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Coordination of cellular processes through the establishment of tissue-specific gene expression programs is essential for
lineage maturation. The basic helix-loop-helix hemopoietic transcriptional regulator TAL1 (formerly SCL) is required for
terminal differentiation of red blood cells. To gain insight into TAL1 function and mechanisms of action in erythropoiesis,
we performed ChIP-sequencing and gene expression analyses from primary fetal liver erythroid cells. We show that TAL1
coordinates expression of genes in most known red cell–specific processes. The majority of TAL1’s genomic targets require
direct DNA-binding activity. However, one-fifth of TAL1’s target sequences, mainly among those showing high affinity for
TAL1, can recruit the factor independently of its DNA binding activity. An unbiased DNA motif search of sequences
bound by TAL1 identified CAGNTG as TAL1-preferred E-box motif in erythroid cells. Novel motifs were also charac-
terized that may help distinguish activated from repressed genes and suggest a new mechanism by which TAL1 may be
recruited to DNA. Finally, analysis of recruitment of GATA1, a protein partner of TAL1, to sequences occupied by TAL1
suggests that TAL1’s binding is necessary prior or simultaneous to that of GATA1. This work provides the framework to
study regulatory networks leading to erythroid terminal maturation and to model mechanisms of action of tissue-specific
transcription factors.

[Supplemental material is available online at http://www.genome.org. The ChIP-seq and expression array data from this
study have been submitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession nos.
GSE18720 and GSE21877, respectively. Processed data is also available at https://gbrowse.molbiol.ox.ac.uk/cgi-bin/gbrowse/
SCLtargets/.]

Understanding the mechanisms by which stem and multipoten-

tial progenitor cells progressively commit to uni-lineage programs

of gene expression are key biological questions. Red blood cell

production (erythropoiesis) has been extensively characterized,

providing an ideal model to study cell differentiation. The red

blood cell lineage is characterized by the maturation of erythroid

precursors into terminally differentiated, enucleated erythrocytes.

Progressive erythroid cellular maturation stages have been defined

by morphological criteria (for review, see Klinken 2002) and ex-

pression of cell surface markers (Socolovsky et al. 2001). Early

erythroid precursors express increasing levels of erythropoietin

receptor (EPOR), which is required for terminal erythroid matu-

ration (Lin et al. 1995; Wu et al. 1995). Cells of the next erythroid

maturation stage, proerythroblasts, express high levels of the

transferrin receptor TFRC (also known as CD71) and start to pro-

duce hemoglobin. The red cell–specific antigen Ter119 is expressed

on all subsequent differentiating murine erythroid cells, while

expression of TFRC decreases as maturation progresses. An im-

portant characteristic of erythrocytes is the unique composition of

their membrane and cytoskeleton, which is required to confer high

flexibility to mature red blood cells while maintaining their

transport and mechanical properties (Mohandas and Gallagher

2008). In mammals, definitive red cell production initially occurs

in the fetal liver and then shifts to the bone marrow in adult life.

Tissue-specific transcriptional regulators play essential roles

in establishing red cell–specific gene expression programs (Cantor

and Orkin 2002). One example is TAL1 (formerly SCL), a basic

helix-loop-helix (bHLH) transcription factor (Lecuyer and Hoang

2004). TAL1 is initially required for specification of hemopoietic

cells during embryonic development (Shivdasani et al. 1995;

Porcher et al. 1996; D’Souza et al. 2005; Patterson et al. 2005). Later

in hemopoietic differentiation, continued TAL1 expression is crit-

ically required for erythroid maturation as lack of TAL1 leads to

a block in erythropoiesis (Hall et al. 2003, 2005; Mikkola et al.

2003; Schlaeger et al. 2005; McCormack et al. 2006).

TAL1 functions as an obligate heterodimer. It interacts with

the ubiquitously expressed bHLH E-proteins (or TCF3 [also known

as E2A]) to bind to its DNA recognition motif, an E-box (CANNTG).

In red cells, TAL1 is part of multiprotein complexes that include

the LIM-only domain protein LMO2 and the LIM domain-binding

protein LDB1. The TAL1/TCF3/LMO2/LDB1 complex recruits co-

factors with activator or repressor functions, such as EP300, GFI1B,

CBFA2T3 (ETO2), and KDM1A (Huang et al. 1999, 2000; Schuh

et al. 2005; Goardon et al. 2006; Hu et al. 2009). It can also bind

other DNA-bound transcription factors such as the hemopoietic

regulator GATA1 (to form the ‘‘pentameric complex’’; Wadman

et al. 1997) or the ubiquitously expressed protein SP1 (Lecuyer et al.
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2002). Evolutionary conserved association of E-box and GATA motifs

separated by 9 to 12 nucleotides [GATA(n9–12)CANNTG] has been

reported in regulatory regions of many erythroid-specific genes

(Anderson et al. 1998; Vyas et al. 1999; Lahlil et al. 2004).

To date, only a handful of red cell–specific genes have been

reported as direct, functional TAL1 target genes. These include

genes coding for the transcription factors erythroid Kruppel-like

factor 1 (KLF1) and GATA1, the membrane proteins Band 4.2

(EPB4.2) and glycophorin A (GYPA), the cytokine receptor Kit as

well as the alpha- and beta-globin gene clusters (Hba and Hbb,

respectively) (Vyas et al. 1999; Anderson et al. 2000; Lecuyer et al.

2002; Xu et al. 2003; Anguita et al. 2004; Lahlil et al. 2004; Song

et al. 2007; Kassouf et al. 2008; Manwani and Bieker 2008). TAL1

can be recruited to DNA either directly by its basic DNA-binding

domain or independently of its DNA-binding activity. Extend-

ing our initial in vitro observations (Porcher et al. 1999), we re-

cently reported on the DNA-binding independent functions of

TAL1 in a knock-in mouse model expressing a DNA-binding

mutant form of TAL1 (TAL1RER) (Kassouf et al. 2008). We showed

that direct DNA binding is dispensable for hemopoietic spec-

ification in early development. In contrast to conventional

Tal1-null embryos that die from complete absence of embryonic

blood at embryonic day (E)9.5 (Shivdasani et al. 1995), Tal1RER/RER

embryos survived at that stage. They die from day E14.5 onward

with anemia at a time when massive expansion of erythroid cells

occurs in the fetal liver to satisfy the oxygen transport require-

ments in the growing embryo (Kassouf et al. 2008). Though

Tal1RER/RER erythroid precursors are specified, terminal matura-

tion of Tal1RER/RER erythroid cells is grossly perturbed, with de-

creased numbers of TFRC+/Ter119+ red cells that fail to fully

hemoglobinize and mature. Therefore, direct DNA binding

by TAL1 is required for terminal erythroid maturation. At a mo-

lecular level, expression of many known TAL1 erythroid target

genes was deregulated. We also reported that the DNA-binding

mutation did not always fully prevent binding of TAL1 to its

target loci in red cells (Kassouf et al. 2008), thereby supporting

previous observations that TAL1 can be recruited to gene loci in ab-

sence of functional E-boxes (Vyas et al. 1999; Lecuyer et al. 2002).

Here, using chromatin immunoprecipitation followed by

massive parallel sequencing (ChIP-seq), we present a genome-wide

characterization of the sequences bound by TAL1 in wild-type and

Tal1RER/RER early Ter119� fetal liver erythroid precursors, coupled

with gene expression analyses. The aims of the work are to char-

acterize the breadth of red cell processes regulated by TAL1 that

execute terminal differentiation, distinguish TAL1 direct and in-

direct DNA binding functions, and define DNA motifs underlying

the sequences bound by TAL1. More generally, we hoped this

would characterize networks and processes coordinated during

lineage maturation and model the mechanisms of action of bHLH

tissue-specific transcription factors.

Results and Discussion

Genome-wide mapping of sequences bound by TAL1

We performed anti-TAL1 ChIP assays from material isolated from

immature, Ter119� erythroid cell populations derived from day

E12.5 wild-type (Tal1WT/WT) fetal livers followed by high-

throughput sequencing (ChIP-seq) (Fig. 1A). To compare TAL1’s

direct versus indirect DNA-binding activities, we also analyzed

material isolated from Tal1RER/RER fetal livers; importantly, ex-

pression levels of the TAL1 protein in Ter119- Tal1RER/RER cells

remained similar to those observed in wild-type cells (Kassouf et al.

2008). Approximately 4 million uniquely mapped reads were

aligned for each sample (Fig. 1A) and displayed on the Generic

Genome Browser (GBrowse). Using Cisgenome ( Ji et al. 2008),

4364 peaks were identified from the Tal1WT/WT sample and 694

peaks from the Tal1RER/RER sample. The peaks were ranked by the

number of reads mapped in a region, with peak 1 having the

greatest number of reads. After appropriate quality filtering, peaks

1–2994 (Tal1WT/WT sample) and 1–594 (Tal1RER/RER sample) were

retained for further analyses.

We then compared the genomic coordinates of the peaks

detected in the Tal1WT/WT and Tal1RER/RER samples. Out of the

2994 peaks from Tal1WT/WT cells, 2400 were not detected in the

Tal1RER/RER sample; this group was termed ‘‘WT only’’ (80.1% of

total peaks; Fig. 1B, Supplemental Table 1). The remaining 594

peaks were identified in both samples. Thus, peaks detected in the

mutant samples are a subset of the peaks present in the wild-type

sample. A quantitative analysis revealed that the intensity of the

peaks shared between Tal1WT/WT and Tal1RER/RER samples varied.

This allowed us to divide the shared peaks into two categories,

based on the ratio of their intensity in mutant (RER) versus wild-

type (WT) samples (Fig. 1B). The first category represented peaks

partially affected by the DNA-binding mutation (suggesting the

occurrence of both direct and indirect TAL1 binding) and defined

by RER/WT ratios between 0.1 and 0.8 (457 peaks represent-

ing 15.2% of total peaks; Fig. 1B; Supplemental Table 2). The sec-

ond category represented peaks minimally affected by the DNA-

binding mutation (suggesting that recruitment to DNA may occur

mainly independently of direct TAL1 DNA-binding activity) and

defined by RER/WT ratios between 0.8 and 1.8 (137 peaks repre-

senting 4.6% of total peaks; Fig. 1B; Supplemental Table 3). As an

example, Figure 1C shows the peaks in the three different cate-

gories (WTonly, 0.1–0.8, and 0.8–1.8) over two genomic regions in

GBrowse.

The distribution of the peaks detected in the Tal1RER/RER

sample was compared with that of their corresponding wild-type

peaks, according to their intensities. In Figure 1D, the same peak

number is associated to a peak in the Tal1RER/RER sample and its

corresponding wild-type peak. All the peaks belonging to the

category RER/WT 0.1–0.8 were found within the peak number

range 1–1705. The category RER/WT 0.8–1.8 shows fewer peaks

of high intensity and more peaks of medium to low intensity

(peak numbers ;1500–2985). This suggested that, among the

sequences with the strongest affinity for TAL1 (peaks one to

;1700), some might contain specific arrangements of cis-acting

elements allowing for recruitment of TAL1 independently of its

DNA-binding activity, albeit with less affinity than through direct

binding. Sequences likely to recruit TAL1 through both direct and

indirect mechanisms with similar efficiency show a lower affinity

for TAL1.

This initial analysis provides genome-wide molecular evi-

dence that direct DNA-binding activity is required to recruit TAL1

to ;80% of its red cell target sequences. Thus, it is not surprising

that loss of direct TAL1 DNA binding causes a dramatic erythroid

phenotype leading to embryonic lethality (Kassouf et al. 2008). As

the peaks detected from the Tal1RER/RER sample are a subset of the

wild-type peaks, mutation of the DNA-binding domain of TAL1 did

not create novel DNA-binding specificities but, instead, suggests

that, at a subset of target sequences, TAL1 is likely to be normally

recruited to DNA indirectly, as previously suggested by our group

and others (Porcher et al. 1999; Lecuyer et al. 2002; Kassouf et al.

2008).
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Figure 1. (Legend on next page)
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Detection of known TAL1 binding sites and validation of new
binding sites

Using the nearest gene approach, we identified 2195 genes asso-

ciated with the 2994 peaks in the Tal1WT/WT sample (Fig. 1A). TAL1

binding peaks were distributed between the proximal promoter

and intragenic and distal binding sites (representing 33.5%,

24.9%, and 41% of total peaks, respectively; Fig. 1E; Supplemental

Table 4), suggesting both short and long-range transcriptional

control. Although peaks at proximal promoters are more likely to

be functionally attributed to the relevant gene, our data identify

potential active distal sites for investigation. Of note, we noticed

an enrichment of peaks that are bound by the DNA-binding mu-

tant form of TAL1 (RER/WT ratios 0.8–1.8) at distal cis-elements, at

the expense of proximal regions (Fig. 1F; Supplemental Table 4).

This suggested that, when TAL1 recruitment is largely independent

of its direct DNA-binding activity, this is more likely to occur at

distant enhancers, rather than promoters.

The list of TAL1 candidate target genes identified by ChIP-seq

contains most, if not all, previously reported functional targets of

TAL1 in red cells. For example, TAL1 was bound to the promoter

region and the +40 downstream element in the Tal1 locus itself

and to the promoter and enhancer regions of Epb4.2, Hba and Hbb

loci, Klf1, and Gypa (Fig. 2A, top panels, black tracks) (for review, see

Ogilvy et al. 2007; Kassouf et al. 2008). New, previously unreported

TAL1 binding sites were identified in the loci of known TAL1 target

genes, such as the intragenic peaks detected in the Gypa gene (Fig.

2A). ChIP-seq also revealed binding to genomic sequences associ-

ated with numerous genes previously not reported as TAL1 targets.

We selected six of these elements, two located in promoter regions

(Aqp9 and Trim10), three within intragenic sequences (Alad, Prdx2,

and Mmel1), and one upstream of the transcriptional unit (Ssr1),

for validation purposes (Fig. 2A, bottom panels, black tracks).

ChIP-seq analysis of these same loci from material derived

from the Tal1RER/RER sample revealed either absence of the corre-

sponding wild-type peaks (Epb4.2, Gypa, Hba HS-26, HS-21, HS-8

and Hbb HS1–3, Aqp9, and Alad), decreased binding (Tal1, Prdx2,

Trim10, Hba HS-31), or unperturbed binding (Hba HS4, Mmel1, and

Ssr1) (Fig. 2A, red tracks).

Real-time PCR (qPCR) analysis of TAL1-ChIP material con-

firmed binding of TAL1 on known and newly discovered genomic

targets (Fig. 2B, black bars; data not shown). It also confirmed

binding of the DNA-binding mutant form of TAL1 (Fig. 2B, red

bars; data not shown). Importantly, this provided us with a means

to validate the measurements of peak intensity, as RER/WT ratios

calculated from ChIP-seq data correlated with those obtained from

qPCR analyses. The ‘‘WT only’’ category represented by Epb4.2,

Gypa, Aqp9, and Alad shows minimal TAL1 binding in Tal1RER/RER

samples. Tal1, Prdx2, and Trim10 from the RER/WT ‘‘0.1–0.8

ratio’’ category show a decrease in TAL1 enrichment by qPCR in

Tal1RER/RER samples. Finally, there is no statistically significant

difference in enrichment on the Mmel1 and Ssr1 loci when com-

paring Tal1WT/WT and Tal1RER/RER samples, thereby validating the

category RER/WT 0.8–1.8.

In summary, all known erythroid TAL1-bound sequences in-

terrogated in our analysis were identified in our ChIP-seq experi-

ment. This ChIP-seq analysis has yielded a high-resolution map of

possibly all genomic sequences bound by TAL1 in erythroid pre-

cursors and comparison between Tal1WT/WT and Tal1RER/RER peaks

gives a sense as to whether TAL1 is recruited directly or indirectly to

any one binding site.

TAL1 candidate target genes are involved in regulatory and red
cell–associated processes

Two-thousand-thirty-seven out of 2195 genes associated with se-

quences bound by wild-type TAL1 had Gene Ontology (GO) (Fig.

3A; Supplemental Tables 5,6). One-third of the genes are involved

in transcription and signaling (16.8% and 15.8%, respectively).

Close examination of the next set of GO categories (metabolism,

transport, adhesion/migration, cytoskeleton, and redox processes,

altogether accounting for 35.8% of genes associated with TAL1-

occupied DNA segments) highlighted genes coding for proteins

involved, among other tissues, in red cell structures and functions,

such as the heme pathway enzymes, ion/water channel proteins

and solute carriers, proteins involved in membrane integrity, cell–

cell interaction, and oxidative processes. The remaining categories

comprised other general cellular processes, accounting for 15.8%

of genes. This overview revealed the breadth of the transcriptional

control exerted by TAL1 on red cell–specific processes.

To check whether the sequences that can be bound by the

TAL1RER protein were associated with a functional subset of TAL1’s

target genes, we have identified and compared high-level func-

tional categories in both sets of genes using the Ingenuity Pathway

Analysis software (Fig. 3B). The same significantly enriched cate-

gories were found in wild-type and Tal1RER/RER samples (1.1 3

10�11 < P-values < 0.05), indicating that TAL1 indirect DNA bind-

ing does not preferentially occur on specific subsets of targets.

Cellular development, cell growth and proliferation, hematopoie-

sis, and cell death were among the most enriched categories.

ChIP-seq data combined with gene expression analyses reveal
functional locus occupancy by TAL1

The impact of TAL1 direct DNA binding on gene expression was

assessed in the same populations as those interrogated by ChIP-seq

Figure 1. Detection of ChIP-seq peaks in Tal1WT/WT and Tal1RER/RER samples. (A) Outline of the experimental strategy. (B) Venn diagram showing that
the peaks identified in material isolated from Tal1RER/RER Ter119� fetal liver cells (594 peaks, in orange circle) are a subset of the peaks identified in
material isolated from Tal1WT/WT cells (2994 peaks, in blue circle). Below, the peaks are divided into three categories: ‘‘WT only’’ when not detected in the
Tal1RER/RER sample; ‘‘0.1–0.8’’ or ‘‘0.8–1.8’’ according to the ratio of intensity between Tal1RER/RER and the corresponding Tal1WT/WT peaks. (C ) TAL1 ChIP-
seq peaks are displayed on two genomic loci (on chromosomes 8 and 7, top track) on GBrowse. For both sets of samples (Tal1WT/WT and Tal1RER/RER), the
sequencing reads, identified as peaks, are mapped onto the chromosome view along with their coordinates and visualized along the sequence in GBrowse.
The peaks exclusively detected from the wild-type sample (Tal1WT/WT Peaks) are labeled ‘‘WT only.’’ All the peaks detected from the mutant population
(Tal1RER/RER Peaks) correspond to genomic locations also identified as peaks in the wild-type population. For those peaks, the ratio of intensity between
wild-type and mutant samples is shown (RER/WT ratios 0.1–0.8 or 0.8–1.8). (D) The distribution of the 594 peaks detected in the Tal1RER/RER sample
(RER/WT ratios 0.1–0.8 and 0.8–1.8) is compared with that of their corresponding peaks (i.e., detected at the same position) in the Tal1WT/WT sample,
according to their intensities. The ‘‘WT only’’ peaks are not shown. (E ) Genomic distribution in percentages of the Tal1WT/WT peaks with respect to gene
loci. In gray, exons; position of intron 1 is shown; thin lines on either side of the locus represent upstream and downstream flanking sequences; the arrow
shows position of the transcription start site (TSS). (F ) Distribution in percentages of the Tal1WT/WT peaks as a whole (All peaks) and after fractionation
according to their requirement for direct DNA-binding activity (WT only, ratios 0.1–0.8 or 0.8–1.8), with respect to the three main genomic locations, as
indicated on the graph.
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(Tal1WT/WT and Tal1RER/RER Ter119� fetal liver erythroid pop-

ulations) using microarray analysis (Fig. 3C). Five-hundred-eleven

differentially expressed genes were identified (Supplemental

Table 7), of which 248 (49%) and 263 (51%) were up- and down-

regulated in mutant cells, respectively (Fig. 3D).

To identify direct targets of TAL1, we focused on the differ-

entially expressed genes (511 genes) whose genomic loci con-

tained sequences present in the ChIP-seq data set of 2195 genes.

Eighty-three genes were in this intersection and likely represent

direct TAL1 binding target genes (Fig. 3E; Supplemental Table 8).

Figure 2. Profile of TAL1 binding on chosen loci. (A) Selected known functional or novel genomic targets of TAL1 are represented. For each locus are
shown (from top to bottom): the RefSeq annotation of the gene or part of the gene (orange, exons; thin lines, introns; arrow, position of the TSS); the ChIP-
seq profiles in Ter119- populations from Tal1WT/WT (black tracks) and Tal1RER/RER (red tracks) fetal liver cells. (B) Real-time PCR analysis of anti-TAL1 ChIP on
selected loci. Chromatin derived from Ter119- populations from Tal1WT/WT and Tal1RER/RER fetal liver culture cells was immunoprecipitated using anti-TAL1
antibodies and the loci indicated on the graph analyzed by real-time PCR. The y-axis represents the enrichment over input DNA, normalized to a control
sequence in the Gapdh gene. N, negative control. Error bars, 61 SD, from at least three independent experiments (*P < 0.01). Below the graph are shown
the categories the peaks belong to, as detected by ChIP-seq.
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The remaining 428 differentially expressed genes could either rep-

resent secondary targets or be bound by TAL1 below the level of

detection or at distal elements not identified by the nearest gene

approach. Expression of the remaining TAL1-bound 2112 genes is

not altered by loss of direct TAL1 DNA-binding activity (Fig. 3E).

This may occur for a number of reasons. First, 19.1% of TAL1’s

genomic targets are bound by the DNA-binding mutant form of

TAL1 (peak categories RER/WT 0.1–0.8 and 0.8–1.8) and may not be

transcriptionally sensitive to the DNA-binding mutation. Second,

redundancy between TAL1 and another hematopoietic-specific

bHLH protein, such as LYL1, could explain the lack of perturbation

of expression of some targets. Lyl1 and Tal1 show very similar

patterns of expression in hematopoietic tissues, including ery-

throid cells (Visvader et al. 1991; Giroux et al. 2007); they were also

recently found to have redundant functions in hematopoietic

stem cells (Souroullas et al. 2009). Third, TAL1 might not exert

a function at all the sites it interacts with, or might bind genomic

sites to prepare them for activation at later stages of differentiation,

upon subsequent recruitment of transcriptional regulators. Finally,

technical limitations associated with expression microarrays (such

as probe design and hybridization conditions) could also lead to

failure to detect differentially expressed genes and contribute to

the underrepresentation of genes transcriptionally affected.

Further characterization of these 83 putative direct TAL1 tar-

get genes revealed that they were associated with 138 peaks of

TAL1 binding in the ChIP-seq database (Fig. 3D; Supplemental

Table 8). As expected, the large majority of these peaks (135/138)

were affected in the Tal1RER/RER sample (Fig. 3D); they were either

absent (115/138, 83%, WT only category), or reduced (20/138,

14.5%, 0.1–0.8 RER/WT ratios). The genomic distribution of these

peaks was very similar to the whole set of TAL1 genomic targets

(Supplemental Table 4, last column). Finally, the distribution of

Figure 3. Combining ChIP-seq data with gene expression analyses. (A) Pie chart showing the distribution of the genes identified as candidate targets of
TAL1 in Tal1WT/WT fetal liver cells according to their GO. (B) Highly enriched functional categories (1.1 3 10�11 < P-values < 0.05) were identified in the
gene sets characterized from Tal1WT/WT and Tal1RER/RER samples using Ingenuity software. The Ingenuity Knowledge Base served as background population
and the Fisher’s exact test was used. The threshold corresponds to a P-value of 0.05. (C ) Microarray analysis: outline of the experimental strategy. (D)
Characteristics of genes revealed by expression arrays (511) and those identified in the intersection with ChIP-seq data (83). See text for details. (E ) Venn
diagram showing the overlap between the genes detected by ChIP-seq and those revealed by expression array.
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these 83 differentially expressed direct TAL1 target genes in the GO

categories was similar to the whole TAL1 gene list (Supplemental

Table 9). In summary, the 83 genes presented features very similar

to those of the overall set of genes bound by TAL1.

Strikingly, 62 out of 83 (75%) of the differentially expressed

genes were down-regulated in Tal1RER/RER erythroid populations

compared with control cells, whereas 25% (21 out of 83) were up-

regulated (Fig. 3D). The high proportion of down-regulated genes

suggested that direct DNA binding is required for TAL1 to prefer-

entially exert activator function in red cells. The fold change in

expression did not exceed 2.5 for the majority of the genes (63 out

of 83 genes; Supplemental Table 8). Only a few genes were dra-

matically down-regulated (Lpl, Txnl1, Aqp9, Prdx2, Slc4a1) or up-

regulated (Trib2, Dapp1, Hbb-b2) (by 3.5–20-fold). There was no

difference in the genomic localization of the peaks associated with

activated or repressed genes, when all peaks (138) or only the

nearest peak associated to each gene (83) were considered (data not

shown).

An integrated approach identifies TAL1’s core transcriptional
red cell network

We set out to identify targets of TAL1 with functions in erythro-

poiesis that may contribute to the erythroid phenotype of the

Tal1RER/RER mouse when their expression is perturbed. From the list

of genes identified through ChIP-seq, 80 loci were selected that

(1) contained sequences bound by wild-type TAL1, (2) showed

reduced or absence of binding by the DNA-binding mutant form

of TAL1, and (3) have functions relevant or potentially relevant to

red cell biology, based on previously reported functional in vitro

and in vivo studies (Table 1). Importantly, when mouse models of

these genes are available, the reported phenotype has similarities

with the TAL1 DNA-binding mutant mice.

To this first level of analysis, we have incorporated our gene

expression data. Out of these 80 genes, 23 showed deregulated

expression (Table 1). Among them are some of the most tran-

scriptionally affected genes (such as Aqp9, Slc4a1, Prdx2, Lpl, Hbb-

b2, Dapp1). Confirming our hypothesis that microarray analyses

might only detect a fraction of the genes transcriptionally affected,

we also found, by qPCR, that expression levels of selected red cell–

specific targets of TAL1, not present in the microarray list, were

deregulated in Tal1RER/RER cells. Three of these are included in Table

1 (Tspan33, Trim10, and Ank1).

These 80 genes can be divided into six main groups: organi-

zation of the cell membrane and cytoskeleton, signaling, redox

processes, the heme biosynthetic pathway, as well as transcription

and lipid metabolism. Figure 4 gives a schematic representation

of the genes that, we believe, form the core of the TAL1 tran-

scriptional red cell network and their cellular localization. Below, we

describe some of these genes and associated processes (see Table 1

for references).

Membrane proteins and cytoskeleton organization

The red cell membrane is a highly specific structure characterized

by a lipid bilayer anchored to a spectrin-based filamentous net-

work of skeletal proteins. Numerous transmembrane proteins

serve diverse functions such as transport and adhesion/migration

(for review, see Mohandas and Gallagher 2008). Genes encoding

26 membrane-associated proteins are candidate targets of TAL1

(Table 1; Fig. 5; data not shown). They are involved in processes

including transport, formation, and function of the erythroblastic

islands (Manwani and Bieker 2008) and cytoskeleton organization.

Heme pathway, heme complex: Redox processes, hypoxia

TAL1’s target genes control the complex series of enzymatic steps

involved in the heme biosynthetic pathway. TAL1 binding was

detected at the proximal promoter or intronic regions of all the

genes encoding enzymes in the pathway (Supplemental Fig. S1).

TAL1 could also be involved in the transport of heme through the

mitochondria and in the control of oxygen homeostasis (Abcb10

and Egln3; Table 1).

Signaling: Transcription, cell cycle, proliferation

TAL1 may also control expression of proteins involved in key sig-

naling and regulatory pathways in red cell survival, proliferation,

and terminal maturation (Table 1). Examples are TSPAN33, a newly

described erythrocyte trans-membrane protein that belongs to a

protein family believed to function as organizers of membrane

microdomains and supramolecular signaling complexes, and the

main red cell–specific cytokine receptor, EPOR, as well as a number

of molecules involved in this pathway (FOXO3, PIM1, DYRK3, and

DAPK2) (Fig. 5; Table 1).

Key transcriptional regulators of erythroid development are

among the candidate targets of TAL1. To cite but a few, all members

of the pentameric complex (including TAL1 itself), LYL1, NFE2,

ZFPM1 (FOG1), FLI1, SFPI1 (PU.1), CBFA2T3 (ETO2), E2F2, E2F4,

TRIM10, and HMGN are some of the critical regulators that or-

chestrate erythroid cell commitment, proliferation, and differen-

tiation (Table 1; Supplemental Fig. 2). Interestingly, some of these

transcription factors are also known partners of TAL1, such as E2A,

LMO2, LDB1, GATA1, and CBFA2T3 (Wadman et al. 1997; Schuh

et al. 2005), or proteins interacting with partners of TAL1, such as

ZFPM1 (partner of GATA1) (Tsang et al. 1997). These interactions

underlie the complexity of genetic regulatory networks and em-

phasize the importance of feed forward and autoregulatory tran-

scriptional loops (Swiers et al. 2006; Fujiwara et al. 2009).

A recent study identified 139 putative targets of TAL1 in

a hemopoietic progenitor cell line (Wilson et al. 2009). More than

half of the genes (80/139) are also targets of TAL1 in erythroid

cells, thereby highlighting a conserved role for TAL1 at certain loci

across hematopoietic development. These include genes coding

for cytoskeleton proteins (Epb4.1), for proteins located in the

plasma membrane (Flt1), and for nuclear proteins (Cbfa2t3, Cebpe,

E2f2, Gata2, Gfi1b, Fli1, Hhex, Nfe2, Runx1). In addition to binding

events common to the progenitor cell line and the fetal liver

Ter119� erythroid cells, additional TAL1-bound genomic segments

can be detected in some of these loci in red cells (Cbfa2t3, Nfe2, and

Tal1 loci; Supplemental Fig. 2, black track, stars; data not shown)

suggesting that TAL1 exerts distinct transcriptional control over

the same targets in distinct biological contexts.

Novel potential players in erythropoiesis

Finally, potentially new players in erythroid biology have been

identified, thereby demonstrating the strength of our compre-

hensive approach (Table 1; Fig. 5). MICALL2 is a protein associated

with the cytoskeleton that has been implicated in adhesion and

repulsion mechanisms. In light of a possible involvement of TAL1

in the regulation of the function of the erythroblastic islands, in-

vestigation of the functional significance of this molecule and its

regulation by TAL1 in erythropoiesis is of interest. The lipoprotein

lipase Lpl is a functional target of TAL1 (its expression is 20-fold

down-regulated in Tal1RER/RER cells), suggesting that this protein is

likely to play a major role in maintaining the specific phospholipid

composition of the red cell membrane bilayer. Further supporting
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this observation, TAL1 may also regulate expression of Lipin2,

Ptdss2, and Ddhd1, all involved in phospholipid metabolism.

Additional examples are P4ha2 and Sphk1, which encode

proteins involved in response to hypoxia; Dapp1 (or Bam32),

which codes for a hematopoietic adaptor protein thought to con-

trol proliferation; finally, Emilin2, encoding an extracellular matrix

protein that activates the extrinsic apoptosis pathway, is one of

a number of apoptotic genes that are putative targets of TAL1 (see

Figure 4. Schematic representation of selected pathways and molecules identified in this study as functional, direct targets of TAL1 in red cells. The red
star indicates genes whose expression is perturbed in Tal1RER/RER Ter119- fetal liver cells, when compared with wild-type controls.
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Supplemental Tables 5, 6). Our data

would suggest that Emilin2 is normally

repressed by TAL1 (Table 1), in agreement

with TAL1’s proposed role in forestalling

apoptosis (Zeuner et al. 2003; Martin et al.

2004; Souroullas et al. 2009).

In conclusion, these few examples

emphasize the strength of ChIP-seq in

characterizing the whole repertoire of cis-

elements bound by TAL1 and, therefore,

candidate target genes. The comprehen-

sive nature of this study provides a plat-

form for assembling and testing networks

of processes coordinated by TAL1 in red

cells. It has also unveiled putative novel

players in normal erythropoiesis and

opened up new investigative routes for

understanding inherited and acquired

anemias.

De novo search for motifs underlying
TAL1 peaks reveal E-boxes, GATA,
and CACC sequences, as well as two
novel motifs

To better understand the molecular mech-

anisms underlying TAL1’s recruitment to

its genomic targets in red cells, de novo

motif finding was performed on the ge-

nomic sequences bound by TAL1. We first

used the algorithm Weeder to search se-

quences underlying the 2994 peaks bound

by wild-type TAL1 (Fig. 6A). GATA motifs

were the most prevalent consensus se-

quences. Our data highlighted A/TGATAA

(and its extension to C/G
A/TGATAAG) as

the in vivo preferred GATA sequence as-

sociated with TAL1 peaks, a subset of the

WGATAR consensus motif initially iden-

tified in vitro (Orkin 1992). The same

consensus site (WGATAA) was recently

identified in two independent reports as

the preferred sequence for occupancy by

GATA1 (Yu et al. 2009; Zhang et al. 2009).

WGATAA is therefore the dominant motif

for GATA1.

After masking the GATA sites, E-box

motifs were the next most prominent

motif detected. CAGCTG was the TAL1

preferred consensus sequence, rather

than the in vitro described variations of

CAGATG (Hsu et al. 1994) or CAGGTG

(Wadman et al. 1997).

After masking both GATA and E-box

sequences, CAC motifs (consensus CAC

CC) were identified, as well as a novel

motif CTGCCA/TGNNG. This motif pre-

sents similarities with the first five posi-

tions of the recently described motif

GCCAGC that is significantly enriched

in GATA1-occupied DNA segments in

erythroid cells (Zhang et al. 2009). It alsoFigure 5. (Legend on next page)
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overlaps in a similar way with a consensus sequence present

in occupied composite E-box/GATA sequences in red cells

(T/C
C/T

C/TTGG/T
G/C

C/G
A/TGT/G, the sequence common to all three

motifs, GCCAG, is underlined) (Wozniak et al. 2008). Altogether,

this further supports a strong correspondence between TAL1 and

GATA1 occupancy in erythroid cells, as recently observed by

Cheng et al. (2009).

No other motifs were identified, even when the three cate-

gories (WT only and RER/WT ratios 0.1–0.8 and 0.8–1.8) were in-

terrogated individually (data not shown).

In a parallel analysis using the MEME algorithm (Fig. 6A), the

enrichment of GATA and E-box motifs was confirmed. In addition,

two longer motifs were characterized: the well-described E-box-

GATA element [TATC(n9)CAGCTG], and a new, related, composite

motif consisting of a GATA sequence and the trinucleotide CTG,

separated by 9 bp [CTG(n9)GATA]. To confirm the existence of this

composite motif, the 2994 TAL1-bound peaks were searched for

WGATAA and sequences 59 and 39 of this motif examined. A sig-

nificant proportion of the sequences were found to be associated to

a CTG motif (Fig. 6A, bottom). The trinucleotide is half an E-box,

inviting the hypothesis that such a sequence may allow less strin-

gent binding of a TAL1 dimer with bound GATA factors stabilizing

TAL1 recruitment. Supporting a biological meaning to this finding,

a similar motif [CTG(n7–8)WGATA] was recently described in peaks

co-occupied by GATA1 and TAL1 (Soler et al. 2010).

To measure the frequency of the motifs generated by Weeder

and MEME, an in-house Perl script calculated the mean frequency

of a motif per sequence over a region encompassing the peaks and

flanking 100 bp and against a background distribution (see

Methods; Table 2). Motif occurrence (number of peaks with the

motifs) was also calculated (Table 2).

Although CAGCTG only appeared at a frequency of 0.18

motif/sequence, when relaxed to CAGNTG, E-boxes were the most

frequent motifs (0.68 motif/sequence, P = 0; present in 39% of all

peaks); the degenerated motif CANNTG was not found to be sig-

nificantly enriched over the background distribution (frequency

0.71, P = 0.97). We therefore propose that the relaxed CAGNTG

motif is TAL1-preferred E-box sequence in erythroid cells. The
A/TGATAA motif was found at a frequency of 0.53 motif/sequence

(46% of all peaks) and confirmed to be dominant over A/TGATAG

(frequency 0.19, occurrence 17%). CAC motifs were also frequent

(0.42 motif/sequence, occurrence 34%). The new motif, simplified

to CTGCCA/TG, was present at a frequency of 0.16 (occurrence

14%). As for composite motifs, the novel sequence [CTG(n9)GATA]

dominated with a frequency of 0.19 motif/sequence (occurrence

13%) whereas, surprisingly, the E-box-GATA motif was associated

with a frequency of only 0.03 motif/sequence (occurrence 4.5%).

Enrichment in novel motifs in a subset of peaks

We repeated the motif analysis on subsets of peaks that had been

grouped by various parameters: peak localization, whether the peaks

were associated with activated or repressed genes and according to

the mechanisms of recruitment of TAL1 to DNA (Table 2).

The frequency or nature of DNA motifs did not vary according

to peak localization (as defined in Fig. 1E). The enrichment in re-

cruitment of the DNA-binding mutant protein on distal cis-ele-

ments as opposed to proximal promoter regions (Fig. 1F) is not,

therefore, due to specific arrangements of the motifs identified de

novo.

We then looked at peak composition according to the tran-

scriptional state of the gene. There was no substantial change in

the overall frequency of E-boxes or A/TGATAA motifs between ac-

tive and repressed genes. However, our search of motifs in se-

quences underlying TAL1 peaks pointed to a fourfold enrichment

of composite E-box/GATA sequences in the peaks associated with

activated genes when compared with repressed genes (12% versus

3% of peaks, respectively). This is in agreement with recent data

suggesting that TAL1 cooperates with GATA1 in red cells mainly to

activate target loci (Cheng et al. 2009; Tripic et al. 2009; Yu et al.

2009). In addition, the novel motif CTGCCA/TG, shows a 2.3-fold

increase in occurrence in TAL1 peaks associated with activated

genes when compared with repressed genes (21% versus 9%),

highlighting its potential role in regulatory regions of activated

genes.

Finally, to better define the mechanisms of recruitment of

TAL1 to its genomic targets, the sequences underlying the peaks in

the three categories reflecting the ratios of direct versus indirect

DNA binding were investigated (Table 2). As expected, the per-

centage of peaks containing the E-box motif CAGNTG was ob-

served at the highest occurrence (42%) in the sequences un-

derlying the ’’WT only’’ peak category. This decreased by 1.5-fold

to 30% and 28% in the sequences where the RER/WT ratios were

0.1–0.8 and 0.8–1.8, respectively. In contrast, the A/TGATAA motif

occurrence increased by ;1.5-fold in the ’’WT only’’ sequences

when compared with sequences with RER/WT ratios 0.1–0.8 and

0.8–1.8 (42%, 62%, and 55%, respectively). In agreement with this,

the occurrence of the composite motif CTG(n9)GATA was in-

creased by two- to threefold in the sequences bound by TAL1RER

(10%, 27%, and 22%, in sequences associated to ‘‘WT only’’ and

RER/WT ratios 0.1–0.8 and 0.8–1.8, respectively). Although of

moderate amplitude, these changes reflect the two mechanisms of

recruitment of TAL1 to DNA: The frequency of E-boxes is the

highest when TAL1 direct DNA-binding activity is exclusively

employed (‘‘WT only’’ category) and the presence of GATA motifs

alone or in the new composite element becomes more frequent in

the categories where TAL1 recruitment requires other DNA-bind-

ing proteins to be tethered to DNA. Investigating what binds the

sequence CTG(n9)GATA in addition to GATA proteins would give

insight into what makes this composite motif more tolerant of

a defective DNA-binding form of TAL1. Finally, motif overrep-

resentation analysis was performed on all peak categories using

consensus sites associated to blood development-specific factors

including ETS factors (SFPI1, SPI1, FLI1), NFE2, RUN1, GFI1B, and

SP1. No specific enrichment was detected for any of the motifs in

any of the categories studied (data not shown).

TAL1’s binding is required prior or simultaneously to that
of GATA1 at sites of co-occupancy

As the frequency of GATA1 binding site motifs increases when

TAL1 recruitment requires other DNA-binding proteins to be

tethered to DNA, we hypothesized that

GATA1 might be the main protein to re-

cruit TAL1 to its target sequences in

Tal1RER/RER cells. To test this, we per-

formed GATA1 ChIP on selected loci,

from material isolated from Tal1WT/WT

Figure 5. Profile of TAL1 binding on gene loci involved in red cell–specific processes or with functions
potentially relevant in erythropoiesis. For each locus are shown (from top to bottom): the RefSeq an-
notation of the gene or part of the gene (orange, exons; thin lines, introns; arrow, position of the TSS);
the ChIP-seq profiles in Tal1WT/WT (black tracks) and Tal1RER/RER (red tracks) cells. GO biological processes
are indicated at the left of the figure.
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Figure 6. DNA motifs underlying the TAL1 peaks. (A) Logos representing the motifs identified in the sequences underlying the TAL1 peaks using de
novo Weeder and Meme searches. (B) Real-time PCR analysis of anti-TAL1 and anti-GATA1 ChIP on selected loci. Chromatin derived from Ter119-

populations from Tal1WT/WT and Tal1RER/RER fetal liver culture cells was immunoprecipitated using anti-TAL1 and anti-GATA1 antibodies and the loci
indicated on the graph analyzed by real-time PCR. The y-axis represents the enrichment over input DNA, normalized to a control sequence in the Gapdh
gene. Error bars, 61 SD from at least three independent experiments (*P < 0.01). Below the graph are shown the categories the genes belong to, as
detected by ChIP-seq.
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and Tal1RER/RER samples (Fig. 6B). In agreement with our hypoth-

esis, we observed binding of GATA1 on all the sequences able to

recruit the TAL1RER protein (peaks belonging to the RER/WT ratios

0.1–1.8) both in wild-type and Tal1RER/RER cells (with the exception

of one locus, Mmel1). However, the levels of enrichment of GATA1

on these loci in wild-type and Tal1RER/RER cells paralleled that of

TAL1; for example, decreased levels in TAL1 enrichment at the Tal1

promoter (Tal1 prom.) in Tal1RER/RER cells correlated with a pro-

portional decrease in enrichment of GATA1 binding; little or no

variation in TAL1 binding on sequences such as Prdx2, Trim10,

Ssr1, and Mical-l2 in Tal1RER/RER cells correlated with similar

changes in GATA1 enrichments. As Gata1 expression is not af-

fected in Tal1RER/RER cells (Kassouf et al. 2008), these data suggested

that recruitment or stabilization of GATA1 on DNA relies on the

presence of TAL1. Supporting these observations, GATA1 binding

was severely affected at sequences not able to recruit TAL1 in

Tal1RER/RER cells (WT only, Aqp9, Alad, Gpa loci).

Therefore, our analysis of transcription factor recruitment in

Tal1RER/RER cells shows that, when co-localizing on target se-

quences, TAL1 and GATA1 might cooperate and stabilize each

other’s binding. This does not exclude the possibility that TAL1 is

recruited to DNA by other, yet unidentified mechanisms. Analyses

of the recruitment of these factors on ‘‘WT only’’ sequences sug-

gests that TAL1’s binding is necessary prior or simultaneous to that

of GATA1. This agrees with earlier studies performed on the Hba

locus, showing that TAL1 is present on the locus in early hema-

topoietic progenitors, before binding of GATA1 is firmly estab-

lished in erythroid precursors (Anguita et al. 2004). Whether TAL1

can open compacted chromatin to allow subsequent recruitment

of additional transcriptional regulators, thereby acting as a ‘‘pio-

neer’’ transcription factor (Lupien et al. 2008; Sekiya et al. 2009),

remains to be investigated.

Conclusion

In conclusion, our attempt to elucidate the mechanisms of

recruitment of TAL1 to DNA emphasized the robust and well-

characterized observation of an E-box/GATA interplay at the

genome-wide scale. The functional relationship between TAL1

and GATA1 is, however, likely to be quite complex and will need to

be further dissected mechanistically. Novel motifs [CTGCCA/TG

and CTG(n9)GATA] were described that remain to be studied

functionally. This will help distinguish activated from repressed

sequences and define which elements, in addition to GATA and

CACC sites, help recruit the TAL1 DNA-binding mutant. However,

as previously reported (Wozniak et al. 2008; Steiner et al. 2009),

these studies have limitations; chromosomal environment and

chromatin structure, dynamic recruitment of additional trans-

acting factors, DNA looping, and influences of long-range regula-

tion are elements to take into account when analyzing DNA/

protein interactions that cannot be appreciated solely through

ChIP-seq and motif prediction analyses. The biological intricacies

Table 2. Motif frequency and motif occurrence

Motifs

All peaks 2994 peaks

Peak localization

Proximal promoter
and first intron

1003 peaks
Body of gene

746 peaks
>5 kb upstream of and downstream

from gene 1245 peaks

Frequency Occurrence Frequency Occurrence Frequency Occurrence Frequency Occurrence

CAGCTG 0.18 (0) 16% 0.21 (0) 19% 0.22 (0) 20% 0.26 (0) 23%
CAGNTG 0.68 (0) 39% 0.86 (0) 46% 0.88 (0) 49% 1.03 (0) 54%
CANNTG 0.71 (0.968) 51% 0.96 (0) 60% 0.96 (0) 61% 1.12 (0) 67%
GATAG 0.16 (0.9) 21% 0.26 (0) 29% 0.23 (0.001) 25% 0.24 (0) 29%
GATAA 0.6 (0) 50% 0.77 (0) 60% 0.79 (0) 59% 0.89 (0) 65%
A/TGATAA 0.53 (0) 46% 0.67 (0) 55% 0.71 (0) 55% 0.78 (0) 61%
A/TGATAG 0.19 (0) 17% 0.27 (0) 23% 0.23 (0) 20% 0.3 (0) 26%
CACCC 0.42 (0) 34% 0.68 (0) 48% 0.59 (0) 44% 0.6 (0) 45%
CTGCCA/TG 0.16 (0) 14% 0.22 (0) 19% 0.21 (0) 18% 0.23 (0) 20%
CANNTG(9)GATA 0.03 (0) 4.50% 0.03 (0) 6% 0.03 (0) 4.90% 0.04 (0) 5.90%
CTG(9)GATA 0.19 (0) 13% 0.26 (0) 16% 0.25 (0) 17% 0.25 (0) 16%

Motifs

Gene expression RER/WT ratios

Activated 104 peaks Repressed 34 peaks WT only 2400 peaks 0.1–0.8 457 peaks 0.8–1.8 137 peaks

Frequency Occurrence Frequency Occurrence Frequency Occurrence Frequency Occurrence Frequency O ccurrence

CAGCTG 0.29 (0) 28% 0.17 (0) 18% 0.18 (0) 17% 0.15 (0) 13% 0.17 (0) 17%
CAGNTG 1.15 (0) 57% 0.79 (0) 47% 0.72 (0) 42% 0.51 (0) 30% 0.5 (0) 28%
CANNTG 1.29 (0) 70% 1.17 (0) 70% 0.76 (0.6) 53% 0.53 (1) 41% 0.49 (1) 36%
GATAG 0.26 (0) 28% 0.29 (0) 26% 0.16 (0.98) 20% 0.16 (0.98) 24% 0.21 (0.05) 20%
GATAA 0.96 (0) 68% 1.06 (0) 82% 0.55 (0) 46% 0.83 (0) 67% 0.77 (0) 60%
A/TGATAA 0.84 (0) 64% 0.97 (0) 79% 0.48 (0) 42% 0.73 (0) 62% 0.69 (0) 55%
A/TGATAG 0.25 (0) 20% 0.26 (0) 26% 0.18 (0) 16% 0.23 (0) 21% 0.2 (0) 18%
CACCC 0.68 (0) 44% 0.79 (0) 41% 0.42 (0) 33% 0.46 (0) 36% 0.37 (0) 29%
CTGCCA/TG 0.27 (0) 21% 0.09 (0.001) 9% 0.15 (0) 14% 0.21 (0) 18% 0.12 (0) 10%
CANNTG(9)GATA 0.07 (0) 12% 0 (0.94) 3% 0.03 (0) 4.80% 0.02 (0) 3.50% 0.007 (0) 2.20%
CTG(9)GATA 0.22 (0) 17% 0.29 (0) 15% 0.16 (0) 10% 0.36 (0) 27% 0.32 (0) 22%

Motif frequency, number of motifs/number of peaks; P-values are in parentheses. Motif occurrence, percentage of peaks with the motif. The values in
boldface are discussed in the text.
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of tissue development and underlying molecular dynamics are

a challenge to capture at the genome-wide scale.

Methods

Cell culture
Fetal liver cells from day E12.5 Tal1WT/WT and Tal1RER/RER embryos
were expanded for 3 d, and Ter119- erythroid progenitors were
purified as previously described (von Lindern et al. 2001; Schuh
et al. 2005).

ChIP assay

Anti-TAL1 and anti-GATA1 ChIP assays were performed on chro-
matin prepared from Tal1WT/WT and Tal1RER/RER Ter119� erythroid
purified progenitor populations as described (Schuh et al. 2005).
Anti-TAL1 antibody has been described previously (Porcher et al.
1999). Anti-GATA1 antibody was from Abcam.

ChIP-seq sample preparation, library construction,
and data processing

Tal1WT/WT and Tal1RER/RER anti-TAL1 and ‘‘no antibody’’ (input
controls from both Tal1WT/WT and Tal1RER/RER cells) ChIP DNA
were processed for Illumina high-throughput sequencing at the
Center for Biomics, Erasmus MC, Rotterdam. Linker annealing,
amplification, and gel purification were performed according to
Illumina protocol. Data analysis was undertaken by the Compu-
tational Biology Research Group CBRG (Oxford University). ChIP-
seq data sets have been submitted to the Gene Expression Omni-
bus (GEO) database under accession number GSE18720.

Approximately 12 million reads of 35 bp each were produced
from Tal1WT/WT and Tal1RER/RER anti-TAL1 and ‘‘no antibody’’ ChIP
DNA. Sequences were mapped to the repeat-masked reference
mouse (build m37) genome using MAQ (Li and Durbin 2009).
Repeat masking included simple, complex, and ribosomal repeats
using data from the UCSC Table Browser ‘‘rmsk,’’ and was done to
avoid complications of full or partial multiple mapping of se-
quences when using the MAQ program which usually randomly
maps such sequences to a single position in the genome. Ap-
proximately 4 million uniquely mapped reads were counted for
every nucleotide position. The data were displayed on the Generic
Genome Browser (Gbrowse, http://tinyurl.com/SCLtargets) (Stein
et al. 2002). Peak height (as seen in GBrowse) reflected the number
of sequences that map to the genomic region. Cisgenome (Ji et al.
2008), using the two-sample method (which allows comparison of
antibody versus no antibody data) was used to call and quantify
the peaks with an FDR cutoff of 0.1, positive/negative background
ration of 0.5, and minimum read number per window of 3 over
a window size of 100. Quality filtering was performed by visual
inspection of the peaks in GBrowse. An arbitrary cutoff was set up
to reduce the noise level. To confirm that no potentially relevant
peaks had been removed, a motif search was run on these peaks (as
described below); no significant enrichments were observed. The
identified peaks were associated to the nearest RefSeq genes to aid
investigation of the data.

The genomic sequences of the Cisgenome-determined peaks
were extracted using a custom in-house PERL scripts and analyzed
for overrepresented sequence motifs using Weeder version 1.3
(Pavesi et al. 2004) and MEME (Bailey and Elkan 1994). Sequence
logos of the motifs were generated using WebLogo (Crooks et al.
2004).

The frequency of motif occurrence (mf) was tested for sig-
nificance against a background distribution which was generated

by drawing 1000 regions S times from a repeat masked version of
the mm9 genome. In each case, the random peaks were twice the
size of the real TAL1 peaks (200 bp versus an average of 107 bp) and
matched for repeat content. For each round of sampling (s), the
motif frequency mf(s) was calculated, and P was calculated by:

P� = +
S

s = 1

Iðjmf ðsÞj> mf Þ
S

;

where I is 1, if the condition inside the parentheses is true. In this
case S was set to 1000.

To test the applicability of the background model, sequences
of 200 bp were isolated 500 bp and 1 kb upstream of and down-
stream from the TAL1 peaks, again controlling for useable se-
quence content. The frequency of the motifs within these data sets
is now not significantly different from the background model.

All scripts for the analysis and Makefiles that were used to run
the peak calling pipeline are available on request.

Quantitative real-time PCR analysis

For expression analysis, RNA was extracted from Tal1WT/WT and
Tal1RER/RER Ter119�-purified erythroid progenitors using the
RNAeasy Micro RNA isolation kit (Qiagen), DNase-treated (Qiagen),
and cDNA was synthesized using the Sensiscript kit (Qiagen).
Primers for Ank1, Tspan33, and Trim10 were designed using Mac-
Vector (MacVector, Inc.). SYBR Green-based quantitative qPCR
(ABI SYBR Green PCR master mix, Applied Biosystems Inc.) was
perfomed on three independent populations. Samples were ana-
lyzed in duplicates using an ABI Prism 7000 sequence detection
system (Applied Biosystems Inc.). Data were normalized relative
to Gapdh.

For ChIP experiments, primers and 59-6-carboxyfluorescein-
39-6-carboxy tetramethylrhodamine-labeled probes were selected
from unique sequences in the Epb4.2, Gypa, Hba, and Hbb loci
using Primer Express (Kassouf et al. 2008). Primers for Aqp9, Alad,
Tal1, Prdx2, Trim10, Ssr1, and Mmel1, designed using MacVector,
were used with SYBR Green PCR master mix (Applied Biosystems
Inc.) for ChIP quantitation. Input and immunoprecipitated ma-
terial were analyzed in duplicates relative to a sequence in the
Gapdh locus as previously described (Anguita et al. 2004) on three
independent Tal1WT/WT and Tal1RER/RER samples. Primers for neg-
ative points were selected on all the loci, and ‘‘no antibody’’ ChIP
reactions were used as controls. Primer sequences are available
upon request.

Expression microarray

Expression profiling was performed using Sentrix Mouse-6 Expres-
sion BeadChip arrays from Illumina (Illumina Inc.) on three in-
dependent Tal1WT/WT and Tal1RER/RER Ter119�-purified erythroid
progenitor populations. RNA was extracted using RNAqueous
(Ambion) and assessed for integrity using the Agilent Bioanalyzer
2100 (Agilent Technologies). All samples presented RNA integrity
(RIN) scores above 9.5. Samples were then processed for array
hybridization and data accumulation at the Wellcome Trust
Center for Human Genetics, Genomics Group. In brief, amplifi-
cation was performed using the Illumina TotalPrep RNA Amplifi-
cation kit (Ambion) according to the manufacturer’s instructions.
Amplified cRNA was hybridized to the BeadChip arrays according
to the manufacturer’s guidelines and detected with Fluorolink
Streptavidin-Cy3 (Amersham Biosciences). The raw intensity
values obtained for the scanned array images were compiled using
Illumina BeadStudio. The data were filtered so that any probe
with a detection score of <0.95 across all samples was removed
from the analysis prior to log transformation (base2) and quantile
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normalization. Differentially expressed genes were identified using
limma (Smyth 2004) for R. Expression array data sets have been
submitted to the Gene Expression Omnibus (GEO) database under
accession number GSE21877.
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