormone deficiency, including GH, TSH, PRL, and gonadotropin deficiencies
[24,25]. Both male and female mutant mice go through puberty and become fertile with GH,
thyroid hormone and PRL supplements, suggesting that the gonadotropin deficiency is
secondary to the lack of POU1F1 [26,27]. In contrast, humans have variable pituitary size
and progressive hormone deficiency, usually with failure to undergo puberty and the
additional involvement of evolving ACTH deficiency, which can be fatal if untreated
[28-31]. The missense mutation (S83P) in the spontaneous Ames dwarf mutant, Prop1df/df,
minimally transactivates an artificial paired homeodomain binding site in cell transfection
assays, while the most common human PROP1 mutation creates a frame shift and likely
complete loss of function [32,33]. This does not account for the differences in pituitary
dysfunction between the species, as mice homozygous for genetically engineered Prop1 loss
of function alleles have features similar to the missense mutation, and the S83P mutant
appears to have no activity in culture on the Pou1f1 early enhancer, which is considered a
bona fide target [32,34,35].

Dissimilarities in the features that characterize mouse mutants and human patients may be
attributable to differences in the effect of the mutations (i.e. partial vs. complete loss of
function), species differences in temporal or spatial expression, overlapping gene function
amongst gene family members, and/or “genome variation.” Genome variation means
different phenotypic manifestations of the same genetic defect due to the influence of other
genes in the genome that have functional variant alleles segregating in the population.
Analysis of mutant mice on different strain backgrounds can be exploited to uncover the
influence of these modifier genes that magnify or minimize the manifestations of reduced
function in other genes [36]. For example, genetic background has a profound effect on the
survival of Prop1 mutant mice, ranging from neonatal lethal, juvenile lethal to completely
viable [34]. The utility of genetically engineered mice and well defined inbred strains may
make it possible to tease out the genetic risk factors that could cause some human mutations
to have mild effects in some individuals and more severe ones in other patients with the
same mutation [36,37].

Cell-cell signaling plays a critical role in pituitary organogenesis
Classic embryology experiments involving tissue transplantation and recombination reveal
that diffusible molecules produced by the neural tissue located dorsal to Rathke’s pouch, the
primordia for the intermediate and anterior lobes of the pituitary gland, are essential for
pouch induction and growth [38-43]. Subsequently, members of the WNT, BMP, FGF,
Notch, and hedgehog pathways were discovered to have profound effects on pituitary
development [35,41,43-56]. Some essential signaling molecules are expressed in the
infundibulum, but there are some in the mesenchyme surrounding the pituitary, i.e. Tgfbi,
and some in the pouch itself [57]. This suggests that the regulation of pituitary development
by signaling molecules is complex.

Expression of noggin, an antagonist of BMP signaling, TCF7L2, an effector of canonical
WNT signaling, and WNT5A, typically acting in the non-canonical pathway, are critical for
maintaining the balance of signaling pathways necessary for normal pituitary growth and
morphology [17,44-47]. For example, excessive BMP signaling in noggin mutant mice is
associated with reduced FGF10 expression, alteration in the SHH signaling domain, and
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multiple invaginations of Rathke’s pouch [46]. TCF7L2 deficient mice exhibit expansion of
the FGF10 and BMP signaling domains and an abnormally large Rathke’s pouch and
subsequently oversized anterior lobe [47]. Finally, WNT5A deficient mice also have
expanded FGF and BMP signaling domains, and the pouch is dysmorphic but not markedly
oversized [44]. In each of these cases, disruption of one signaling pathway has pleiotropic
effects on other signaling pathways. This paradigm is emerging as a common theme for
signaling pathway function in pituitary development.

Popular models suggest that signaling molecules influence the spatial patterns of pituitary
transcription factor expression, leading to the emergence of specialized cell types that
produce pituitary hormones, yet there is also compelling evidence that alterations in
signaling pathways affect the morphology and size of the organ more than cell specification
[17,41,44-47,56]. The noggin, WNT5A, and TCF7L2 mutants are each able to generate the
5 major hormone-producing cells of the anterior lobe despite variations in size and shape of
the organ. Rizzoti et al. recently reviewed the effects of various genetic lesions on pituitary
growth and shape [58].

The developing pituitary transcriptome contains many members of the BMP, FGF, WNT,
Notch and SHH signaling pathways [57]. Using Genomatix software we identified 61
additional genes in these pathways that are expressed at a time when they could influence
pituitary development. 17 genes may be involved in cross talk between the pathways. Gene
ontology terms revealed an additional 72 genes that could contribute to cell signaling in the
developing pituitary gland. RT-PCR surveys of WNT genes expressed in and around the
developing organ have identified many different candidates for regulation of β-catenin
activity, but little is known about the functional significance of many of these genes [35,44].
Several pituitary transcription factors are regulated by β-catenin, including the EGR1,
NR5A1 complex, PITX2, and the HESX1, PROP1 complex [35,59-62]. Because β-catenin
is regulated by G-protein coupled receptors, some of the pituitary transcription factors that
respond to β-catenin could be independent of WNT molecules themselves, which is an area
for future study [63]. Many of the signaling pathways involved in pituitary development
play important roles in ontogeny of other organs, leading to lethality in mice homozygous
for complete loss of function alleles. Thus, it seems unlikely, but not impossible, that genes
in these pathways will be responsible for hypopituitarism in humans.

Transcription factor regulation of pituitary development
Many transcription factors play important roles in pituitary development and hormone
production (Table 1). The early-acting genes are not pituitary specific, and lesions in these
genes cause defects in development of craniofacial or other structures. Some of these are
homeobox genes with overlapping functions and multiple roles during ontogeny, i.e. Pitx1
and Pitx2, Lhx3 and Lhx4 [19,64-69]. Defects in some of these genes cause apoptosis,
reduced cell proliferation, or both, which ultimately results in pituitary hypoplasia. The
functions of genes like Nr5a1, Pitx2, and Gata2, a downstream target of Pitx2, with broad
expression patterns and roles in the pituitary as well as other critical organs, can be dissected
by tissue specific disruption in mice [70,71]. Such studies reveal roles for Gata2 in
thyrotropin and gonadotropin production, and implicate Gata3 as a gene with potential for
compensatory activity [72,73].

Prop1 and Pou1f1 are examples of homeodomain transcription factors critical for pituitary
development, specifically. Mutations in the human ortholog of Prop1 are the most common
known cause of multiple pituitary hormone deficiency in humans [16,33,74,75]. There are
dramatic differences in the effects of Prop1 and Pou1f1 mutations on fetal and neonatal
pituitary development in mice. Prop1 mutants have poor pituitary vascularization and
dysmorphology that appears to result, in part, from the failure of progenitors to migrate

Davis et al. Page 4

Mol Cell Endocrinol. Author manuscript; available in PMC 2011 July 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



away from the proliferative zone and undergo differentiation [76,77]. The defect may result
from failure to undergo epithelial to mesenchymal transition, as Prop1 is required for
normal N-cadherin expression, and changes in cadherin gene expression are typically
associated with epithelial to mesenchymal transition [78-80]. In contrast, there are no
obvious effects on pituitary vascularization or morphology in Pou1f1 mouse mutants.

Pou1f1 is generally accepted as a direct downstream target of Prop1. This is based on the
ability of PROP1 to transactivate a DNA fragment of Pou1f1 that contains the early
enhancer in cell culture and the occupancy of PROP1 at that site by chromatin
immunoprecipitation in extracts of microdissected embryonic pituitary glands at e12.5 and
e13.5 [32,35]. Careful review of the evidence suggests that the story may be more
complicated. First, there is a profound temporal delay (approximately 4 days) between
activation of Prop1 and Pou1f1 expression in mice, which is unusual for a direct
downstream target [32]. Second, human newborns with loss of function alleles in PROP1
have low but biologically significant levels of TSH, GH and PRL initially, suggesting that
PROP1 is not required for initial expression of POU1F1 in humans [30]. Similarly, mice
with Prop1 mutations express limited amounts of Pou1f1 and its targets Tshb, Gh, and Prl
[81,82]. More work needs to be done to reconcile these apparently conflicting observations
and clarify the role of PROP1 in humans and mice.

We hypothesize that the role of PROP1 is to generate precursor cells that are capable of
becoming hormone-producing cells of the anterior lobe and promote the transition from
proliferation to differentiation. It may also play a role in regulating the accessibility of the
POU1F1 regulatory elements. POU1F1 is activated in some of the precursor cells to
promote differentiation into somatotrophs, thyrotrophs and lactotrophs and to expand the
proliferation of that lineage after birth. If this hypothesis is true, the progressive hormone
deficiency in humans with PROP1 mutations could arise by depletion of the progenitor pool,
and the more severe, congenital hormone deficiency in Prop1 mutant mice could be due to a
stronger and/or earlier requirement of Prop1 for establishing the precursor pool in mice than
humans. Investigation of genes expressed in the developing pituitary gland between peak
Prop1 and Pou1f1 expression may uncover direct targets of Prop1 that are intermediates
between Prop1 and Pou1f1. Neurod4 (also known as Math3) is a candidate for an
intermediate, as it is activated at e13.5 before Pou1f1 is generally detected, although
maintenance of Neurod4 expression requires Pou1f1 [53]. Novel genes expressed at these
early developmental times will be candidates to explain pituitary deficiency diseases of
unknown etiology.

Several of the known pituitary transcription factors were discovered using the approach of
defining the key cis-acting sequences in hormone genes and the trans-acting factors that bind
to them [83-88]. Additional advances could be made by pursuing this strategy more
extensively and/or by identifying the regulatory sequences for some of the early-acting
pituitary specific transcription factors and their binding factors, as well as the downstream
targets of key transcription factors. For example, we used comparative genomics and
bioinformatics to identify regulatory sequences in Prop1, and confirmed their relevance in
cell culture and transgenic mice [89]. A highly conserved intragenic enhancer that affects
spatial expression of a Prop1 transgene is a target of Notch signaling [53,89]. This suggests
that screening for PROP1 mutations in human patients should include a scan of the intronic
enhancer that controls spatial expression of the gene in mice [90].

Another approach is to identify gene expression differences in the pituitary glands of normal
and mutant mice to identify potential downstream targets of Prop1 and Pou1f1 [57,91-94].
This gene discovery approach has revealed new members of transcription factor families
that are exciting candidates for regulating pituitary development and the basis of human
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hormone deficiency disease. Here we report the discovery of transcription factors expressed
in the developing mouse pituitary gland that are members of several important gene families
including basic helix-loop-helix, high mobility group, and T-box. These genes are intriguing
candidates for future functional studies and evaluation in human patients. In addition, we
present a summary of the clinical features associated with hypopituitarism caused by known
transcription factors, with the purpose of streamlining molecular diagnostic studies.

Results and Discussion
Prioritizing genes for molecular studies in human patients

There are approximately a dozen different transcription factor genes that are mutated in
cases of short stature and/or pituitary gland dysfunction (Table 1). These are classified based
on the type of pituitary defect that they produce as well as any other clinical features.
Several of these genes are expressed in the developing hypothalamus and are likely to affect
anterior pituitary gland development by disrupting the normal balance of signaling pathways
and inductive factors produced by the hypothalamus. For example, GLI2, SOX2, SOX3, and
TCF7L2 are primarily expressed in the neural ectoderm [17,47,95-100]. Some of the
pituitary transcription factor genes are large and can pose difficulties for DNA sequence
analysis because of high GC content. Thus, it is useful to predict which of the many genes
are most likely to be mutated given a set of clinical characteristics.

The primary sources of diagnostic information for a clinical endocrinologist are the family
history, evidence of growth retardation based on the longitudinal height and weight curve of
population matched controls, basal and stimulated levels of circulating hormones, and
imaging to analyze the shape of the sella turcica, the size and position of the anterior
pituitary, the pituitary stalk and the posterior pituitary. Non-pituitary related syndromic
features such as Chiari malformation, craniofacial abnormalities, limited neck rotation, eye
abnormalities, and hearing deficits can suggest a causative gene that could account for
hypopituitarism and the syndromic features (Fig. 1). Congenital hypopituitarism associated
to dysmorphic features are generally linked to early-expressed genes during pituitary
development as GLI2, SOX2, SOX3, HESX1, LHX3, LHX4, whereas non-syndromic
hypopituitarism is generally due to defects in later-expressed, pituitary-specific genes such
as PROP1 and POU1F1 (Fig. 1). There can be a large spectrum of clinical features
associated with any one gene. For example, HESX1 mutations can cause multiple pituitary
hormone deficiencies or occasionally, isolated GH deficiency [101,102]. Obviously, not all
patients with mutations in the same gene have identical clinical findings, but there are trends
that suggest prioritization of the molecular diagnostic tests. Distinguishing between
hypothalamic and pituitary origins of hormone deficiency is useful in planning the strategy
for genetic analysis, although this is not without controversy [7,103]. There is a lack of data
in the literature correlating TRH stimulation pattern in patients with known genetic defects
associated to hypothalamic or pituitary cells differentiation. In a study of 43 patients with
MPHD, 26% were compatible with pituitary hypopituitarism, and 70% had hormonal
responses suggestive of hypothalamic hypopituitarism [104]. Ectopic posterior lobe was a
characteristic of putative hypothalamic hypopituitarism.

Mutations in HESX1, LHX3, LHX4, GLI2, SOX2, and SOX3 are rare causes of congenital
hypopituitarism, while PROP1 defects are a common cause of familial, congenital
hypopituitarism [15,75,105,106]. Although PROP1 mutations have a variable effect the size
of the gland, all cases described to date have an intact stalk, eutopic (normally placed)
posterior pituitary, and hormone deficiencies that tend to worsen progressively [28-30,33].
Other genes that can be mutated in patients with MPHD, eutopic posterior lobe and normal
pituitary stalk are POU1F1 and LHX3, although LHX3 mutations can present with cervical
stiffness (Fig. 1). Despite the common occurrence of PROP1 mutations in multiple ethnic
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groups, and the rare mutations reported in other transcription factor genes, most patients
with hypopituitarism have no identifiable genetic lesions [104]. Ectopic posterior pituitary
and stalk disruptions are common features of patients with unknown etiology [101].

There have been impressive advances in identifying the molecular basis for pituitary
hormone deficiency over the past 20 years. It is also appreciated that non-genetic traumatic
events can cause hypopituitarism [104]. Yet birth trauma does not appear to be an obvious
contributor to the majority of cases of hypopituitarism without a molecular diagnosis. Thus,
additional genes are likely to be involved, and alternative approaches must be taken to
identify these genes.

Gene discovery to identify new candidate genes
In an effort to identify novel candidate genes for hypopituitarism, we undertook a project to
discover genes expressed during a critical period of mouse pituitary gland development
[57,93]. A brief description of library preparation and analysis follows. We dissected
pituitary glands from normal mice at e12.5 (CD1 strain) and from DF/B-Prop1df/df mutants
and their wild type littermates at e14.5 and genotyped individual fetuses using previously
described protocols [92]. Appropriate samples were pooled based on genotype, total RNA
isolated, and cDNA prepared using the cap-trapper method to enhance the representation of
full-length clones and normalization to enrich for rare sequences [93,107]. Two subtracted
libraries were prepared to enhance the representation of Prop1 targets [57]. One subtracted
library was enriched for genes activated at e14.5 but not e12.5, and the other was enriched
for genes expressed in normal pituitaries but not in Prop1 mutants at e14.5. Single pass
DNA sequencing was conducted on 56,716 clones using an algorithm to maximize gene
discovery and minimize re-sequencing cDNAs representing the same genes. The cDNA
sequences were analyzed by comparison with publicly available databases using an expect
value of 10-5 to favor putative identifications that could be validated by more complete
sequence analysis. We placed the matches of single pass sequence with public database
entries into a local database that is searchable by gene name, RefSeq ID, Unigene ID, gene
ontology terms (GO), and DNA sequence and identified 12,009 different expressed genes.
To obtain database access contact Drs. Camper or Lyons at scamper@umich.edu or
boblyons@umich.edu.

Analysis of the database revealed numerous homeobox genes not previously known to be
expressed in the pituitary gland, members of signaling pathways, and genes involved in cell
proliferation, apoptosis, cell migration, and cell adhesion [57,94]. Here we highlight
transcription factors identified by this approach that are members of the PITX, and LHX
gene families, as well as the forkhead group, families of basic helix-loop-helix (bHLH), high
mobility group (HMG), and the T-box family. Members of each of these families have been
implicated in pituitary development and function, and there are several precedents for
overlapping and critical functions of related genes within a single family for pituitary
development [19,65].

Initial validation studies reveal that the single pass sequences obtained from the 3’ end are
not as reliable as those from the 5’ end, probably due to the difficulty of accurate
amplification through stretches of polyadenine. In rare cases we identified chimeric clones
or unexplained differences between the single pass sequence and the validation by complete
sequencing, but in most cases the predictions are accurate [57]. Another important type of
verification is demonstration that the cDNA is expressed in the pituitary gland because the
embryonic pituitary dissection includes some surrounding mesenchyme, oral ectoderm, and
neural ectoderm. Complete sequencing and expression studies have not yet been done on all
of the genes in the basic helix-loop-helix (bHLH) and high mobility group (HMG) families
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reported here or for another study based on gene ontology, biological process terms [94].
Thus, this report represents a foundation for comprehensive validation and future studies.

The PITX gene family
The PITX gene family illustrates how multiple members within the same gene family can
have unique and overlapping functions in organ development. PITX2 mutations are one
cause of Rieger syndrome, a genetically heterogeneous, dominant disorder characterized by
defects in development of the eyes, teeth, and umbilical cord [108]. Some individuals have
additional abnormalities including heart defects, and rarely, growth hormone insufficiency.
Molecular studies show that missense mutations can cause loss of function, gain of function,
or dominant negative effects, but loss of function mutations appear to be the most common,
consistent with a haploinsufficiency disorder [109].

Mice heterozygous for loss of function mutations typically have no obvious abnormalities,
and eye and tooth defects occur with extremely low penetrance. Multiple genetic
backgrounds studied do not increase the penetrance (Camper and Gage, unpublished
observations). This suggests that reduced levels of PITX2 are better tolerated in mice than
humans. Homozygous mutants die at approximately e12.5 due to severe heart and
abdominal body wall defects [67]. Multiple organs are severely affected, including the eyes,
teeth, and lungs, which exhibit isomerization. The pituitary gland exhibits hypoplasia, partly
caused by enhanced cell death at the ventral aspect that is suggestive of defective sonic
hedgehog and/or FGF signaling [65].

Mice homozygous for a partial loss of function allele, Pitx2neo, have milder pituitary defects,
with little reduction in organ size, but reduction in the Pou1f1 lineage, resulting in reduced
expression of both GH and TSH [66]. The reduced differentiation of this lineage could
explain the reduction in GH secretion that characterizes some patients with PITX2 lesions.
Homozygotes for this hypomorphic allele lack gonadotrophs, as there is virtually no
detectable Nr5a1, Lhb or Fshb expression. Gata2 expression is profoundly reduced as well.
There are no reports of hypogonadism in Rieger patients, but it is possible that feedback
regulation from the ovaries and testes normalizes gonadotropin production after birth.
Indeed, there are some animal models that exhibit transient hypogonadism and delayed
puberty but eventually become fertile [110-112].

No PITX1 mutations have been described in humans to date. Pitx1 loss of function is
recessive lethal in mice [113,114]. Mutants have multiple defects including reduction in the
mandible and hind limbs, but the pituitary is mildly affected, exhibiting a reduction in the
number of gonadotropes at birth. Despite the fact that Pitx1 is dispensable for development
of a normally sized pituitary gland and differentiation of the major cell types of the anterior
lobe at birth, Pitx1 and Pitx2 have overlapping functions early in pituitary development and
are required for activation of Lhx3 [65,66,115].

The LHX family
Several LIM homeodomain transcription factors are expressed in the pituitary gland: Lhx2,
Lhx3, Lhx4 and Isl1. The first to be implicated in the pituitary gland was Lhx2, which was
identified by cloning the transcription factor that bound to a critical cis-acting sequence in
the gene that encodes the alpha subunit of the pituitary glycoprotein hormones, Cga, in the
gonadotrope- and thyrotrope-like cell lines, T3-1 and TSH, respectively [116]. Additional
studies demonstrated that LHX2 interacts with a LIM domain binding protein (LBD1) to
regulate Cga expression, and the single-stranded DNA binding protein, SSBP3, regulates the
abundance of this complex [117]. We identified Lhx2 expression in a cDNA library made by
subtracting e12.5 Rathke’s pouch cDNA from e14.5, suggesting that Lhx2 could have a role
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in pituitary development [57]. To explore the spatial expression of Lhx2 in early pituitary
development we carried out immunohistochemical staining (Figure 2). The majority of the
stain appears in the neural ectoderm, dorsal to the prospective posterior lobe and signaling
center for BMP and FGF. Staining is also readily detectable in the caudal hindbrain, but
little or no staining is detected in the developing pituitary gland at these stages. These
immunohistochemistry results are consistent with the failure to detect Lhx2 transcripts in
Rathke’s pouch or its derivatives at e10.5 and e14.5 [118-120]. This suggests that LHX2
regulation of Cga expression initiates later in development or requires amounts of the
protein that are difficult to detect. In some tissues Lhx2 is expressed after stem cells become
committed progenitors but before terminal differentiation occurs [121]. If Lhx2 plays a role
in pituitary gland, it might explain our difficulties in detecting immunoreactivity. Lhx2
mutants die during gestation from defects in erythropoiesis and exhibit anophthalmia and
brain defects [122]. Additional studies are necessary to define the role of Lhx2 in pituitary
gland development.

LHX4 is a LIM homeodomain transcription factor involved in pituitary organogenesis, and
crucial for the genesis and development of Rathke’s pouch. As a LIM homeodomain
transcription factor, LHX4 shows significant structural similarity with LHX3, suggesting a
possible overlap between each factor during Rathke’s pouch formation [123]. This point is
suggested by the observation of similar activities of LHX4 and LHX3 in assays using
pituitary hormone promoter genes, and by the role of each factor in ventral motor neuron
differentiation [124].

LHX4 mutations produce a wide intra- and inter-family range of phenotypes in humans, both
in terms of hypopituitarism and of pituitary/cerebral MRI images of the morphology. The
gland may exhibit hypo- or hyperplasia, variable ectopic posterior lobe, and assorted
intracranial abnormalities including Chiari syndrome and corpus callosum hypoplasia, and
poorly developed sella turcica. To date, 5 heterozygous mutations, including 1 intronic
lesion, are reported, suggesting that the mechanism underlying the functional defect is
haplo-insufficiency [20,21,125,126].

LHX3 mutations generally lead to MPHD with variablity in corticotrope axis function,
abnormal neck rotation, mild to severe hearing impairments, and/or mental retardation. The
pituitary can either be hypo- or hyperplastic, or even associated with a microadenoma. Only
9 LHX3 mutations have been reported, and all are inherited in an autosomal recessive
manner [22,127-130].

Mice homozygous for an Lhx4 disruption induced by homologous recombination (Lhx4-/-)
have an abnormal pituitary phenotype and die soon after birth from lung defects, whereas
heterozygous animals (Lhx4+/-) seem unaffected [19,131]. It is possible that homozygous
LHX4 mutation causes lethality in humans. It is noteworthy that mice heterozygous for Lhx4
loss of function do not appear affected, just as PITX2 haploinsufficiency is evident in
humans but not mice. This species difference in the tolerance for reduced LHX4 and PITX2
levels illustrates a limitation of the comparison between human and mice, though the
accessibility of tissues in mice throughout development is invaluable for understanding the
mechanisms that underlie human pituitary developmental defects.

Mice homozygous for Lhx3 disruption (Lhx3-/-) exhibit a severe phenotype with death
within 24 hours after birth [64]. In contrast, Lhx3+/- mice appear normal. Embryonic Lhx3-/-

mice show normal rudimentary Rathke’s pouch formation but lack further pituitary
development from e10.5 onward and undergo apoptosis [69,132]. Dorsal-ventral patterning
is modified with dorsal location of some progenitors normally located in the ventral aspect
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of the gland [69]. At birth, Lhx3-/- mice lack the anterior and intermediate lobes of pituitary
gland.

Lhx3 and Lhx4 are expressed throughout the pouch at e9.5 [19]. At e12.5 Lhx3 continues to
be expressed throughout the pouch in a gradient with higher protein levels at the dorsal
aspect of the pouch [131], while Lhx4 expression becomes restricted to the developing
anterior lobe. At e15.5, Lhx4 decreases, while Lhx3 continues to be expressed at high levels.
The overlap in gene expression suggests the possibility of functional overlap, which is borne
out by analysis of double mutant mice.

Lhx3-/- and Lhx4-/- single mutants form a definitive pouch [19,64]. The pouch fails to
expand in Lhx3 mutants due to increased apoptosis resulting in severe pituitary hypoplasia
[69,132]. Lhx3 nulls exhibit reduced ACTH immunostaining and deficiency of all other
hormones normally produced in the anterior lobe. The Lhx4-/- phenotype is less severe.
Specification of five hormone-producing cell types occurs, but expansion of these lineages is
greatly reduced, and increased apoptosis is evident [131]. One wild type Lhx3 or Lhx4 allele
is sufficient for formation of a definitive pouch, as evidenced by analysis of Lhx3-/-, Lhx4+/-

and Lhx3+/-, Lhx4-/- mutants. Loss of all alleles for Lhx3 and Lhx4 results in formation of a
rudimentary pouch, which fails to grow into a definitive pouch and remains under the
sphenoid cartilage [19]. The fact that a definitive pouch is formed in the absence of Lhx3,
but only a rudimentary pouch is formed when both Lhx3 and Lhx4 are deleted, suggests that
Lhx4 can substitute for the function of Lhx3 to support the formation of a definitive pouch.
The fact that deletion of Lhx3 alone results in loss of most of the anterior lobe cell types
suggests that Lhx4 can not substitute for the function of Lhx3 to activate a pituitary-specific
transcription program [133].

Isl1 expression is detectable throughout Rathke’s pouch at e9.5 and by e12.5 it is restricted
to the ventral, differentiating cells that express Cga and Foxl2 [69,131]. Lhx3 and Lhx4
mutants have different effects on Isl1 expression in the pituitary gland, causing a gain and
loss of expression, respectively [69]. Isl1 is implicated as a lineage specific transcription
factor in cell fate choice in progenitors of the retina, heart, forebrain, and motor neurons
[134-138]. Isl1 deficiency causes an arrest in pituitary gland development at an early stage,
and the embryos die at e11.5 [134]. Thus, it is an essential regulator of the early steps, but its
role, if any, in later stages is unknown.

Forkhead factors are essential for diverse developmental processes
There are several common functional themes among forkhead factors. First, they are
responsible for numerous autosomal dominant human developmental disorders. For
example, mutations in four different forkhead genes affect ocular development. Mutations in
FOXC1 result in Axenfeld-Rieger anomaly that is characterized by facial, teeth and eye
malformations [139-142]. FOXC2 mutations result in lymphedema and distichiasis, a double
row of eyelashes [143,144]. Mutations in FOXE3 result in malformations in the anterior
segment of the eye referred to as Peter’s anomaly [145,146]. FOXL2 mutations cause eyelid
malformations and premature ovarian failure [147,148]. Mutations in the orthologous mouse
genes cause similar phenotypes [149-161].

Secondly, many forkhead proteins are important for cell cycle regulation and act as tumor
suppressors. Overexpression of the forkhead transcription factors FoxO3a, AFX, or FoxO1a
cause growth suppression in a number of cell lines, including a Ras-transformed cell line
and a cell line lacking a known tumor suppressor [162]. Amplification of the forkhead gene,
FoxA1, occurs in lung tumors and esophageal adenocarcinomas implicating this gene in
tumorigenesis [163].
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Finally, approximately half of the known null mutations in forkhead genes result in death
before or shortly after birth [164]. This raises three important points: 1) this family of genes
is very important for normal development, 2) members of this family generally do not
exhibit functional redundancy, 3) mouse models of forkhead gene deficiency are good
predictors of the human phenotype. Null mouse models have been described for
approximately 31 forkhead genes so far and all except for Foxo4 result in an abnormal
phenotype. Moreover, a number of these knockouts involved members of the same
subfamily. For example, Foxa1 knockout mice die postnatally with severe growth
retardation [165], and Foxa2 knockout mice do not develop beyond embryonic day 8.5
(e8.5) and lack the node, notochord and foregut [166-169]. These data suggest that FOXA1
and FOXA2 cannot compensate for each other, in contrast to Foxc1 and Foxc2. Loss of
Foxc1 results in multiple abnormalities including hydrocephalus, skeletal, ocular, renal and
cardiovascular defects, and Foxc2 deficiency causes skeletal, cardiovascular and ocular
defects, indicating that each gene is required independently for development of several
organ systems including the skeleton. Loss of both Foxc1 and Foxc2 disrupts somitogenesis,
revealing an early overlapping function.

Forkhead factors in pituitary development
Foxl2 (Pfrk) is expressed in the prospective anterior lobe of the developing pituitary gland
starting at e11.5 and continuing into adulthood in gonadotrope and thyrotrope cells of the
anterior pituitary [56,170]. In addition, FOXL2 is part of a transcription complex that binds
the gonadotropin-releasing hormone receptor gene in gonadotrope cells [171]. Finally, Foxl2
stimulates expression of Cga (αGSU) in cell culture studies and when overexpressed in
transgenic mice [170].

Human patients heterozygous for FOXL2 mutations have dominant blepharophimosis ptosis
epicanthus inversus syndrome (BPES, eyelid abnormalities) and premature ovarian failure
[172]. Mice homozygous for loss of function alleles are mostly nonviable, but those that
survive have craniofacial and ovarian abnormalities [160]. While the effects of this
deficiency on the pituitaries of most mutants has not been reported, Foxl2 transgene
expression is sufficient to drive expression of Cga at ectopic sites within the pituitary
primordium, and it has permanent expression in thyrotropes and gonadotropes, suggesting a
role in gonadotrope differentiation and function [170]. Consistent with a role in gonadotrope
differentiation, FOXL2 regulates the expression of Gnrhr, Fshb, and follistatin in
gonadotropes [171,173,174]. During pituitary development, FOXL2 protein is localized to
quiescent cells, suggesting that FOXL2 may be important for inhibiting cell proliferation
[170]. This idea is supported by the discovery that mutations in FOXL2 are associated with
aggressive ovarian granulosa cell tumors in children [175].

Several other forkhead genes are expressed in the pituitary gland: Foxe1, Foxf1, Foxa1, and
Foxd1. Foxe1 expression is first detected at e9.5 in the ectoderm that will give rise to the
anterior pituitary [176]. Foxf1 is expressed in the mesenchyme of the developing pituitary
gland by e9.5 [177]. FOXA1 (a.k.a. HNF-3α) represses growth hormone expression in
mouse and human pituitary tissue by binding to the P sequence element C of the human GH
gene [178]. FOXD1 (or brain factor 2, BF2) is expressed in the diencephalon, retina, and
kidney. Mutations in Foxd1 affect the retina, optic chiasm and kidney [179]. The kidneys are
small with decreased ureteric branching, and the mice die within 24 hours after birth due to
renal failure. Ectopic BMP signaling is thought to be responsible for the dysmorphology and
loss of kidney function [180]. Foxd1 expression is detectable in the pituitary gland after
birth, and during development it is evident in the diencephalon and the mesenchyme
surrounding the pituitary at e10.5. Interestingly, these regions are essential for the
production of BMPs, which are required for normal pituitary development, and thus FOXD1
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regulation of BMP production in these tissues likely contributes to normal pituitary
development.

Basic helix-loop-helix family is highly represented in the developing pituitary gland
Members of the basic helix-loop-helix (bHLH) family of transcriptions factors are found in
all eukaryotes, and they bind DNA in complexes of homo- or heterodimers through a
conserved helix-loop-helix domain [181]. These transcription factors play diverse roles in
many developmental pathways and tissues. Myod, Myog, and Myf5 are bHLH proteins that
are instrumental in the differentiation of skeletal muscle (Reviewed in [182]), while Ascl1,
Neurog1, and Neurod1 participate in neuronal differentiation [183-189]. Several members of
the bHLH family are known to be expressed in pituitary development: Ascl1, Neurod1,
Neurod4, and Hes1. Roles of these genes in corticotrope, somatotrope, and melanotrope
development will be reviewed below.

Neurod1 (also known as BETA2, BHF-1, bHLHa3, NeuroD) is expressed in the embryonic
pituitary at e12.5, where it precedes the appearance of POMC in the corticotrope lineage,
and it is down regulated at e15.5 [190,191]. Neurod1 has a role in corticotrope development
and function, and recent evidence suggests that it may affect gene expression in
gonadotropes as well [192]. Loss of Neurod1 delays the terminal differentiation of
corticotropes from e12.5 to e16.5, indicating that it is a critical factor for promoting
corticotrope differentiation, although it is not required [86,193]. NEUROD1 and TPIT (a T
box gene officially named TBX19, discussed below) both bind to the POMC promoter to
drive expression. However, neither Neurod1 nor Tpit is required for POMC expression, nor
does loss of one prevent the binding of the other to the POMC promoter, suggesting that
these transcription factors act independently of each other to drive POMC expression
[194,195].

Neurod4 (also known as Math3, Atoh3, bHLHa4) is a downstream target of Pou1f1 that is
necessary for maintenance of the somatotrope cells [53].

The bHLH factor, Hes1, is necessary for POMC expression in melanotropes in the
intermediate lobe [49]. The Hes transcription factors transduce signals from the Notch
signaling pathway, along with the Hey class of bHLH transcription factors. Loss of Hes1
results in a cell fate switch such that intermediate lobe cells differentiate as GH hormone
secreting somatotropes instead of POMC expressing melanotropes [49]. Hes1 plays an
additional role in maintaining anterior lobe precursor cells such that they do not differentiate
prematurely [52,53,78]. Recent studies demonstrate that this is accomplished through
control of cell cycle regulators [196].

The expression patterns of bHLH transcriptions factors Hey1 and Hes6 suggest possible
roles in the developing pituitary gland, but more studies are necessary to assess their
functional significance. The Hey1 expression domain overlaps with Hes1 in presumptive
precursor cells in the pouch, suggesting that these genes may have overlapping functions in
regulating the progression of cells from proliferation to differentiation [49,50]. In contrast,
Hes6 is expressed in the differentiating cells of the anterior lobe, positioning it for
maintaining quiescence and/or cell specification [48]. The contributions of these bHLH
transcription factors to pituitary gland development are still speculative.

We searched our cDNA encyclopedia for members of the bHLH family and identified 33
genes including expected factors such as Neurod1, Hes6 and Hey1 as well as additional
bHLH family members whose embryonic pituitary expression was not previously known
(Table 2). Among these new bHLH family members are the Id genes, which act downstream
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of BMP signaling [57]. Identification of Id3 in the library allowed for its use as a reporter of
BMP signaling in the ventral diencephalon overlying Rathke’s pouch [46].

Interestingly, the bHLH member, aryl-hydrocarbon receptor (Ahr), and the aryl-
hydrocarbon interacting protein (Aip, a tetratrico peptide repeat containing protein) are
contained in the developmental library. AIP is associated with increased risk of pituitary
adenomas that secrete GH in some populations; and the molecular mechanism appears to be
loss of tumor suppression [197,198]. The overall contribution of mutations in AIP to
sporadic adenoma risk world wide appears to be low [199], but the presence of this Ahr, Aip
complex during the development of the pituitary suggests that an early developmental
mechanism for growth regulation may be recapitulated during adenoma formation.

High mobility group genes expressed in the developing pituitary
The high mobility group or HMG class of DNA binding proteins bind DNA through a
conserved domain that consists of three alpha helices arranged in an “L-shape.” These
proteins are known to bend the DNA to which they are bound [200]. The Sox genes, which
are related to SRY, the mammalian male sex determination gene, are members of the HMG
family, and they have received increased attention recently because of their role in stem cell
maintenance. Sox2 is expressed in embryonic stem cells and stem cells from a variety of
tissues, including a potential stem cell population in the pituitary [201,202]. The presence of
a pituitary stem cell population that gives rise to all the cell types of the anterior lobe is an
exciting development as it has been a proposed mechanism for explaining the plasticity of
the pituitary gland, which can change its cellular make up in response to changing
physiological demands.

Sox2 and Sox3 are also critical factors in embryonic pituitary development. Both are
expressed in the ventral diencephalon overlying Rathke’s pouch [100,202,203]. Sox3
homozygous null mice have disruptions in the patterning of the ventral diencephalon such
that both Bmp4 and Fgf8 expression domains, which are critical for Rathke’s pouch
induction and proliferation, are expanded, resulting in a dysmorphic Rathke’s pouch. Sox3
null mice also have hypopituitarism with decreased levels of GH, LH, FSH, and TSH [97].
Sox2 heterozygous mice have a dysmorphic Rathke’s pouch, which likely results from a
similar mechanism as Sox3 in the ventral diencephalon. Unlike Sox3, Sox2 is also expressed
in Rathke’s pouch so that the hypopituitarism observed in Sox2 heterozygous mice may
result from a direct affect of Sox2 in the anterior lobe [106]. Both SOX2 and SOX3 are
associated with human disorders; SOX3 causes X-linked panhypopituitarism [100], while
SOX2 mutations cause anterior pituitary hypoplasia and hypogonadotropic hypogonadism
[203].

NUPR1 (p8) is a high mobility group protein that was discovered as a differentially
expressed gene in cell lines representing different stages of gonadotrope development [204].
It is expressed during late gestation in mice, concomitant with the activation of the
gonadotropin beta subunit genes. It is essential for timely activation of gonadotropin
expression [205]. In addition, it is implicated in pituitary tumorigenesis [206,207].

Given the importance of HMG genes in pituitary development we screened our
developmental library for expected and novel HMG family members expressed in the
pituitary (Table 2). We identified 19 different HMG genes in our libraries. Five members of
the Sox group were identified, including Sox2. Mixed-lineage leukemia 3 (Mll3) is in this
set. Myeloid leukemias have deletions in MLL3 [208]. Further analysis of these HMG genes
will enrich our understanding of pituitary gland development, and perhaps adenoma
formation.
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Several T-box genes are expressed in the developing pituitary gland
The T-box genes are a family of transcription factors that bind DNA through the ~200 amino
acid T-box domain. They are highly conserved, found in all metazoans and every known
vertebrate genome. T-box genes can act as transcriptional regulators, either as activators or
repressors, in a context-dependent manner. T-box genes are involved in early
embryogenesis, extra-embryonic tissue survival, cell fate decisions, embryonic patterning
and organogenesis (reviewed in [209]). The first T-box gene to be identified in the pituitary
was Tbx19 (Tpit) [86]. In the absence of TPIT, the POMC lineages, including intermediate
lobe melanotropes and anterior lobe corticotropes, fail to differentiate fully [210]. In
addition, TPIT inactivation results in a cell fate change, permitting prospective melanotropes
to differentiate into gonadotropes and Pou1f1-independent thyrotropes. The phenotype of
mutant mice predicted the clinical characteristics of human patients with TPIT mutations
[195].

We identified Tpit, Tbx2 and Tbx3 as genes expressed in the developing pituitary gland
between e12.5 and e14.5 using our cDNA encyclopedia. Tbx2 and Tbx3 expression was
detected by RT-PCR in cDNA prepared from dissected pituitary glands at e12.5, e14.5,
e18.5, and in Prop1df/df cDNA at e14.5. Localization of Tbx2 and Tbx3 transcripts by in situ
hybridization suggests that there is little or no overlap of either gene expression pattern with
that of Tpit (Fig. 3) and [211]. Both genes are strongly expressed in the developing ventral
diencephalon and the posterior lobe of the pituitary gland. Prominent expression of Tbx3
overlaps the area of the neural ectoderm where factors that induce pituitary growth, BMP
and FGF, are expressed. There are no obvious differences in Tbx3 expression in normal and
Prop1df/df mice (Fig. 3). Tbx3 is expressed in the rostral tip, where Pou1f1- independent
thyrotropes are located [211]. These transcriptional repressors, Tbx2 and Tbx3, might have
functional overlap in regulating posterior lobe development because the expression patterns
overlap, but neither gene has overlapping expression with Tpit. The function of these genes
in pituitary development could best be determined using organ specific inducible loss of
function models because of the embryonic lethality and ancillary organ defects characteristic
of mice homozygous for systemic null alleles [212,213].

Several other T-box family members are expressed in and around the developing pituitary
gland, but they have not been studied extensively and were not detected in our cDNA
encyclopedia. These include Tbx15, Tbx18, and the T-box brain gene 1, Tbr1
(www.genepaint.org). While Tbx18 and Tbr1 do not display overlapping expression patterns
with Tbx2, 3, or Tpit, they appear to be expressed in a subset of anterior lobe cells at e14.5,
consistent with expression of Pou1f1 in that region.

Future directions
The developing pituitary cDNA libraries we made and analyzed reveal that the
transcriptome has great depth at the time the cells are differentiating and the organ is
undergoing substantial growth. There are already several compelling precedents for
functional overlap of transcription factors within a particular gene family, i.e. PITX and
LHX families. Thus, the discovery of many members of the Forkhead, HMG, bHLH and
Tbox families, suggested that there may be genes with essential functions that overlap
important transcription factors in these families like Foxl2, Nupr1, NeuroD1, Hes1, Sox2
and Sox3, and Tpit. Expression studies suggest that Tbx2, 3 have distinct functions from
Tpit, and Lhx2 may act differently than the Lhx3, 4 genes. The sheer number of genes in
these families that are expressed at a time when they could have an important impact
suggests that the ideal strategy for identifying the genes with essential functions is a high
throughput screen. Given the strong parallels between the function of orthologous
developmental regulators in fish and mammalian pituitary gland, it is possible that zebrafish
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could provide the basis for such a screen (reviewed in: [214]). Alternatively, embryonic
stem cells have recently been coaxed to differentiate into pituitary hormone producing cells,
suggesting embryonic stem cells might be adaptable for screening studies [215,216].
Success with such a high throughput screening approach would be invaluable for
nominating candidates for human mutation screening in cases of hypopituitarism of
unknown etiology.
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Figure 1. A guide for planning genetic screening for hypopituitary patients based on clinical
findings
The patient characteristics identified by hormone screening, imaging studies, and analyses of
syndromic features are itemized for each candidate gene based on currently known patient
mutations. Note that for most genes there are variable hormone deficiencies, pituitary size
and placement, and variable syndromic features.
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Figure 2. LHX2 expression in the neural ectoderm
LHX2 immunoreactivity (green) is detected in sagittal sections of developing mice at e10.5
through e13.5. DAPI (blue) counterstain reveals nuclei of individual cells.
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Figure 3. Tbx3 expression in the ventral diencephalon and prospective posterior lobe of the
pituitary gland during development
Tbx3 transcripts are readily detectable in mid-sagittal sections of developing normal and
Prop1df/df mouse embryos at e12.5 and e14.5 by in situ hybridization.
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Table 1

Variety of transcription factor defects affect pituitary function

Gene DNA binding motif Clinical features, mouse phenotypes

Syndromic: affecting pituitary development and other head structures

PITX2 Paired/bicoid homeo Rieger syndrome: eyes, teeth, umbilical defects Rarely, isolated GH deficiency, haploinsufficient in
humans but not obviously so in mice

OTX2 POU homeo Anophthalmia, microphthalmia, hypopituitarism

LHX3 LIM homeo GH, TSH, PRL, LH, FSH, ACTH, variable including rigid cervical spine, sensorineural deafness

LHX4 LIM homeo GH, TSH, PRL, LH, FSH, ACTH, cerebellar and skull defects

SOX2 HMG box Hypogonadotrophic hypogonadism, rare isolated GH deficiency

SOX3 HMG box MPHD, mental retardation

HESX1 Paired homeo Variable including septo-optic dysplasia and severe or mild pituitary hypoplasia or aplasia; GH, TSH,
PRL, LH, FSH, ACTH, or IGHD

GLI2 Kruppel family Holoprosencephaly, cleft lip, central incisor, hypopituitarism

Nonsyndromic: affecting pituitary development

PROP1 Paired homeo Progressive hypopituitarism, GH, TSH, PRL, LH, FSH, ACTH

POU1F1 POU homeo GH, TSH, PRL

TPIT T box ACTH

OTX1 POU homeo No human mutations described, mice have delayed growth, puberty

Syndromic: affecting pituitary development and other peripheral organs

NR5A1 Nuclear receptor LH, FSH, 46, XY disorder of sexual development, hypogonadism, premature ovarian failure, adrenal
failure
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Table 2

Developing pituitary transcriptome contains many transcription factors of the bHLH, HMG and Tbox families

bHLH = basic helix-loop-helix

Gene symbol Full gene name Gene symbol Full gene name

Ahr aryl-hydrocarbon receptor Mlx MAX-like protein X

Arnt aryl hydrocarbon receptor nuclear translocator Mnt max binding protein

Arntl aryl hydrocarbon receptor nuclear Msc musculin

Ascl1 translocator-like achaete-scute complex homolog-like 1
(Mash1)

Mxi1 Max interacting protein 1

Bhlhb9 basic helix-loop-helix domain containing, class B9 Mycl1 v-myc myelocytomatosis viral oncogene
homolog 1, lung carcinoma derived

Ebf2 early B-cell factor 2 Mycn v-myc myelocytomatosis viral related oncogene,
neuroblastoma derived

Ebf4 early B-cell factor 4 Neurod1 neurogenic differentiation 1

Hes6 hairy and enhancer of split 6 Npas3 neuronal PAS domain protein 3, transcript
variant 2

Hey1 hairy/enhancer-of-split related with YRPW motif 1 Srebf1 sterol regulatory element binding factor 1

Hif1a hypoxia inducible factor 1, alpha subunit Tcf23 transcription factor 23

Hif3a hypoxia inducible factor 3, alpha subunit Tcf25 transcription factor 25

Id1 inhibitor of DNA binding 1 Tcf4 transcription factor 4

Id2 inhibitor of DNA binding 2 Tcfe2a transcription factor E2a

Id3 inhibitor of DNA binding 3 Tcfe3 transcription factor E3

Id4 inhibitor of DNA binding 4 Tcfeb transcription factor EB

Max Max protein Usf2 upstream transcription factor 2

Mesp2 mesoderm posterior 2

HMG = High mobility group

Bbx bobby sox homolog Nsbp1 nucleosome binding protein 1

Cic capicua homolog Sox2 SRY-box containing gene 2

Hmga1 high mobility group AT-hook 1 Sox9 SRY-box containing gene 9

Hmga2 high mobility group AT-hook 2 Sox11 SRY-box containing gene 11

Hmgb1 high mobility group box 1 Sox12 SRY-box containing gene 12

Hmgb2 high mobility group box 2 Sox30 SRY-box containing gene 30

Hmgb3 high mobility group box 3 Ssrp1 structure specific recognition protein 1

Hmgn1 high mobility group nucleosomal binding domain 1 Taf1 TAF1 RNA polymerase II, TATA box binding
protein (TBP)- associated factor

Hmgn3 high mobility group nucleosomal binding domain 3 Tfam transcription factor A, mitochondrial

Mll3 myeloid/lymphoid or mixed-lineage leukemia 3

T-box

Tbx19 T-box19 (Tpit) Tbx3 T-box 3

Tbx2 T-box 2
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