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Using radiation hybrid genotyping data, 99% of all possible gene pairs across the mammalian genome were tested for
interactions based on co-retention frequencies higher (attraction) or lower (repulsion) than chance. Gene interaction
networks constructed from six independent data sets overlapped strongly. Combining the data sets resulted in a network
of more than seven million interactions, almost all attractive. This network overlapped with protein–protein interaction
networks on multiple measures and also confirmed the relationship between essentiality and centrality. In contrast to
other biological networks, the radiation hybrid network did not show a scale-free distribution of connectivity but was
Gaussian-like, suggesting a closer approach to saturation. The radiation hybrid (RH) network constitutes a platform for
understanding the systems biology of the mammalian cell.
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Deciphering the genetic circuitry of the mammalian cell remains

a significant challenge. One major obstacle to annotating genetic

interactions is their number. In a genome of 20,000 genes, there are

about 2 3 108 possible pairwise interactions.

A number of approaches have been used to map gene in-

teractions in eukaryotes. Large-scale genetic interaction screens

based on synergy and antagonism have been performed using syn-

thetic genetic array analysis in yeast (Tong et al. 2001, 2004; Cos-

tanzo et al. 2010) and RNA interference in Caenorhabditis elegans

(Lehner et al. 2006), covering about 30% and about 0.03% of all

potential interactions, respectively. Protein–protein interactions

have been assessed using yeast two-hybrid mapping or co-affinity

immunoprecipitation (Cusick et al. 2005; Rual et al. 2005) in yeast, C.

elegans, and Drosophila melanogaster (Giot et al. 2003; Li et al. 2004;

Gavin et al. 2006; Yu et al. 2008; Simonis et al. 2009). The proportion

of potential protein–protein interactions evaluated is more than 77%

in yeast (Gavin et al. 2006; Yu et al. 2008), about 50% in Drosophila

(Giot et al. 2003), and about 25% in C. elegans (Simonis et al. 2009).

Protein interaction techniques do not provide information

on mechanistic consequences of protein–protein binding and

suffer from high false-positive and false-negative rates, approach-

ing 50% (Deane et al. 2002; Ito et al. 2002). Probabilistic in-

tegration of genomic data of diverse functional relationships into

single networks has successfully incorporated the majority of

genes but has been less successful in providing comprehensive

coverage of genetic interactions as only a modest fraction of such

interactions have been evaluated (Lee et al. 2004, 2008).

Our understanding of mammalian genetic interactions is

even less impressive. Although large-scale efforts to map the pro-

tein interactome in humans have begun (Gandhi et al. 2006), only

about 10% of potential interactions have been assayed (Rual et al.

2005; Venkatesan et al. 2009). Furthermore, genetic interactions in

humans and mammals remain nearly completely unexplored.

In principle, evolutionary conservation of interactions would

allow inference of mammalian interactions from yeast and C. ele-

gans. While a significant proportion of genetic interactions (17%

of synergistic or negative and 50% of antagonistic or positive) are

conserved between the budding yeast Saccharomyces cerevisiae and

the fission yeast Schizosaccharomyces pombe (Roguev et al. 2008),

only 5% of synergistic interactions are conserved between S. cer-

evisiae and C. elegans (Tischler et al. 2008). Furthermore, overlap

between human and yeast, C. elegans, or fly protein–protein in-

teraction networks is limited (Gandhi et al. 2006).

Therefore it is necessary to explore mammalian genetic in-

teractions in the mammalian setting. An additional problem for

mammalian cells is the apparent lack of a simple and cheap

method for combining alleles of distinct genes in the same cell.

Radiation hybrid (RH) panels have been an invaluable re-

source for mapping vertebrate genomes (Goss and Harris 1975;

Gyapay et al. 1996; McCarthy et al. 1997; Stewart et al. 1997;

Watanabe et al. 1999; Olivier et al. 2001; Hitte et al. 2005). Gen-

eration of an RH panel begins with lethal irradiation of a donor

cell line, inducing random breaks in its genome. The donor cell

harbors a selectable marker, typically thymidine kinase. The frag-

mented DNA is then rescued by fusing the donor cell to a non-

irradiated host cell line lacking the selectable marker. Growing the

fused cells in selective medium, for example, HAT, ensures that

only host cells incorporating the selectable marker plus a random

sample of donor DNA will propagate.

Surviving hybrid clones are expanded, and those with suffi-

cient retention of donor DNA constitute the panel, usually around

100 cell lines. Across a panel, DNA markers are retained on average

in 16%–35% of hybrids. The selectable marker is by definition

retained at 100%.

Because of the large number of chromosome breaks induced

by irradiation, genotyping the RH panel offers greatly superior

resolution (often less than 150 kb) compared with meiotic map-

ping (Park et al. 2008). Similar to meiotic recombination, neigh-

boring markers tend to be retained together while distant markers

segregate independently. Retained autosomal genes have a copy

number of three, compared with two for nonretained (Park et al.
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2008). The corresponding copy numbers for sex chromosome

genes are two and one.

Here, we examine marker co-retention for a purpose distinct

from genetic mapping, namely, identification of genetic in-

teractions. We hypothesize that RH clone survival may depend on

such interactions. If extra copies of a pair of distinct genes enhance

survival, an attractive relationship results (Fig. 1A). Alternatively,

if the extra pair of gene copies adversely affects survival, a repul-

sive relationship results (Fig. 1B).

We demonstrate that a great number of interactions can be

identified quickly and inexpensively in publicly available RH

genotyping data sets (Fig. 1C). We then show that many more

Figure 1. Interaction type and workflow. (A) Attractive interaction. Extra copies of gene A and gene B in the same clone promote survival. (B) Repulsive
interaction. Extra copies of A and B in the same clone hinder survival effects. (C ) Workflow. Tasks, red squares; externally generated data sets, blue circles;
and internally generated data sets, green circles.
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interactions can be identified when the different data sets are

combined to improve power. The resulting, functionally organized

interaction network provides the most comprehensive coverage of

mammalian genetic interactions yet.

Results

RH panels

PCR genotyping data from six publicly available RH panels were

used to find coretained markers as evidence of genetic interactions

(Table 1). Three human panels, G3, TNG, and GB4, and three

nonhuman panels, mouse T31, rat T55, and dog, were used. Across

the panels, the number of markers, average fragment size, and the

retention rate varied considerably. For each marker, the PCR data

consisted of vectors of absent, present, and ambiguous calls, or 0, 1,

and 2, respectively, where the length of each vector was the

number of cell lines in the panel.

Thymidine kinase (TK1) was used as the selectable marker

for all panels, and nearby markers (<150 kb) consequently have

a higher retention frequency than average. This exception aside, it

was possible to seek interactions for more than 99% of the genome.

Mapping clusters of interacting pairs

To quantify the degree of co-retention between marker pairs, we

constructed a 2 3 2 contingency table of joint presence and ab-

sence across all cell lines in a panel. A two-sided Fisher’s exact test

was then used to calculate the probability of co-retention. Multi-

ple hypothesis correction was achieved using false discovery

rates (FDRs) (Benjamini and Hochberg 1995). Since neighboring

markers tend to be retained together, we did not perform this

analysis on marker pairs separated by less than 10 Mb, less than 1%

of all possible pairs. The 10-Mb threshold was chosen because, on

average, conservatively only ;0.6% of fragments contained two

markers separated by greater than this distance in the fully com-

bined RH data set used in this study (Supplemental material;

Supplemental Fig. S1). In addition, data in which one or both of

a marker pair were ambiguous were excluded from analysis.

Identifying interactions

For a given FDR threshold in each data set, all significant marker

pairs were placed in genomic order on an n 3 n matrix, where n is

the number of markers for that data set. To be conservative, we

eliminated all candidate interactions only one marker wide using

an automated computer program and imposed the criterion that

clusters made up of five or more adjacent, significant marker pairs

were sufficient evidence for interaction (Methods, Supplemental

material, and Supplemental Fig. S2). Examples of an excluded in-

teraction peak with only one marker are shown in Figure 2, A and

B, and an included peak in Figure 2, C and D. Marker pairs were

assigned to interactions using a recursive, cluster-labeling algo-

rithm starting at FDR <0.1% and progressing to increasingly liberal

FDR thresholds.

For each identified interaction, the genes closest to the marker

pair comprising the interaction peak (largest �log10P) were se-

lected as the most probable candidates for genetic interaction. The

number of gene–gene interactions in each panel is shown in

Supplemental Figure S3. The rat data set produced the largest

number of interactions, with 219,307 identified at FDR <40%.

Converting markers to human

To compare interactions in the individual RH data sets and even-

tually combine them, we placed the markers on a common ge-

nome. Because three of our panels covered the human genome, we

chose this genome as the scaffold. Using the UCSC Genome Browser

liftOver utility (http://genome.ucsc.edu/cgi-bin/hgLiftOver) together

with imputation exploiting synteny conservations, 89.07% of mouse,

95.87% of rat, and 99.59% of dog markers were placed on the human

genome.

Overlap between RH networks

To assess the reproducibility of interaction identification, we ex-

amined the amount of overlap between interactions in each panel.

Due to increased power, overlap increased as the FDR threshold

was relaxed (Supplemental Table S1). At FDR <40%, the mean

�log10P of the 15 pairwise comparisons between all six networks

was 10.73 (overlap comparisons throughout were one-sided

Fisher’s exact test; Table 2).

As well as having fewer interactions, the TNG and dog data

sets had more limited overlap with the other panels (Supplemental

Fig. S3, Table 2). Genotyping noise may be more of a problem in

high-resolution panels such as TNG, where the average correlation

between nearby markers is diminished. An analogous problem

may occur in panels with smaller marker sets such as dog.

Table 1. Characteristics of RH panels

Panela
No. of

cell lines
No. of

markersb
Radiation

dosage (rads)
Average fragment

size (Mb)c
Average retention

(percent)c Reference

Human G3d 83 18,577 10,000 4.55 14.92 Stewart et al. (1997)
Human TNGe 90 36,668 50,000 1.25 18.02 Olivier et al. (2001)
Human GB4f 93 42,911 3000 10.37 34.16 Gyapay et al. (1996)
Mouse T31d 100 18,844 3000 6.68 30.33 Avner et al. (2001)
Rat T55d 106 19,532 3000 9.68 26.37 Kwitek et al. (2004)
Dogg 88 9775 9000 8.07 27.99 Hitte et al. (2005)

aAll data sets available in the Supplemental material.
bBased on most recent data.
cOur estimate based on most recent data (for fragment size calculation, see Supplemental material). Fragment length distributions were log-normal (Sup-
plemental Fig. S1).
dftp://ftp.ebi.ac.uk/pub/databases/RHdb/.
eNo longer publicly available, but downloaded from http://shgc-www.stanford.edu/ at initiation of project.
fhttp://www.broad.mit.edu/ftp/distribution/human_STS_releases/july97/rhmap/.
ghttp://dogs.genouest.org/RH10K-som-details.html#Resources.
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Combining RH data sets

Given the overlap among the interactions in the RH panels, we

combined the data sets to improve power. To maintain compara-

bility of marker and breakpoint densities in the combined data

sets, we used markers from all panels. We interpolated the re-

tention vector for each marker across other panels using data from

the nearest marker in each panel (Peirce et al. 2007).

We accreted the data sets in the following arbitrary order:

G3-mouse-rat, G3-mouse-rat-dog, G3-TNG-mouse-rat-dog, and the

fully combineddataset, G3-TNG-G4-mouse-rat-dog.To test whether

data set combination would perform better when restricted to one

species, we also created a human only data set, G3-TNG-GB4. The

characteristics of the combined data sets are summarized in Table 3.

Power

Combining data sets greatly improved sensitivity to detect in-

teractions (Supplemental Fig. S4). An example of an interaction in

the fully combined data set between a marker on chromosome 6

and two loci on chromosome 2 is shown in Figure 3A. A plot of all

interactions significant at FDR <10�8 is shown in Figure 3B, and

a plot indicating loci with significantly large numbers of in-

teractions (hotspots) is shown in Figure 3C.

In the fully combined G3-TNG-GB4-mouse-rat-dog data set at

FDR <5%, we identified about 10 times as many interactions as the

sum of the six individual data sets at FDR <40% (Fig. 4A; cf. Sup-

plemental Fig. S3). The number of interactions in the fully com-

bined data set thus greatly overshadowed the number expected

from simple summation, suggesting widespread improvements in

power. We identified almost 6.7 3 106 interactions in the fully

combined data set among known genes, corresponding to about

3.4% of all possible pairwise interactions.

Overlap between RH and protein–protein
interaction networks

We used a protein–protein interaction network of 27,333 edges

covering 7534 genes constructed from the Human Protein Reference

Database (HPRD) (Peri et al. 2003; Gandhi et al. 2006) as a bench-

mark against which to compare the RH gene–gene interactions. For

all comparisons, we limited the search space for overlapping edges to

only those genes in the HPRD network.

Figure 2. Exclusion and inclusion in G3 data set of candidate interactions. (A) Excluded candidate interaction one marker wide. (Upper panel) Marker
11787 located on chromosome 11 is coretained with a single marker on chromosome 17, marker 15564 (red arrow). (Lower panel) Marker 15564 is
coretained with markers on chromosome 11 between 74 Mb and 80 Mb, including marker 11787 (blue arrow). (B) Plot of�log10P for excluded candidate
shown in A. Ten markers on each side of markers 11787 and 15564 are displayed. (C ) Included interaction. (Upper panel) Marker 3086 on chromosome 2 is
co-retained with markers on chromosome 11 between 124 Mb and 128 Mb, including peak marker 12114 (red arrow). (Lower panel) Marker 12114 on
chromosome 11 is co-retained with markers on chromosome 2 between 238 Mb and 243 Mb, including peak marker 3086 (blue arrow). (D) Plot of
�log10P for interaction shown in (C ). Ten markers on each side of markers 3086 and 12114 are displayed.

Table 2. Overlap between RH networks

�log10 P overlap

FDR 40% G3 GB4 TNG Mouse Rat Dog

G3 55.79 5.828 22.51 18.73 0.894
GB4 55.79 15.72 6.333 13.66 2.295
TNG 5.828 15.72 0.836 0.782 0
Mouse 22.51 6.333 0.836 15.39 0.392
Rat 18.73 13.66 0.782 15.39 1.829
Dog 0.894 2.295 0 0.392 1.829
Meana 20.75 18.76 4.634 9.093 10.08 1.076

aMean of �log10 P overlap with other data sets.
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Overall, individual RH networks did not significantly overlap

with the HPRD network (Supplemental Fig. S5A). However, there

were hints of improved overlap as the FDR was made less stringent.

An adjusted �log10P penalized proportionally by the number of

added edges remained relatively steady with relaxation of the FDR

(Supplemental Fig. S5B), suggesting that overlap improvements

were primarily attributable to increased power.

The combined RH networks demonstrated much stronger

overlap with HPRD than did the single panel networks (Fig. 4B).

The overlap improved with the addition of each RH data set and

also as the FDR was relaxed. At FDR <5%, the fully combined data

set overlapped with HPRD at �log10P = 25.85. Similar to the in-

dividual RH networks, the adjusted �log10P-values of the com-

bined data sets also remained relatively steady with relaxation of

the FDR (Supplemental Fig. 4C).

At FDR <5%, the data set consisting of three human RH

panels, G3-TNG-GB4, showed superior interaction numbers (Fig.

4A) and overlap with HPRD (Fig. 4B) compared with the G3-M-R

data set derived from three different species. Nevertheless, the fully

combined data set showed the best overall performance. Species-

specific interactions may be obscured when combining data sets

from different species. Thus, the fully combined data set may

emphasize interactions common to all mammalian cells. However,

the fact that three out of the six RH panels were human means that

strong human-specific interactions might still be found in the fully

combined data set.

Mapping resolution

Using only the genes under each RH interaction peak could be too

restrictive, since adjacent genes will be linked. Also genotyping

errors can result in mapping imprecision. To evaluate mapping

resolution when comparing interactions to HPRD, we permitted

uncertainty regarding the location of the responsible genes in the

RH data. We added an edge not only between the gene pair closest

to the interaction peak but also to all pairwise combinations of n

genes flanking each member of the gene pair, for uncertainty n.

Adding uncertainty to the RH networks had inconsistent ef-

fects on overlap with HPRD for individual panels as judged using

nonadjusted and adjusted �log10P (Supplemental Figs. S6, S7).

Some panels showed improved overlap with increased uncertainty,

probably due to elevated edge number and enhanced power. A

more consistent picture emerged with the combined panels, which

generally showed decreased overlap as uncertainty increased

(Supplemental Figs. S8, S9). The fully combined data set showed

a monotonic decrease in overlap at FDR <5% as uncertainty in-

creased (Fig. 4D,E). Thus, increasing the edge number by including

flanking genes did not improve overlap for this data set, suggesting

Table 3. Combined RH data sets

Combined panels
No. of

markers

No. of
cell
lines

Average
fragment

size
(megabase)a

Average
retention
(percent)

G3-TNG-GB4 78,018 266 1.30 22.38
G3-mouse-rat 54,088 289 2.66 24.08
G3-mouse-rat-dog 63,823 377 2.53 25.06
G3-TNG-mouse-rat-dog 87,666 467 1.33 23.62
G3-TNG-GB4-mouse-rat-dog 123,065 560 1.24 25.39

aFor calculation, see Supplemental material.

Figure 3. Fully combined RH network. (A) Co-retention between marker at 130,440,601 bp (blue arrow) on chromosome 2 and markers on chro-
mosome 6 (left). Co-retention between marker at 57,433,004 bp (red arrow) on chromosome 6 and markers on chromosome 2 (right). (B) Gene–gene
interactions at FDR <10�8. (C ) Number of edges per gene (degree) for fully combined network at FDR <5%. Horizontal lines show hotspots (red, FDR
<40%; green, FDR <1%) assuming a Poisson distribution (Brem and Kruglyak 2005; Park et al. 2008).
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it has the best resolution. The odds ratios for the uncertainty of

zero compared with the uncertainty of one for the fully combined

data set was >102 and >1021, for nonadjusted and adjusted overlap,

respectively.

As another measure of mapping resolution, we evaluated the

�2log10P resolution for all markers within 10 Mb of each other

(Supplemental material). The fully combined network had the

highest resolution, with a �2log10P distance of 19.5 kb (Supple-

mental Fig. S10; Supplemental Table S2). These observations sug-

gest that the resolution to identify interactions in the fully com-

bined data set was approximately one gene-wide or less.

Many transcriptional control elements affecting DNA sec-

ondary structure, such as enhancers or silencers, can reside con-

siderable distances from their target genes, sometimes many

megabases (Visel et al. 2009). However, in the RH system such el-

ements will not have an effect unless physically linked to the gene

they control. Therefore, it is unlikely that this phenomenon affects

the resolution or identity of the RH interaction peaks.

Novel genes

In the previous analyses, we ignored interactions if there was no

known human gene or microRNA within 500 kb of a marker’s

position. At FDR <5% in the fully combined data set, this left

about 525,000 interactions unannotated, or ;7% of the total in-

teraction number, corresponding to 617 novel genes (Supple-

mental material).

A single, representative RH network

For all remaining analyses, we used only the fully combined net-

work at FDR <5%. To create the network, a set of 20,113 human

genes, consisting of 18,781 known genes, 715 microRNAs, and the

617 novel genes, were used. Of the 20,113 genes, 1789 genes

possessed no edges since they were located on the genome such

that no marker could claim that gene as its nearest. Between the

remaining 18,324 genes were 7,248,479 edges. The number of

edges (degree) per node ranged from zero to 5210, with a mean of

791.15 and a median of 605, suggesting positive skewing (Sup-

plemental Fig. S11).

The gene with the highest number of edges was a novel gene

detected by the RH data, RH_167. The known gene with the

highest number of edges was AUTS2, which has been linked to

autism spectrum disorders (Auranen et al. 2002) and mental re-

tardation (Kalscheuer et al. 2007). Only two genes had zero edges,

VAMP7 (also known as SYBL1) and the microRNA MIR1977.

A subnetwork consisting of cyclooxygenase-1 (COX1 or

PTGS1) and all nodes within two edges at FDR <10�6 is displayed

in Figure 5A. Consistent with its role in prostaglandin synthesis,

COX1 showed attractive connections with the prostaglandin D2

receptor (PTGDR) and the prostaglandin E receptor 1 (PTGER1)

(Smith and Dewitt 1996). Interestingly, these two receptors were

connected to each other by receptor expression enhancing protein

4 (C8orf20 or REEP4), itself a transmembrane protein. Family

members REEP1 and REEP3 enhance surface expression of taste

and odorant receptors (Saito et al. 2004; Behrens et al. 2006), and

our data suggest a similar function for REEP4 in the context of

prostaglandin receptors. A three-edge subnetwork centered on

MTOR (FRAP1) at FDR <10�8 is shown in Figure 5B. An attractive

connection between MTOR and glutamyl-prolyl-tRNA-synthetase

(EPRS) reflects the role of MTOR in translational regulation.

Most interactions are attractive

Of all edges in the RH network, the vast majority reflected attrac-

tive interactions, in which the two genes were coretained at a rate

higher than chance. The proportion of interactions that were re-

pulsive was only 4 3 10�4. The disparity was not due to lack of

power, since simulations revealed equivalent power to detect re-

pulsion and attraction for ;96% pairs of markers (Supplemental

material; Supplemental Fig. S12). It is difficult to draw a direct

analogy between yeast gene networks, where interactions are

identified using pairs of null or hypomorphic alleles, and the RH

network, where interactions are identified using pairs of genes

with extra copies. Nevertheless, in the yeast system there was

a more nearly equal proportion of positive and negative in-

teractions, with about two-thirds being negative or synergistic

(Costanzo et al. 2010).

A non-scale-free genetic network

The distribution of the number of edges (connectivity or degrees)

per node for many complex networks has been proposed to obey

a power law, such that the point probability of finding a node with

k degrees, P(k) ; k-l, where l is a constant, usually between 2 and 3

(Barabasi and Albert 1999; Jeong et al. 2000). The majority of nodes

Figure 4. RH network interactions and overlap with Human Protein
Reference Database (HPRD). (A) Number of interactions for combined
panels. (B) Combined panel overlap with HPRD. (C ) Adjusted �log10P for
combined panel overlap with HPRD. (D) Uncertainty and combined panel
overlap with HPRD at FDR <5%. (E ) Uncertainty and adjusted �log10P for
combined panel overlap with HPRD at FDR <5%. Data set abbreviations:
M, mouse; R, rat; and D, dog.
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in such ‘‘scale-free’’ networks possess only a few links, while a small

number of nodes have many links. New edges in these networks

are preferentially attached to already highly connected nodes. The

apparent ubiquity of the scale-free property across a diverse spec-

trum of networks has led to the perhaps premature suggestion that

it represents a universal architecture (Keller 2005).

The degree distribution of the RH genetic interaction network

was not scale-free but rather Gaussian-like (Fig. 5C), in contrast to

the apparent scale-free nature of the HPRD network (Fig. 5D). This

discrepancy can be explained by network coverage. Unlike the

World Wide Web and social interaction networks, whole-genome

interaction networks are finite and do not allow for the unlimited

growth required for a scale-free network. A Gaussian-like distri-

bution similar to the RH network is thus expected as the network

approaches saturation (Albert and Barabasi 2002).

An alternative explanation for the Gaussian-like distribution

is that the RH network is random. We therefore reduced the satu-

ration of the RH network by using a more stringent FDR <10�8. At

this threshold, the RH network is com-

posed of 11,956 edges, approximately

half the size of the HPRD network, and

the degree distribution appears to be

scale-free (Fig. 5E). The Gaussian-like

distribution of the RH network is there-

fore due to its approach to saturation, and

the apparent scale-free nature of other

biological interaction networks may be

due to lack of completeness.

RH network topology

To assess more thoroughly the congruence

of the RH and HPRD networks, we com-

pared their topological properties. Hub

nodes are important because of the large

number of interactions in which they par-

ticipate. The connectivity of the RH and

HPRD networks was significantly correlated

(Spearman’s r = 0.09, P = 2.31 3 10�15).

Just as hubs are central points in

networks, so are bottlenecks. Between-

ness centrality represents the degree to

which a node is a bottleneck, by measur-

ing how often the node comprises part of

the shortest path between other pairs of

nodes (Freeman 1977; Yu et al. 2007). The

betweenness centralities of genes in the

RH and HPRD networks were also signif-

icantly correlated (Spearman’s r = 0.07,

P = 2.53 3 10�9).

In addition, we compared clustering

coefficients, a measure of the cliquishness

of a node’s neighbors (Watts and Strogatz

1998). The clustering coefficients of the

RH and HPRD networks were not corre-

lated (Spearman’s r = �0.02, P > 0.05),

perhaps because of selection biases in

HPRD. Overall, these results suggest that

our network shares hub nodes and be-

tweenness centralities but not cliquish-

ness with the HPRD network. This same

pattern of topological overlap was found

in a directed gene-regulatory network based on transcript profiling

of the mouse T31 RH panel (Park et al. 2008; Ahn et al. 2009).

Essentiality and multifunctionality

In some protein–protein interaction networks, gene essentiality is

positively correlated with network centrality, whether connectiv-

ity (Jeong et al. 2001; Yu et al. 2004; Hahn and Kern 2005;

Deplancke et al. 2006; Lee et al. 2008; Ahn et al. 2009) or be-

tweenness centrality (Hahn and Kern 2005; Joy et al. 2005).

However, the association between essentiality and connectivity

has been disputed by several studies (Gandhi et al. 2006; Yu et al.

2008) and has been attributed to bias in favor of studying essential

genes (Coulomb et al. 2005). The RH network suffers from no such

bias, since we examine all possible interactions outside of 10 Mb

for each gene.

We found that essential genes had larger mean connectivities

(Wilcoxon rank-sum test, P = 1.29 3 10�12) and betweenness

Figure 5. Network topology. (A) Subnetwork of gene COX1 (PTGS1) and all genes up to two edges
away at FDR <10�6. (B) Subnetwork of gene MTOR (FRAP1) and all genes up to three edges away at FDR
<10�8. (C ) Degree distribution of fully combined RH network at FDR <5%. Number of degrees, k, and
point probability of node with k degrees, P(k), plotted on log scales. (D) Degree distribution of HPRD net-
work. (E ) Degree distribution of fully combined RH network at FDR <10�8.
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centralities (Wilcoxon rank-sum test, P = 2.47 3 10�12) than

nonessential. We also found significant correlations between

mean connectivity and betweenness centrality with an increasing

fraction of essential genes in bins of 200 genes (Spearman’s r =

0.89, P = 3.76 3 10�7, and Spearman’s r = 0.90, P = 1.12 3 10�7,

respectively). Our unbiased approach thus confirms the associa-

tion between centrality and essentiality.

Essential genes have been found to interact preferentially

with other essential genes in protein–protein interaction networks

(Yu et al. 2008), although a bias toward studying such genes could

also underlie this finding. We were unable to replicate the associ-

ation and found that essential and nonessential genes did not

differ in the proportion of edges to essential genes (t(3449) = 0.1432,

P = 0.89).

Recent work in yeast genetic interactions has found a corre-

lation between gene connectivity and multifunctionality, the

number of annotated functions for that gene (Costanzo et al.

2010). We have replicated this correlation, although more mod-

estly (Spearman’s r = 0.0525, P = 1.188 3 10�12).

Additional functional clustering in the RH network

In yeast and C. elegans, nodes with similar functions are more likely

to share edges in protein–protein interaction networks (Giot et al.

2003; Rual et al. 2005; Yu et al. 2008) and gene–gene interaction

networks (Lee et al. 2004, 2008; Tong et al. 2004; Kelley and Ideker

2005). To test this property for RH interactions, we determined

overlap between the RH network and a Gene Ontology (GO) net-

work (Ashburner et al. 2000) consisting of all interactions in 202

categories containing between 70 and 1000 genes. There was

highly significant overlap (P < 10�300). In addition to global

functional clustering, a network of all possible pairwise edges be-

tween genes associated with cell division (Kittler et al. 2007)

showed significant overlap with the RH network (P < 10�300).

To test overlap of the RH network with the Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000;

Kanehisa et al. 2006, 2008), we performed two analyses. In the first,

only those genes coding for proteins directly interacting in a KEGG

pathway were connected by edges. A network of all KEGG path-

ways combined showed significant overlap with the RH network

(P = 1.32 3 10�9). In the second analysis, we connected any two

genes whose proteins appeared in the same KEGG pathway, to re-

flect the indirect nature of genetic interactions. Here, we found that

a network of all KEGG pathways combined showed highly signifi-

cant overlap with the RH network (P = 7.93 3 10�313).

Disease-causing genes are more likely to interact with other

disease-causing genes in HPRD, suggesting that candidate genes for

genetically heterogeneous disorders can be identified using mo-

lecular networks (Gandhi et al. 2006). Using the Online Mendelian

Inheritance in Man (OMIM) genetic disorders database (Hamosh

et al. 2002), we found a similar property in our network (P <

10�300).

Because the RH network demonstrated clustering by disease-

causing genes, we were able to predict novel interactions involving

these genes. For example, the interaction between the ephrin re-

ceptor B2 gene (EPHB2) and fumarate hydratase (FH) in our net-

work is undocumented. Mutations in EPHB2 have been linked to

prostate cancer (Kittles et al. 2006), and mutations in FH have been

linked to renal cell cancer (Toro et al. 2003). Together, these results

suggest that genes in the RH network are functionally clustered in

ways reminiscent of protein interaction networks and that RH

interactions can be used to predict functions of uncharacterized

genes.

Discussion
Using publicly available RH data, we have mapped millions of gene

interactions in the mammalian genome. There was substantial

overlap between the genetic networks from six RH panels across

four species. Combining data sets improved power and yielded

unexpectedly large numbers of interactions. The fully combined

data set had nearly single gene resolution and consisted of more

than seven million interactions, showing significant overlap with

HPRD. The overlap between the fully combined RH and HPRD

networks was ;6%. A similar overlap was found with KEGG (;5%

direct; ;4% indirect). Although modest, these overlaps were

somewhat higher than the ;1% overlap between yeast genetic

interaction networks and protein–protein interaction networks

(Tong et al. 2004). Limited overlap between genetic and protein–

protein interaction networks is expected due to the functional,

indirect nature of genetic interactions and the direct, physical

nature of protein–protein interactions. The fully combined RH

network also overlapped with networks derived from GO and

OMIM. In addition, the network shared topological properties

with HPRD, including connectivity and betweenness centrality.

Unlike HPRD, the RH network showed a Gaussian-like degree

distribution rather than a scale-free degree distribution, suggesting

the RH network is closer to saturation than HPRD. Consistent with

this notion, the edges of the fully combined RH network com-

prised ;3.4% of all possible pairwise interactions, compared to

only ;0.01% in both HPRD and a recent human yeast two-hybrid

data set (Venkatesan et al. 2009). In addition to better coverage,

the RH approach offers the advantage of measuring interaction

strength with a �log10P score, while protein–protein interactions

are binary (Li et al. 2004; Rual et al. 2005; Yu et al. 2008; Simonis

et al. 2009; Venkatesan et al. 2009). Interactions involving genes

that code for extracellular and membrane-bound proteins are also

difficult for most yeast two-hybrid systems to detect (Bruckner

et al. 2009) but were identified by RH networks (cf. prostaglandin

receptors; Fig. 5A). Furthermore, the RH approach identifies inter-

actions involving essential genes, problematic for synthetic ge-

netic array analysis (Tong et al. 2001, 2004; Costanzo et al. 2010).

Our unbiased approach to interaction identification provides

solid evidence that essential genes are central to networks, as both

highly connected hubs and as highly trafficked bottlenecks. Pre-

vious reports of the relationship between connectivity and essen-

tiality (Jeong et al. 2001; Yu et al. 2004) have been criticized for bias

toward essential genes and challenged by the finding that re-

moving this bias eliminates the essentiality–centrality relationship

(Coulomb et al. 2005). Perhaps with the greater coverage of genetic

interactions from the RH network, the essentiality–centrality re-

lationship becomes apparent again.

A total of 617 novel genes participated in 525,000 in-

teractions. Regulatory loci lacking known genes were also found

through transcript profiling of the mouse T31 RH panel (Park et al.

2008). Integrating the interaction and transcript profiling data

using multiregression techniques should help identify the func-

tions of these novel genes, as well as known genes.

Although we suggest that co-retention of interacting gene

pairs may confer growth or survival advantages, we cannot be

certain of the mechanism of interaction without experimentation.

Given the size of the RH network, comprehensive experimental

validation is difficult. However, the significant overlap of the RH
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network with HPRD and other protein–protein interaction net-

works provides a reasonably extensive and objective validation,

since there is no reason to believe there is bias toward overlap.

Using orthogonal data sets has the additional advantage of in-

dependence. Homologous comparisons could be made between

RH mapping data for yeast or C. elegans and synthetic genetic array

and RNAi network analyses, respectively. Unfortunately, RH panels

do not exist for these organisms.

Our work did not address whether an interaction involves

more than two genes. Indeed, multigene interactions have been all

but ignored in genome-wide studies. The RH data could in prin-

ciple be mined for three-way or higher-order interactions, al-

though this would be computationally intensive.

Genome-wide interaction methods such as yeast two-hybrid

suffer from high false-positive and false-negative rates and, as

a consequence, low reproducibility (Deane et al. 2002; Ito et al.

2002). An important consideration, then, is determining an opti-

mum balance of false-positives and false-negatives. In this study,

we found that a 5% FDR threshold yielded the best overlap with

HPRD. Further relaxing the FDR would have increased the in-

teraction number, but the Fisher’s exact test P-value threshold at

FDR <5% was already approaching 0.05, so new interactions would

have had nominal P > 0.05 and be dubious.

Adding published RH data from other species, for example,

cow (Itoh et al. 2005), pig (Hamasima et al. 2008), horse (Raudsepp

et al. 2008), and monkey (Murphy et al. 2001), to the present RH

data sets should provide further improvements in power and

mapping resolution. High-throughput technologies such as array

comparative genomic hybridization (aCGH) have decreased the

genotyping costs of an RH panel by about 100-fold compared with

PCR, while increasing marker density about 100-fold (Park et al.

2008). This makes it feasible to create even larger RH panels from

single species to construct genetic interaction networks.

The International Cancer Genome Consortium (2010) (ICGC)

is providing detailed information on genotype and copy number

variation in 25,000 cancer genomes covering 50 different types. In-

teraction networks based on nonrandom co-retention of extra gene

copies and mutations can be constructed using the same methods

detailed here, although the resultant networks will be biased toward

cancer cell survival and proliferation. Co-retention of naturally oc-

curring polymorphisms can also be used to construct interaction

networks (Petkov et al. 2005).

We have demonstrated that a large number of potential gene

interactions can be identified quickly and inexpensively using RH

retention data. Combining data sets from different species gave

substantial improvements in power. The resulting networks will

provide a high-confidence map of mammalian genetic in-

teractions to help guide future studies.

Methods

Genotype vector files
Genotype data vector files were downloaded from various databases
(Table 1). These vectors are currently publicly available or were pre-
viously available and downloaded when this study began. All data
sets are available in the Supplemental material. Each file consisted of
a matrix of m rows of n columns, where m is the number of markers
in the data set and n is the number of cell lines. For an entry at row i,
column j, a 0, 1, or 2 signified an absent, present, or ambiguous call,
respectively, resulting from PCR screening of marker i in cell line j.

Since their initial creation, all panels but dog have been more
densely genotyped by several thousand additional markers each.

Using the latest marker data, we calculated new estimates of the
average retention frequency, none of which deviated from the
originally reported rates by more than 5% (Table 1).

Fisher’s exact test for co-retention

All possible pairs of markers not within 10 Mb of each other in any
data set were assessed for statistically significant co-retention, ei-
ther attraction or repulsion. For each marker pair, a 2 3 2 contin-
gency table was constructed where the first category was presence
or absence of the first marker and the second category was presence
or absence of the second marker within the same cell line. The
joint presence and absence of a pair of markers was tallied across all
cell lines and entered into the table. If the presence of either marker
was ambiguous, then the data for the marker pair in that cell line
were excluded. Thus, the total for each table describing a pair of
markers was less than or equal to the total number of cell lines. A
two-sided Fisher’s exact test was performed on the contingency
tables.

Interaction identification

All code for interaction identification was written in C for com-
putational speed and control over memory allocation. All marker
pairs for the single and combined data sets with P-values less than
the P-value cutoff at a given FDR were placed on an m 3 m matrix
of logicals, where m is the number of markers in the data set and
where each cell can take a 1, representing a significant P-value at
that FDR, or 0, nonsignificant.

Single marker interactions are probably due to marker and/or
breakpoint inhomogeneities (Supplemental material). However, to
be conservative, we sought to exclude such peaks. A 5 3 5 grid was
centered on each marker pair. If the pair was a single 1 on the grid,
the pair was changed to a 0 to eliminate singletons, candidate in-
teractions encompassing only one marker at both interacting loci
(Supplemental Fig. S2). If all other 1s on the grid were positioned in
only the third row or third column or both, then all 1s in the grid
were changed to 0s to eliminate horizontal and vertical streaks,
candidate interactions one marker wide for either the vertical or
horizontal axes, respectively (Supplemental Fig. S2). This step also
eliminated crosses, coincident horizontal and vertical streaks. If a 1
appeared in any position besides the third row or third column, all
1s in the grid were retained. This process retained two-dimensional
patches, which were potential interactions.

Only if a two-dimensional patch consisted of at least five
significant marker pairs was it declared a potential interaction.
Because genotyping errors could cause gaps in interactions, we
applied a smoothing procedure to avoid overestimating the
number of interactions. To smooth, a 5 3 5 grid was centered on
each marker pair in the matrix surviving removal of single marker
interactions. All cells in the grid were then filled with 1s. Patches of
significant pairs up to three markers away from each another were
thus binned to form one interaction. Marker pairs assigned a 1
from smoothing but not significant based on the FDR at that
P-value were not included as a true part of the interaction and
were dropped after this step.

Interaction cluster labeling and peak identification

After smoothing, a recursive cluster-labeling algorithm written in
C was used to assign a unique label (number) to marker pairs
constituting an interaction, starting at FDR <0.1% and progressing
to increasingly liberal FDR thresholds. All marker pairs remaining
at this step were placed on an m 3 m matrix of integers and given
a�1 tag, signifying an unlabeled state, where m was the number of
markers in the data set. If the marker pair was not significant or
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eliminated in the previous step, a zero was assigned. If the marker
pair had been labeled previously at a more stringent FDR, we
assigned that label to the marker pair before proceeding with the
recursive algorithm. The algorithm was as follows:

1. Examine marker pair at top of stack data structure.
2. If marker pair has not been assigned an interaction label, assign

that marker pair the current incremental interaction label.
Remove (pop) the marker pair from the stack.

3. Check marker pairs adjacent to current pair in all four di-
rections.
a. If adjacent pair is unlabeled, push it on top of the stack for

later examination.
b. If adjacent pair is labeled,

i. If the label is the same as the current label, do nothing
and proceed to step 4.

ii. If label is less than current label, this means current
marker pair is adjacent to a previously labeled
interaction and will be absorbed into that interaction.
Make a note that pairs newly labeled in this new
interaction actually belong to a previously labeled
interaction.

4. If the stack is not empty, proceed to step 1. If the stack is empty,
the entire interaction is labeled.

The result of the algorithm was a matrix of 0s and clustered in-
tegers, ranging from 1 to k, where k was the number of interactions
labeled. For each labeled interaction, a peak was identified as the
marker pair with the largest �log10 P in the interaction. If more
than one marker pair shared the peak �log10 P, all were designated
as peak.

Combining data sets

We employed the UCSC Genome Browser liftOver utility (http://
genome.ucsc.edu/cgi-bin/hgLiftOver) to convert mouse, rat, and
dog marker genome coordinates to human. Using default settings
except a minimum base-pair matching threshold of 10%, we were
able to place 53.75% of mouse, 76.78% of rat, and 97.2% of dog
markers on the human genome. To improve on this, we assumed
conservation of synteny to impute the positions of unconverted
markers using the positions of converted markers. If an un-
converted marker was positioned in the original species between
two markers successfully placed on the same chromosome in hu-
man, the unconverted marker was placed between the converted
markers. Markers in these gaps were evenly spaced between the
successfully converted anchor markers.

Converted and human markers were used in the combined
data sets. The number of markers in a combined data set was ap-
proximately the sum of the number of markers in the component
data sets, but because of marker overlap in the human data sets, it
was at times less than the sum. For example, in the G3-mouse-rat-
dog combined data set, we used the locations of the 18,577 G3
markers, the 16,785 converted mouse markers, the 18,726 con-
verted rat markers, and the 9735 converted dog markers to gen-
erate a total of 63,823 marker positions on the human genome.

Within a panel, retention was calculated for all converted and
human markers by interpolation from the nearest marker assayed
in that panel (Peirce et al. 2007). Given that the correlation be-
tween neighboring markers in the original panels was around 0.8
(except for TNG, which had a lower correlation of 0.23 because of
its shorter fragment lengths), this interpolation scheme was rea-
sonable. The retention at each marker was then obtained by
summing the marker retention in the various panels.

Interactions identified in each of the five combined data sets
were FDR controlled up to a maximum of 5%. The large number of

significant interactions meant that FDR corrections were already
minimal at this threshold, reflected by the P-value ranging from
0.029–0.033 for all five data sets at FDR <5%. The gene interactions
networks obtained from the fully combined RH data set are avail-
able in the Supplemental material.

Additional methods can be found in the Supplemental
material.
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