
993

Proteomic Technologies for the Discovery  
of Type 1 Diabetes Biomarkers

Wenbo Zhi, Ph.D., Sharad Purohit, Ph.D., Colleen Carey M.S., Meiyao Wang, Ph.D.,  
and Jin-Xiong She, Ph.D.

Author Affiliation: Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia

Abbreviations: (2D) two dimensional, (3D) three dimensional, (AbP) autoantibody-positive, (DIGE) difference gel electrophoresis, (GeLC) gel-based 
liquid chromatography, (HPLC) high-performance liquid chromatography, (IEF) isoelectric focusing, (PM) ProteoMiner, (PTM) posttranslational 
modification, (RP) reverse phase, (SDS-PAGE) sodium dodecyl sulfate polyacrylamide gel electrophoresis, (SELDI-TOF) surface-enhanced laser  
desorption and ionization time-of-flight, (T1DM) type 1 diabetes mellitus
 
Keywords: depletion, enrichment, mass spectrometry, protein biomarker, proteomics, type 1 diabetes mellitus

Corresponding Author: Jin-Xiong She, Ph.D., Center for Biotechnology and Genomic Medicine, Medical College of Georgia, 1120 15th Street, 
Augusta, GA 30912; email address jshe@mail.mcg.edu

 Journal of Diabetes Science and Technology
 Volume 4, Issue 4, July 2010
 © Diabetes Technology Society

Abstract
In this review, we discuss several important issues concerning the discovery of protein biomarkers for complex  
human diseases, with a focus on type 1 diabetes. Serum or plasma is the first choice of specimen due to its 
richness in biological information and relatively easy availability. It is a challenging task to comprehensively 
characterize the serum/plasma proteome because of the large dynamic range of protein concentration. Therefore,  
sample pretreatment is required in order to explore the low- to medium-abundance proteins contained in serum/
plasma. In this regard, enrichment of low-abundance proteins using random hexapeptide library beads has 
distinct advantages over the traditional immune-depletion methods, including higher efficiency, higher binding  
capacity, and lower cost. In-depth mining of serum/plasma proteome using different separation techniques 
have also been evaluated and are discussed in this review. Overall, the shotgun proteomics—multidimensional 
separation of digested peptides followed by mass spectrometry analysis—is highly efficient and therefore has  
become a preferred method for protein biomarker discovery.
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Introduction

Biomarkers are useful to type 1 diabetes mellitus 
(T1DM) for a number of purposes, including disease 
prediction, understanding disease mechanism, monitoring 
response to therapy, and risk assessment for diabetic 
complications.1–3 Type 1 diabetes mellitus in humans may 
be preventable by avoiding those factors that trigger the 
disease process (primary prevention) or by use of therapy 
that modulates the destruction of islet cells before the 
onset of clinical symptoms (secondary prevention). 

Accurate prediction is vital for secondary prevention 
so that therapy can be given to those individuals who 
are very likely to develop the disease or those who 
will benefit from the therapy. The prediction for any 
disease is dependent on three parameters, which must 
be carefully assessed for predictive tests to be clinically 
useful: sensitivity, specificity, and positive predictive 
value. Specificity is important if a disease marker is to 
be used to identify individuals either for counseling or 
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for therapy to prevent the disease. Research by many 
investigators since the 1980s has identified several useful 
biomarkers for T1DM prediction,4,5 including genetic 
risk factors, immunological markers (such as islet cell 
autoantibodies), and metabolic markers. These markers 
have provided a good foundation for T1DM prediction 
and prevention, yet are far from being perfect due to 
low specificity or arrival late in the disease stage. It is 
believed that genetic susceptibility is a prerequisite for 
the development of T1DM; however, not all genetically 
predisposed individuals do develop clinical disease. 
The vast majority (~90%) of T1DM patients develop 
autoantibodies against pancreatic β cells before the 
clinical onset. Although the time period between the 
appearance of autoantibodies and clinical onset varies 
greatly, it usually takes years for the clinical disease to 
occur. Furthermore, only a proportion of autoantibody-
positive (AbP) individuals will progress to clinical 
diabetes. This lengthy asymptomatic period, from genetic 
predisposition to prediabetes marked by autoimmunity 
(autoantibodies and cellular immunity) and finally to 
clinical disease, provides excellent opportunities for disease 
prevention. However, prevention for human T1DM 
is still not available today, partly because we cannot 
precisely predict the disease and accurately assess risk  
for the high-risk population and partly because the 
etiology of the disease is potentially very heterogeneous 
and poorly understood. Therefore, prevention tailored 
for the whole at-risk population may not be effective and 
personalized prevention strategies based on one’s own risk, 
and etiology may prove to be more efficient. To achieve  
these ambitious goals, biomarkers for the disease process 
are urgently needed for both risk assessment and, more 
importantly, for tailoring and monitoring therapies. 
Compared with genetic biomarkers, protein biomarkers 
are the direct executors for all aberrant genetic changes. 
Proteomic analysis of the protein/peptide expression, 
modifications, and interactions for T1DM will lead to 
indispensable contribution for the disease prediction 
and prognosis. We believe that current proteomics 
study for T1DM needs to pay attention to several issues. 
First, various biological specimens will be selected for  
different diseases and for various purposes. For example, 
in T1DM protein biomarker discovery, serum/plasma 
probably is the most suitable specimen because of the 
high richness in biological information and relatively 
easy availability compared with other biological fluids 
or solid specimens. Obviously, advanced technology to 
conquer the challenges with serum analysis is another 
very important issue. Last but not least, reasonable 
sample size plays a critical role in T1DM biomarker 
evaluation, which has been neglected in many studies.  

In this review, combining our own research results, we 
focus on using mass spectrometry (MS)-based proteomic 
technologies for T1DM biomarker discovery in human 
serum.

Biomarker Discovery Using 
Multidimensional Protein Identification 
Technology
While most of the initial efforts in proteomics have 
focused on protein identification, MS-based technology 
developments have provided useful platforms for the 
study of quantitative changes in protein components. 
Quantitative analysis of the global serum proteome is  
an essential step for understanding the molecular changes 
associated with the disease progression and onset. Several 
methods are widely used to generate global quantitative 
protein profiles, including two-dimensional (2D) gel 
electrophoresis followed by MS analysis, stable isotope 
labeling-based quantification, MS signal intensity-based 
quantification, and intact protein-based quantification 
(see review6 and reports7,8 for details).

Comprehensive analysis of the serum/plasma proteome 
is a challenging task due to its extraordinary complexity 
and high multidimensionality of its components.9,10 
It is therefore unrealistic that any one analytical technique 
would be well suited to address all protein complexities. 
Desirable objectives include extending the detection, 
quantification and identification to low-abundance 
proteins, assessment of protein distribution among 
cells and subcellular structures, as well as assessment 
of posttranslational modifications (PTMs). As a result, 
various schemes are currently being implemented to 
reduce the complexity of biological samples prior to 
analysis by MS.1 Two main categories of methodologies 
have gained popularity for normalization of serum/plasma 
protein content, e.g., depletion of high-abundance proteins 
using antibodies11 and enrichment of low-abundance 
proteins.12

Depletion-Based Strategy
This strategy is based on utilizing immobilized antibodies 
against selective high-abundance proteins to concentrate  
the low-abundance proteins in a column chromatography 
format. This method has been in use for decades, and 
an increasing number of major proteins can be depleted 
using this approach.13,14 However, the application of this 
method is hindered by the limited binding capacity of 
immobilized antibodies, limited antibody availability, 
and high cost.15
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Enrichment-Based Approaches
A different strategy to normalize serum/plasma protein 
content is through binding to a random hexapeptide 
library that is conjugated to small beads to enrich 
all the proteins on the column. The technology was 
commercialized under the name of ProteoMiner (PM) by 
Bio-Rad Laboratories (Hercules, CA). The core concept 
of the PM kit is the use of a large, highly diverse  
bead-based library of combinatorial hexapeptide ligands, 
which provide significant binding diversities (~206) for 
proteins. When complex samples are applied to the 
beads, high-abundance proteins usually saturate the 
binding sites on the beads and the unbound (excess) 
proteins are removed by washing, while medium- and 
low-abundance proteins usually do not saturate their 
specific binding sites, leading to the increase of their 
relative concentration.16 This process can significantly 
reduce the dynamic range of protein concentrations while 
maintaining representation of many proteins in the 
original samples.12

Our lab used a multidimensional-protein-identification-
technology-based serum biomarker study platform, as 
presented in Figure 1, to compare the efficiencies of 
these two normalization methods for serum samples. 
Multiple pools of serum samples are generated, each 
pool containing serum from 10 individuals. A pool 
of serum sample is normalized using the MARS-14  
(Agilent Technologies, Santa Clara, CA) and/or the 
PM kit (Biorad). The differences in the protein content for 
these two approaches were analyzed by sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
by separating 40 μg of proteins and further compared to 
neat serum loaded under the same conditions (Figure 2).

Compared with neat serum samples (lanes 1 and 6 of 
Figure 2), both PM (lane 2) and MARS-14 (lane 3) greatly 
decreased the concentration of major proteins to enriched 
proteins with medium to low abundance as indicated 
by the disappearance of major proteins and significantly 
increased number of protein bands after processing.  
The undesired fractions from each method, namely, bound 
proteins on MARS-14 column (lane 4) and the flow 
through of the PM kit (lane 5), are found very similar to 
neat serum. More protein bands appear to be obtained 
with PM (lane 2) than MARS-14 (lane 3), with a broader 
distribution of MWs for the proteins, contrary to the 
notion that these two lanes should be similar. To better 
assess the performance of these two approaches, 5 μg of 
normalized serum fractions from each method (bound 
fraction for PM and flow-through fraction for MARS-14) 

Figure 1. Workflow of the proteomics-based biomarker discovery. 
SCX, strong cation exchange chromatography.

Figure 2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
images of serum proteins before and after depletion of major proteins 
or affinity enrichment. Lane M, molecular weight marker; lanes 1 and 6,  
neat serum; lane 2, bound fraction after enrichment by the PM kit; 
lane 3, flow-through fraction after depletion by MARS-14 column;  
lane 4, depleted fraction by MARS-14 column; lane 5, flow-through 
fraction after PM processing.
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as well as neat serum with equal protein amount were 
further analyzed by a 2D shotgun proteomic approach 
consisting of online 2D chromatographic separation and 
a linear ion-trap MS (LTQ). Database searches were then  
performed to generate protein identification results at  
1% false positive rate, according to a previously described 
method.17 Due to the analytical incompleteness of shotgun 
proteomics,18 we replicated the whole procedure six times 
and compared the results on the total unique protein 
identified from these six runs for each of the three 
samples (neat serum, MARS-14, and PM), overlap between 
protein identifications within these six runs, number 
of immunoglobulins and major proteins, common 
identifications among the three samples and between  
any two samples.

An average of 785, 724, and 294 proteins are confidently 
identified in each run from neat serum, PM, and  
MARS-14 normalized serum, respectively (Figure 3A). 
A total of 1711, 1703, and 527 unique protein identifications 
were obtained from neat serum, PM, and MARS-14, 
respectively, when all six runs were combined together 
(Figures 3B and 3C). Detailed examination of the protein 
identifications in each of the three datasets revealed that a 
large portion of protein identifications for neat serum 
belonged to immunoglobulin (1082 out of 1711; Figure 3D). 
As expected, only a small number of identifications from 
MARS-14 was immunoglobulin (7 out of 527; Figure 3D). 
A moderate portion of protein identifications from PM  
belonged to immunoglobulin (619 out of 1703; Figure 3D).
After subtracting immunoglobulin proteins and 14 other 

Figure 3. Protein identification results for neat serum, MARS-14-treated serum, and PM-treated serum. (A) Average unique protein number per run; 
(B) overlap of protein identification among replicate runs; (C) overlap of protein identification among the three samples; (D) classification of 
protein identification. ID, identification; NS, neat serum; M14, MARS-14.
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immunoglobulin molecules does not pose a serious 
problem for identifying other proteins, because the total 
abundance of the immunoglobulins is relatively low, 
despite their sequence diversity.

The poor performance of the affinity-depletion method 
was initially to our surprise but should be expected. 
MARS-14 treatment, like all other depletion methods, is 
designed to remove the intended proteins. The primary 
reason for this poor performance may be due to two 
nonalternative problems: (1) the emergence of new major 
proteins after the depletion of the initial major proteins 
and (2) loss of proteins due to codepletion. To test the 
first possibility, we examined the major proteins that 
were identified by each of the three methods (Table 1). 
The original major serum proteins are infrequently 
found among proteins identified with either MARS-14 

major proteins (e.g., albumin, transferrin, and haptoglobin), 
the number of proteins identified from neat serum 
and MARS-14 treatment were similar (568 versus 497), 
while PM was able to identify a much larger number 
of proteins (1037; Figure 3D). The number of protein 
identifications from neat serum was larger than the 
commonly expected results. The better-than-expected 
results were probably due to the combination of high  
separation and identification power of our 2D shotgun 
proteomic platform. After PM enrichment, 1037 proteins 
could be identified from serum, indicating that affinity 
enrichment is an excellent method for the analysis of 
complex proteomes by MS. The relatively large number 
of immunoglobulin molecules after PM enrichment is 
actually expected, because the diverse set of peptides 
in the PM kit can bind to the variable regions of 
immunoglobulin. The presence of large numbers of 

Table 1.
Major Proteins Identified in Neat Serum or after Normalization

Protein name
Peptide number (ratio to total peptide number)

Neat serum MARS-14 PM

Albumina 3513 ± 327 (37.40%) 86 ± 36 (1.48%) 296 ± 33 (3.69%)

Iga 1790 ± 214 (19.06%) 3 ± 2 (0.05%) 619 ± 87 (7.71%)

Antitrypsina 5 ± 1 (0.05%) 0 5 ± 2 (0.06%)

Transferrina 364 ± 116 (3.88%) 0 15 ± 4 (0.19%)

Haptoglobina 105 ± 26 (1.12%) 0 22 ± 3 (2.74%)

Fibrinogena 4 ± 2 (0.04%) 1 ± 1 (0.02%) 16 ± 3 (0.20%)

Alpha-2-macroglobulina 318 ± 37 (3.39%) 7 ± 3 (0.12%) 61 ± 8 (0.76%)

Alpha-1-acid glycoproteina 45 ± 7 (0.48%) 0 2 ± 2 (0.02%)

Apolipoprotein AIa 142 ± 9 (1.51%) 129 ± 15 (2.22%) 222 ± 50 (2.77%)

Apolipoprotein AIIa 46 ± 8 (0.49%) 50 ± 10 (0.86%) 37 ± 8 (0.46%)

A Chain A, Human Complement Component 
C3a 159 ± 18 (1.69%) 2 ± 1 (0.03%) 630 ± 162 (7.85%)

B Chain B, Human Complement Component 
C3a 108 ± 14 (1.15%) 24 ± 4 (0.41%) 374 ± 46 (4.66%)

Transthyretina 14 ± 3 (0.15%) 0 65 ± 15 (0.81%)

Vitamin D-binding protein 85 ± 6 (0.91%) 327 ± 22 (5.62%) 30 ± 3 (0.37%)

Ceruloplasmin precursor 70 ± 3 (0.75%) 482 ± 75 (8.29%) 162 ± 28 (2.02%)

Complement C4-A precursor 108 ± 13 (1.15%) 229 ± 23 (3.94%) 653 ± 134 (8.14%)

Hemopexin 50 ± 15 0.53%) 624 ± 49 (10.74%) 5 ± 2 (0.06%)

Apolipoprotein B-100 precursor 154 ± 17 (1.64%) 306 ± 22 (5.26%) 204 ± 66 (2.54%)

C4 binding protein, α chain precursor 41 ± 2 (0.44%) 57 ± 7 (0.98%) 158 ± 18 (1.97%)

Fibronectin precursor 45 ± 6 (0.48%) 101 ± 16 (1.74%) 312 ± 40 (3.87%)

a Top 14 serum proteins that the MARS-14 kit is designed to deplete.
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or PM, indicating that both methods are highly efficient in 
eliminating the major proteins. However, the samples 
processed with MARS-14 or PM contain several proteins 
with >100 peptide counts, an indication of their relatively 
high protein abundance.7,8 For MARS-14, none of the 
newly emerged major proteins except apolipoprotein 
AI (129 ± 15 peptides) belongs to the 14 major serum 
proteins that the kit is designed to deplete, indicating 
the high depletion efficiency of the column. The newly 
emerged major proteins include apolipoprotein B-100, 
complement C4-A, ceruloplasmin, and several others, 
and they can interfere with the identification of low-
abundance proteins in the processed samples. Similarly, 
most of the abundant serum proteins (e.g., albumin, 
IgG, antitrypsin, transferring, and haptoglobin) were 
greatly reduced, while a few major serum proteins 
(apolipoprotein AI and complement C3) were still 
present in high abundance after normalization with PM. 
Furthermore, a group of proteins, including complement 
component 4 and its binding protein, was preferably 
enriched by PM. The selective enrichment was probably 
due to the presence of large numbers of binding peptides  
in the peptides library.12

We also investigated the proteins bound to the MARS-14  
column using 2D shotgun proteomic analysis. As expected, 
13 of the 14 major serum proteins (except fibrinogen) 
were found in the bound fraction. Interestingly, 167 other 
proteins were also identified in the bound fraction (data 
not shown). Fifteen of the 167 proteins belong to the 
same family of proteins targeted by the antibodies in 
the MARS-14 kit or interacted with the targeted proteins 
(e.g., apolipoprotein and complement components).  
The presence of 152 additional proteins bound to MARS-14  
column may be a result of nonspecific binding to the 
antibodies or to the resin. Another possibility is that 
proteins like cytokines and similar proteins need a carrier 
protein for their transport in serum and are therefore 
codepleted with albumin.19,20 Similar observations have 
been reported on a different MS platform when serum  
was used as a starting material for the biomarker discovery 
in other diseases/conditions. Sihlbom and colleagues21 
showed that using peptide library beads to process 
human plasma was superior to antibody depletion 
through separately combining these two technologies 
with surface-enhanced laser desorption and ionization 
time-of-flight (SELDI-TOF) MS and 2D difference gel 
electrophoresis (DIGE; 1100 versus 675 spots), yet both 
techniques (SELDI-TOF MS and 2D DIGE) suffered from 
the inability of directly getting protein identification 
information. Dwivedi and associates22 suggest that PM 
may provide a better basis for probing lower-abundance 

species in serum samples as compared to IgY antibodies-
based depletion column (IgY-12, ProteomeLab, Beckman 
Coulter, CA), while accessing the reproducibility of PM 
beads.

These observations also raised the possibility that such 
libraries might be useful in the preparation of samples 
for quantitative and comparative proteomic analysis. 
Hartwig and coworkers,23 using spiking experiments 
together with 2D gels, showed that the concentration 
of the spiked bacteria proteome (into serum), reflected 
by the maintained proportional spot intensities, was 
not altered by PM treatment. There are also studies on 
the reproducibility of the PM kit using SDS-PAGE,15 
SELDI-TOF MS,21 and isobaric tag for relative and 
absolute quantitation +2D high-performance liquid 
chromatography (HPLC)-MS,22 and all reached good 
results. The overall results of these studies indicated 
that there is enough redundancy in each column to bind 
to a given protein, although each of the PM columns 
is predicted to contain a nonidentical repertoire of 
hexapeptides on the PM beads. However, in order to 
have enough redundancy of PM columns, relatively 
large volumes of PM resins are required, and therefore 
the standard protocol of PM columns needs 1 ml of 
serum/plasma. The large serum/plasma volume could  
be a limiting factor for the application of PM beads on 
precious samples (e.g., clinical samples), and reducing 
both the volumes of PM beads and serum/plasma 
samples would be a rational attempt. Yet, in this case, 
the reproducibility of the PM treatment has not been 
reported and needs to be further evaluated.

Intact Protein-Based Approaches for 
Biomarker Discovery for Type 1 Diabetes 
Mellitus
The high complexity of eukaryotic proteome requires 
initial prefractionation, and separation of proteins/peptides 
before MS are mandatory to most proteomic studies. 
Two strategies for the characterization of complex 
proteomes focused on separating either intact proteins or 
digested peptides. The first strategy involves processing 
the protein samples on a traditional 2D gel system or 
higher-dimensional intact protein separation systems that 
use multiple in-solution protein separation techniques, 
such as isoelectric focusing (IEF) coupled with liquid 
chromatography and followed by SDS-PAGE.24–26 
Mass spectrometry is then used in offline mode to 
analyze the much simplified peptide mixture digested  
from protein fractions containing a single or limited 
number of proteins after separation. This approach of 
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multidimensional separation has a better resolution but 
is more labor intensive compared to 2D electrophoresis.

The multidimensionality and the complexity of the 
proteome at a given time cannot be resolved using 
a single universal proteomic platform. The choice of 
appropriate proteomic methods for a specific project 
can be difficult, because no comprehensive comparison 
of the different approaches has been undertaken in the 
same setting. Our lab has compared the performance of 
three proteomic platforms, including a shotgun method 
based on 2D HPLC electrospray ionization MS (platform 1),  
a three-dimensional (3D) intact protein separation method 
(platform 2), and a combination of intact protein separation 
and shotgun method (platform 3).

Using our platform 1, we were able to reliably identify 
over 2000 proteins in each run from total cellular extract 
(DC2.4; Figure 4A). The shotgun approach was found to 
identify a diverse set of proteins in each run, suggesting  
that multiple replicate runs for a single sample are required 
for a comprehensive characterization of complex cellular 
proteome. The data indicated that the number of unique 
proteins increased with each replicate run, but the total 
number of identified unique proteins begins to decrease 
more rapidly after three to four replicates (Figure 4). 
With five to six replicate runs, we can generally identify 
~4000 unique proteins from a total DC2.4 cell extract 
(Figure 4).

Furthermore, prefractionation of intact proteins before 
shotgun analysis has the potential to increase the number  
of identifiable proteins. Based on our results, prefraction-
ation of the DC2.4 proteome into five fractions using 
liquid phase IEF (platform 3) may double the total 
number of identifiable proteins (Figure 5); however, 
this approach increases the analysis time by four-fold. 
Therefore, one must balance the cost and benefit between 
the total number of proteins identified and the total  
time required to complete the analysis when deciding 
whether or not to prefractionate before shotgun proteomic 
analysis.

We further compared data from the 2D shotgun analyses 
(platform 1) and a 3D intact protein separation system 
(platform 2) composed of liquid-phase IEF, reverse phase 
(RP)-HPLC and SDS-PAGE. Typically, several hundred 
proteins from each IEF fraction are resolved into unique 
bands after RP-HPLC and SDS-PAGE. Overall, 7000–8000 
protein bands were found from all five IEF fractions. 
After eliminating potentially redundant protein bands 
due to tailing effect of RP-HPLC (identical protein on 

adjacent lanes), we estimated that ~2500 unique bands 
could be resolved for the DC2.4 proteome.

The shotgun proteomics approach described earlier is 
relatively simple and can be set up for the analysis of a  
relatively large number of samples compared to the liquid- 
phase IEF, RP-HPLC, and SDS-PAGE approach. It has 
the potential to identify large numbers of proteins from 
very complex proteomes after employing proper 
prefractionation/separation prior to MS analysis. Other 
investigators have also compared the performances 
of different prefractionation methods prior to shotgun 
proteomic analysis and provided good suggestions on 
the selection of prefractionation methods. Wang and 
colleagues27 compared the performance of gel-based 
liquid chromatography (GeLC)-MS/MS (one-dimensional 
protein + one-dimensional peptide separation) method 
and a 3D method that adds a liquid IEF step before the 
GeLC-MS/MS analysis and found that the latter detected 
more unique peptides (32,216 versus 25,641) and proteins 

Figure 4. Shotgun analysis of the total DC2.4 proteome. (A) Total 
number of unique proteins identified by different number of replicates; 
(B) percentage of new proteins identified by each consecutive replicate 
analysis. This was calculated by dividing the newly identified proteins  
in a single run by total identified proteins in all six replicate runs.
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(3486 versus 2850) than the sum of four repetitive GeLC-
MS/MS analysis. Fang and associates28 systematically 
compared the performances of the three most popular 
upstream fractionation methods prior to MS analysis, 
including strong cation exchange chromatography, IEF, 
and SDS-PAGE, both at protein level and peptide level, 
and concluded that, for maximal proteome coverage, 
SDS-PAGE is very clearly the most effective method 
tested, with more than 90% of the entire dataset found. 
But when considering the amount of material recovered 
after each fractionation procedure, solution-based IEF 
and strong cation exchange chromatography performed 
similarly, with approximately 80% of the input being 
recovered.

After using these various techniques on serum samples 
from T1DM patients and normal controls, our initial 
analyses have successfully identified 50 different serum 
proteins that are differentially expressed between T1DM 
patients and controls. Most of these 50 proteins have 
known functions and can be grouped into six functional 
categories: innate immunity, inflammation/oxidation, 
lymphocyte activation/proliferation, lymphocyte trafficking/
infiltration, immunoglobulin, and other disease. The 
functional annotation clearly indicates that these proteins  
are highly relevant to the pathogenesis of T1DM. We have 
also validated several protein biomarker candidates 
identified using these approaches. These results are being 
prepared for publication elsewhere. Other researchers 
have been trying to find protein biomarkers in serum/
plasma for diabetes. But most of the candidate proteins 
identified are limited to proteins of relatively high 
abundance in human serum/plasma, such as albumin,29 
transferring,29 apolipoprotein,29,30 transthyretin,29 and 
C-reactive protein,31,32 which, based on our results, are 
apparently due to the limited mining of serum proteome 
mainly caused by inadequate pretreatment of serum 
samples.

Biomarkers Based on Multivariate Models
While proteins or genes may be used individually in 
predicting disease, the accuracy of prediction can be 
significantly improved by using multiple markers 
simultaneously in multivariate statistical models for 
prediction. Indeed, multivariate models may be the only 
hope for highly specific and sensitive biomarkers, as any 
single marker is unlikely to prove acceptable for many 
complex diseases. Development of multivariate models 
requires solving two statistical issues: (1) selecting an 
optimal subset of markers—a single multivariate model—
from all available sets of variables with which to make 
predictions and (2) predicting the phenotypic/disease 
statuses based on the selected subset of markers. The 
subset of markers that would be selected depends on the 
method used for predicting disease status, and prediction 
of disease status can be accomplished by classifying 
subjects into known classes.

We have previously applied multivariate analysis to 
the serum proteomic data generated by SELDI-TOF to 
identify predictive models based on multiple proteins.33 
We identified nine models based on normal kernel 
discriminant analysis, each of which utilized 25 peaks 
(total peaks used = 176), and each had 10–25% error rates  
in classifying AbP and T1DM subjects based on leave-
one-out cross validation. As the misclassified subjects in  

Figure 5. Protein identification results for total DC 2.4 proteome 
and IEF fraction V of DC 2.4 proteome. (A) Average unique protein 
number per run; (B) overlap of protein identification among replicate 
runs. ID, identification.
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one model may be “correctly” classified in a different 
model, the “final” classification for a subject is the averaged 
outcome using plurality voting, which classify the AbP 
subjects with 92.8% accuracy (specificity) and the T1DM 
subject with 90.2% accuracy (sensitivity). These results 
show that the identified models hold promise in 
accurately classifying AbP and T1DM subjects.

Conclusions
Innovations in biological MS have made it a desirable 
tool for proteomic analysis. The combination of separation 
science and biological MS has become the current 
workhorse in proteomics. These technologies are continuing 
to evolve to meet the needs of high-sensitivity and high-
throughput requirements. Biological samples subjected 
to proteomic analysis consist of three major types: 
(1) tissues, (2) cell populations, and (3) biological 
fluids. A common feature of biological samples is their 
extraordinary complexity, which is a result of the 
high multidimensionality of their protein constituents. 
These proteins differ in their cellular and subcellular 
distribution; their occurrence in complexes; their charge, 
molecular mass, and hydrophobicity; and their expressed 
levels and PTMs. As a result, any single analytical  
technique would not be sufficient to analyze all proteins 
in complex proteomes. The results presented here 
demonstrate the validity of various schemes to reduce 
the complexity of biological samples prior to analysis 
by MS to improve proteomic analyses. Despite these 
advances in proteomic technology, this technology still 
needs improvement in several areas, including extending 
the detection, quantification, and identification to low-
abundance proteins; assessment of protein distribution 
among cells and subcellular structures; and assessment  
of PTM.
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