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Abstract

Background:
Physicians tailor insulin dosing based on blood glucose goals, response to insulin, compliance, lifestyle, eating  
habits, daily schedule, and fear of and ability to detect hypoglycemia.

Method:
We introduce a method that allows a physician to tune a fuzzy logic controller (FLC) artificial pancreas (AP) for  
a particular patient. It utilizes the physician’s judgment and weighing of various factors. The personalization 
factor (PF) is a scaling of the dose produced by the FLC and is used to customize the dosing. The PF has 
discrete values of 1 through 5. The proposed method was developed using a database of results from  
30 University of Virginia/Padova Metabolic Simulator in silico subjects (10 adults, 10 adolescents, and 10 
children). Various meal sizes and timing were used to provide the physician information on which to base an initial 
dosing regimen and PF. Future decisions on dosing aggressiveness using the PF would be based on the patient’s data 
at follow-up.

Results:
Three examples of a wide variation in diabetes situations are given to illustrate the physician’s thought process 
when initially configuring the AP system for a specific patient.

Conclusions:
Fuzzy logic controllers are developed by encoding human expertise into the design of the controller. The FLC 
methodology allows for the real-time scaling of doses without compromising the integrity of the dosing 
rules matrix. The use of the PF to individualize the AP system is enabled by the fuzzy logic development 
methodology.
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Introduction

Type 1 diabetes mellitus is an autoimmune disease 
causing insulin deficiency. At the present time, the only 
treatment is the administration of insulin either by multiple 
shots per day or by an infusion pump. The Diabetes 
Control and Complications Trial studies showed that 
improved control of blood glucose (BG) lessens the 
frequency of complications of diabetes.1 Efforts to create 
an artificial pancreas (AP) have intensified with the 
commercial availability of continuous glucose sensors.2

Fuzzy logic (FL) was developed at the University of 
California, Berkeley, in 1965 as a generalization of bivalue, 
true/false mathematical logic.3 Mathematically, FL can be 
viewed as a black box4 that maps an input space onto 
an output space as shown in Figure 1.

Figure 1. Fuzzy logic as a black box mapping of an input space to an 
output.

Real-world, “crisp” parameters are read into the fuzzy 
domain black box and are processed there, and then the 
solution is retransformed (defuzzified) back into real-
world parameters.2 A notional diagram of this process is 
shown in Figure 2.

Figure 2. Notional data flow diagram for FL process. BGL, blood glucose level; VH, very high; H, high; M, medium; L, low; VL, very low; 
VN, very negative; N, negative; Z, zero; P, positive; VP, very positive.
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Figure  2 illustrates how FL works. For the purpose of 
simplicity, this diagram shows only two of the input 
parameters—BG and change in BG—and has excluded 
acceleration.

The BG input range is partitioned into five regions, 
representing the ranges that are meaningful to the clinician. 
Blood glucose regions are represented by overlapping 
triangles. The overlapping regions allow the BG input value 
to be transformed into a fuzzy variable, which intuitively  
is a blend of, at most, two regions. A BG value of 195 is 
therefore represented as a blend of high and very high, 
with “strength” of 50% each as indicated by the red and 
green boxes. The process is the same for BG, rate, and 
acceleration. The example input rate of 1.0 mg/dl/min 
is transformed into a fuzzy variable of Z and P with 
strengths of 0.25 and 0.75, respectively.

The two-dimensional inference engine, or decision matrix, 
processes the BG and rate fuzzy input variables into 
an output fuzzy variable by means of if–then rules 
predefined by the clinician. For example, if BG is very 
high and rate is Z, then dose is 0.7. The Mamdani 
defuzzification5 procedure sets the strength of the output 
variable to be the minimum of the inputs. Hence, the 
0.7 output dose variable has strength 0.25 as represented 
by the blue strength of the rate variable. The larger 
red value is suppressed. For a given BG value and rate 
input value, more than one if–then dosing rule may 
execute, producing an output fuzzy variable that is also 
a blend of dosing values, as represented by blue and 
green truncated, overlapping triangles or trapezoids.  
The output dose is then calculated as the center of mass  
of the union of the overlapping trapezoids.

The FL process described here, when viewed as a black 
box, is a bounded, uniformly continuous function.6 From a 
safety standpoint, this is important because it means that, 
throughout the entire range of input values, a small change 
in BG, rate, or acceleration input value always results in a 
small change in the dose. Furthermore, the output dose 
can never exceed values defined by the output fuzzy 
variables. Algorithmically, the fuzzy logic controller (FLC) 
may be designed as the mathematical composition of 
linear table-lookup functions.

When developing a FLC, the complexity or internal 
structure of the process to be controlled—the human 
glucoregulatory system in this case—does not come 
into play. Instead, the expertise of the clinician—how 
they externally manage the glucoregulatory system— 

is codified within the design of the input and output 
regions and the if–then dosing rules making up the 
decision matrix. Fuzzy logic controllers are often said to 
embody the expertise of practitioners.

The design of this particular controller does not take into 
account insulin on board7,8 when calculating the dose. 
That feature could be incorporated as an additional input 
variable or as a post-processor function.9

The notional FLC shown in Figure 2 may be extended 
to include BG acceleration as a third input. To show 
the mapping of BG, rate, and acceleration using a two-
dimensional matrix, the acceleration inputs are repeated 
for each of the five rates. A notional mapping of the 
points A, B, … , H on the sample BG trajectory into the 
input-partitioned inference engine is shown in Figure 3.
As demonstrated in Figure 2, each discrete input value is 
transformed into at most two fuzzy variables. Hence, since 
all possible combinations of BG, rate, and acceleration 
are represented in the dosing matrix, a given input 
vector (BG, rate, acceleration) may invoke up to eight 
dosing rules. The multiplicity of rules associated with 
each of the trajectory points is represented by the circles  
in the dosing matrix.

The dosing matrix (Figure 4) was developed in 2003 by 
Richard Mauseth in collaboration with other U.S. northwest 
endocrinologists. It was developed independently from 
any glycemic simulator.

This initial controller was tested in a small clinical 
trial using four human subjects and produced good 
results for fasting and small meals. However, for large  
meals, the majority of the subjects had late postprandial 
hypoglycemia (see Figure 5).

We recognize that one of the shortcomings of the initial 
FLC was that its dosing matrix did not take into account 
insulin on board, the cumulative effects of past insulin 
doses. The original controller also provided minimal 
personalization, or tuning, for a particular patient. Further 
improvement of the controller has been made to prevent 
hypoglycemia following a large meal.

Improved Fuzzy Logic Controller Artificial 
Pancreas
Collaboration with researchers at the University of California, 
Santa Barbara, and Sansum Diabetes Research Institute 
resulted in important improvements to the FLC, the first 
being the addition of the personalization factor (PF).10,11
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Figure 3. Correlation of points on a BG trajectory with sets of rules in the FL dosing matrix. BGL, blood glucose level; VN, very negative; 
N, negative; Z, zero; P, positive; VP, very positive.

The FLC AP v2 top-level design is shown in Figure 6. 
It provides for individually tailored dosing through 
the use of a PF. The PF is a scaling factor that is 
applied to the dose produced by the FL dosing matrix.  
Each subject’s PF is proportional to his/her total daily 
dose (TDD), as shown here:

 
PF(i) = 

TDD(i)
TDD∗ ,                       (1)

where i denotes the subject index and TDD∗ is a defined 
standard TDD. In this study, five values for TDD∗ were 
compared, e.g., 30, 37.5, 45, 52.5, and 60 U/day. For 
convenience, PFj(i)—j = 1, ... , 5—is the PF for subject i 
under jth TDD∗. Clearly, the first group, PF1(×), is the 
most aggressive, and the fifth group, PF5(×), is the least 
aggressive.

As of the publication of this article, the FLC AP controller 
now employs an insulin governor9 that further prevents 
postmeal hypoglycemia.
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Figure 4. Five-minute dosing matrix. BGL, blood glucose level; VN, very negative; N, negative; Z, zero; P, positive; VP, very positive.

Figure 5. Results of four subject clinical trials using initial FLC.

Physician Utilization of Controller
The FLC AP allows for physician input to the dosing 
matrix. It also allows easy physician tuning of the 
dosing through the use of the PF. This article is meant 
to illustrate the potential use of a PF with this controller.

Results and Discussion

The proposed method was derived using 30 in silico 
subjects (10 adults, 10 adolescents, and 10 children)  
from U.S. Food and Drug Administration-accepted 
University of Virginia (UVa)/Padova metabolic simulator.12 
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Several situations were studied—a standard day, fasting, 
and evaluation of the effects of various meal sizes— 
using the five PF levels. The standard day consists 
of three meals: 45  g carbohydrate breakfast, 70  g 
carbo‑hydrate lunch, and 80  g carbohydrate dinner 
for all three age groups. The fasting was for 24 h, and 
the various meal sizes were 40, 80, 120, 160, and 200 g 
carbohydrate meals.

In silico testing was chosen to attempt to mimic 
situations that a clinician might encounter in dealing  
with a patient’s medical management. The physician then 
weighs the pros of improved glycemic control versus the 
cons of the possibility of adverse events. For future studies, 
the 300 in silico subjects for the UVa/Padova metabolic 
simulator may assist in the defining of the various  
risk/benefit analyses. The in silico testing is only meant 
to give a physician a starting point for different patients. 
A low blood glucose index (LBGI) of >5.0 is generally 
considered as unacceptable, while an LBGI of <2.5 would 
mean a hypoglycemic event would be rare. A high blood 
glucose index (HBGI) of >5.0 is generally considered 
undesirable, and <2.5 is ideal. The in  silico testing 
results allow the physician to illustrate to the patient 
various aspects of their own care as a teaching and  
decision-making tool. Each patient will then make his 
or her own modifications as instructed and restricted by 
the physician.

Physicians treating diabetes patients tailor the insulin 
dosing to the patient. Goals are different for each patient. 
Each individual has different responses to therapy and 
levels of compliance as well as a unique lifestyle and 
eating habits. Each persons daily schedule is different 
and may not be consistent from one day to the next.  
The fear of hypoglycemia and inability to detect and 
treat hypoglycemia limits the physician’s aggressiveness  
of treatment. The PF allows the physician to customize 
the aggressiveness of a controller to best fit a patient’s 
needs. A set PF for a patient would be used most days,  
but the ability to change the PF could be easily utilized on 
special occasions, much like changing a temporary basal 
rate on an insulin pump.

In silico testing could give a starting point but will need 
to be adjusted for every patient. Several weeks after 
initiating the controller, the physician would meet with 
the patient and review their records of activity and 
food intake and downloads from their pump/sensor.  
Using their own data, and referring to the in silico data, 
problems could be solved. Periods of different insulin 

sensitivity from exercise, illness, or menses may be 
accommodated with temporary changes in the PF.

This paper is not meant to show specific patient outcomes 
but is more of an approach to individualizing a controller 
for a patient. Several examples of how a physician might 
go through the decision-making process on imaginary 
patients are given here. Basically, the sequence is to  
lower the average BG until LBGI becomes higher than 
desired for that specific patient, which may vary from 
patient to patient.

The basic process for the physician is as follows:

1.	 Using the standard day chart, establish desired control 
for the patient.

2.	 Select the appropriate PF using the standard day bar 
chart.

3.	 Evaluate the risk of hypoglycemia due to missed 
meals and for sleeping in using the fasting day chart.

4.	 Evaluate the consequences of varied meals using the 
varied meal sizes charts.

Example 1 is a 35-year-old male who is hypoglycemia 
aware, desires tight control, tolerates hypoglycemic episodes 
well, and has a very routine schedule of a desk job, with 
daily exercise at noon. His weekends also follow a similar 
routine. He never eats more than 80 g carbohydrate at a 
meal.

With this patient, the physician would review Figure 7 
and evaluate the degree of glycemic control desired 
versus the risk of hypoglycemia. They evaluate their 
goals looking at a PF of 1, which results in an average 

Figure 6. The system level diagram for the FLC AP controller. CGM, 
continuous glucose monitor.
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doing a triathlon, he might adjust the PF temporarily for 
only that event.

Example 2 is a six-year-old female, hypoglycemia unaware, 
who attends school five days per week with no school 
nurse. She has had one hypoglycemic seizure, and her 
parents are very fearful of future episodes. The patient’s 
eating schedule is very erratic. She has basketball and 
dance class on the same day, three days per week, but the 
times of day vary.

Using this information, the physician would review 
Figure 11 and discuss with her parents the degree of 
control desired. They consider a PF of 4 based on this 
chart, giving them an average BG of 155 mg/dl (A), 
which equates to a HbA1c of 7.1% and an LBGI that is 0.9, 
which is very acceptable. A PF of 3 (B) would lower the 
average BG of 145 equating to an HbA1c of 6.9%, but the 

BG of 120 mg/dl (A), which equates to a hemoglobin A1c 
(HbA1c) of 6.2%. They would then consider the LBGI13 
of 3.0 (B) and determine that the risk was too high.  
They instead select a PF of 2, with an average glucose  
of 130 mg/dl (C) equating to a HbA1c of 6.4% and a LBGI  
of 1.5 (D) for the standard day.

The physician would then use Figure 8 for evaluating 
the risk of hypoglycemia due to missing meals for this 
PF (E). The physician would then consult Figures 9 and 10 
and discuss the potential consequences of varied meal 
sizes at PF 2. Using Figures 9 and 10, they examine the 
effects of controlling meal sizes (F) and hypoglycemia 
risk (G), noting the increased risk of hypoglycemia is 
higher with the 80 g meal.

If the patient was having something irregular such as 
Thanksgiving dinner with a different meal size or was 

Figure 7. Mean BG, LBGI, and HBGI for 30 in silico adult subjects for 
standard day.

Figure 9. Mean BG for 30 in silico adult subjects, PF 1–5, range of meal 
sizes.

Figure 8. Mean BG, LBGI, and HBGI for 30 in silico adult subjects in 
fasting period.

Figure 10. LBGI for 30 in silico adult subjects, PF 1–5, range of meal 
sizes.
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LBGI would increase to 2.5, which is almost three times 
that of a PF of 4, which is considered unacceptable.

Then they would consult Figure 12 and determine the 
hypoglycemic risk of allowing the child to sleep in when 
using PF 4 (C). They would also review Figures 13 
and 14 to evaluate the consequences of large meals on 
BG (D) and risk of hypoglycemia (E). The benefits of 
a more controlled carbohydrate intake could also be 
demonstrated.

Example 3 is a 14-year-old male with an HbA1c of 12% 
who is unwilling to follow any meal plan. He tests 
sporadically but is willing to test frequently enough 
to calibrate a continuous glucose monitor. The patient 
has absolute fear of hypoglycemia in front of his peers.  
He wakes up for school at 6:00 am on weekdays and 
sleeps until noon on weekends.

Using this information, the physician would consult 
Figures 15, 16, 17, and 18 to select the appropriate PF 
to improve this young man’s control while avoiding 
hypoglycemia. Figure 15 shows that a PF 5 (A), giving 
an average glucose of 165 mg/dl (HbA1c of 7.4%), was very 
acceptable. The LBGI would be almost zero (B), which 
would avoid almost all hypoglycemia. Evaluation of 
risks of hypoglycemia with varied meal sizes would be 
determined using Figures 17 and 18. The patient is then 
shown the benefit of decreasing carbohydrate intake 
versus the risk of hypoglycemia with extremely large 
meals [C, F (120 to 200 g)].

The patient sees that, if he can keep his carbohydrate 
intake less than 120 g per meal, a lower PF (e.g., PF 4/ 
120 g meal; E) or even a PF 3 if meals are 80 g or less 
could be used without the increased risk of hypoglycemia 
as compared to a higher PF (PF 5/200 g meal) with larger 

Figure 11. Mean BG, LBGI, and HBGI for 30 in silico child subjects for 
standard day.

Figure 13. Mean BG for 30 in silico child subjects, PF 1–5, range of 
meal sizes.

Figure 12. Mean BG, LBGI, and HBGI for 30 in silico child subjects in 
fasting period.

Figure 14. Low blood glucose index for 30 in silico child subjects, 
PF 1–5, range of meal sizes.
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