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Abstract
Developing, targeting, and evaluating genomic strategies for population-based disease prevention
require population-based data. In response to this urgent need, genotyping has been conducted
within the Third National Health and Nutrition Examination (NHANES III), the nationally-
representative household-interview health survey in the U.S. However, before these genetic
analyses can occur, family relationships within households must be accurately ascertained.
Unfortunately, reported family relationships within NHANES III households based on
questionnaire data are incomplete and inconclusive with regards to actual biological relatedness of
family members. We inferred family relationships within households using DNA fingerprints
(Identifiler®) that contain the DNA loci used by law enforcement agencies for forensic
identification of individuals. However, performance of these loci for relationship inference is not
well understood. We evaluated two competing statistical methods for relationship inference on
pairs of household members: an exact likelihood ratio relying on allele frequencies to an Identical
By State (IBS) likelihood ratio that only requires matching alleles. We modified these methods to
account for genotyping errors and population substructure. The two methods usually agree on the
rankings of the most likely relationships. However, the IBS method underestimates the likelihood
ratio by not accounting for the informativeness of matching rare alleles. The likelihood ratio is
sensitive to estimates of population substructure, and parent-child relationships are sensitive to the
specified genotyping error rate. These loci were unable to distinguish second-degree relationships
and cousins from being unrelated. The genetic data is also useful for verifying reported
relationships and identifying data quality issues. An important by-product is the first explicitly
nationally-representative estimates of allele frequencies at these ubiquitous forensic loci.
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1 Introduction
The recent revolution in genetics promises enormous gains for understanding and improving
health. In all genome-wide association studies since 2007, genetic variants at nearly 100
regions of the genome have been associated with an increased risk for diseases with
complex genetic causes, such as diabetes, inflammatory bowel disease, heart disease, and
cancer (Chanock and Hunter, 2008). Twenty-eight specific genetic variants have been linked
to cancers of the breast, prostate, colon, lung, and skin (Easton and Eeles, 2008). Research is
progressing rapidly (Lin et al., 2006) to determine risks conferred by newly-discovered
types of genetic variation such as copy-number variants (Feuk et al., 2006), and to elucidate
the joint effects of multiple genetic variants in concert with non-genetic factors.

However, the hotly-debated question remains about how to use genetic information to better
develop, target, and evaluate policies for population-level disease prevention (Pharoah et al.,
2008; Gail, 2008). Although the found genetic variants are common, each has small effect
on disease risks, and so modify disease risks only slightly for most individuals. However,
reliable identification of population subgroups at high disease risk has major implications
for population health (Pharoah et al., 2008).

As genetic findings accrue, evaluating their potential impact on population health requires
population-representative data. In response to this pressing need, the Centers for Disease
Control and Prevention and the National Cancer Institute have collaborated to conduct
genotyping on a subset of the Third National Health and Nutrition Examination Survey
(NHANES III). NHANES III is the nationally-representative household-interview and
medical examination survey of the U.S. non-institutionalized civilian population conducted
from 1988-1994 by the National Center for Health Statistics (NCHS) (NCHS, 1994). The
nationally representative sample is obtained from a complex, stratified, multistage
probability sample design with unequal selection probabilities.

These NHANES genetic data are the first U.S.-population-based genetic data. The
continuing NHANES survey is the first major periodic official health survey in the world to
collect genetic data. These data are a unique and paramount resource for analyzing the
distribution of genetic variation in the U.S. and for estimating the potential population
impact of genomic strategies for disease prevention. In addition, NHANES III oversamples
non-Hispanic blacks and Mexican-Americans, important yet genetically understudied
populations who also suffer from health disparities. These NHANES III data will integrate
existing social, environmental, behavioral, and biologic data with genetic data to understand
the determinants of health and health disparities in the U.S. (Chang et al., 2009).

However, before these impending analyses can be conducted, accurate information about
familial relationships within households must be available. Related individuals in a
household cannot be treated as an independent sample for genetic analyses. NHANES III
collected no self-reported family relationship information. Instead, family relationships were
reported with respect to a single person in the household who is often not in the sample
(U.S. Department of Health and Human Services (DHHS). National Center for Health
Statistics., 1996, see HFRELR). As a result, it is impossible to determine exactly the
reported relationship between two sample members. For example, one cannot presume that
the adult female sample persons in the household are the mothers of the children/youth
sample people in the household. Thus the data on reported family relationships within
NHANES III households are incomplete and inconclusive with regards to actual biological
relatedness of family members.

We use the NHANES III genetic data to infer familial relationships within NHANES III
households. DNA labs usually track biosamples using what is colloquially called a 'DNA
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fingerprint' (more properly, a DNA profile), a system of DNA loci useful for forensic
identification. One popular system is AmpFlSTR® Identifiler® PCR Amplification Kit
(Applied Biosystems, Foster City, CA, USA). Identifiler® contains the DNA loci used by
the Combined DNA Index System (CODIS; http://www.fbi.gov/hq/lab/html/codis1.htm)
that is commonly used by law enforcement agencies for forensic identification. While these
loci have a track-record for addressing if two DNA profiles are from the same person (or,
equivalently, identical twins), the performance of these loci for inferring family relationships
more distant than identical twin is less understood (Bieber et al., 2006).

We assess the use of the Identifiler® DNA loci for inferring family relationships with
nationally-representative survey data. We compared two methods that estimate the
likelihood ratio that a pair of household members have a hypothesized relationship versus
being unrelated. The first method (”exact method” (Evett and Weir, 1998, Ch. 5-8)) uses
allele frequencies and the second (”IBS (Identical By State) method” (Presciuttini et al.,
2002)) uses only the fact that alleles match between individuals. The exact method extracts
information out of matches on rare alleles, as matching rare alleles are more indicative of a
familial relationship than matching common alleles. However, the IBS method does not
require allele frequencies and is thus robust to inaccurate or inappropriate allele frequencies.
Since the genotyped DNA samples were cell lysates with widely varying DNA
concentrations, we modified both methods to account for genotyping errors. Finally, we
used a modification of the exact method to account for “cryptic relatedness” (Devlin and
Roeder, 1999) (also called population substructure): the fact that all ostensibly unrelated
humans still share small amounts of DNA from distant common ancestors. Cryptic
relatedness implies that ostensibly unrelated individuals have a residual relatedness, which
can violate the independence assumptions of standard methods for relationship inference.
We assess how much cryptic relatedness reduces the evidence in favor of familial
relationships. We also hope that this work will introduce survey statisticians to the swiftly-
arriving era of genetic data from surveys.

A by-product of our work are the first explicitly nationally-representative and
ethnicallyspecific estimates of these important allele frequecies. Our allele frequency
estimates could be relevant to forensic calculations requiring U.S. population-based allele
frequencies.

1.1 Data Description
During the second phase of NHANES III (1991-1994), lymphocytes were frozen and cell
lines were immortalized to create a DNA bank. Genetic variation data were collected from
7,159 participants aged 12 years and older. DNA was extracted by cell lysis and the
genotyping used in this paper was conducted by the Core Genotyping Facility at the
National Cancer Institute (http://cgf.nci.nih.gov). See (Chang et al., 2009) for all details.

We use genetic data from Identifiler® for each participant. Identifiler® tests for genetic
variants at 15 DNA loci called Short Tandem Repeats (STRs). STRs are multiple copies of
an identical DNA sequence arranged in direct succession in a particular region of a
chromosome (Butler, 2006). For example, the DNA locus D7S820 is in Figure 1. This locus
is on chromosome 7 (hence the D7). In the middle of this locus, the tetranucleotide sequence
gata is repeated 13 times. The number of repeats names the genetic variant (called an allele),
and a person has two alleles (one on each chromosome 7 inherited from the mother and
father). D7S820 typically has 6-14 gata repeats. However, there can be variants in the
repeated sequence motif as well; for example, the allele named 13.1 has an extra DNA base
inserted in the sequence of 13 ”gata” repeats in D7S820. See (Butler, 2006) for details on
each possible allele.
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Identifiler® contains the 13 CODIS loci commonly used by law enforcement agencies for
forensic identification: TPOX, CSF1PO, D5S818, D13S317, D16S539, TH01, D18S51,
D7S280, VWA, FGA, D3S1358, D8S1179, D21S11; Identifiler® also includes D19S433
and D2S1338. Both CODIS and Identifiler® also have the STR AMEL, but AMEL provides
information only on sex. For all details on these loci, see (Butler, 2006).

A fictitious example of a participant's DNA profile is in Figure 1. Each allele at each locus is
shown, e.g. 13/10 means alleles 13 and 10 are observed. The pair of alleles is called the
genotype. We also have the demographic variables of race/ethnicity, sex, and age. Sex and
age for each pair of household members can help narrow down the possible familial
relationships, and ethnicity is needed to select the proper allele frequencies to use in
relationship inference. Given a feasible region of familial relationships, we use the genetic
information to infer family relationships.

From the 7159 participants, we excluded 346 due to poor DNA quality or low DNA
concentration (samples with less than 250 relative flourescence units; these samples had data
at fewer than 12 of the 16 Identifiler® loci). Furthermore, 72 participants who had a
mismatch between the reported sex and the (AMEL) genetically-determined sex (indicative
of lack of data quality) were excluded, yielding 6741 participants. The distribution of
genotyped household size is 1:2781, 2:1070, 3:329, 4:137, 5:27, 6:13, 7:3, 8:4, 9:1, and
11:1. The genotyped household size does not count individuals who were not genotyped.
Thus 3960 were in multiple-person households, yielding 3610 possible pairs of genotyped
relatives within households. The 2781 participants who are the only genotyped member of
their household are included to estimate allele frequencies. To estimate nationally-
representative allele frequencies, NCHS statisticians provided a sample weight for each
participant to weight our dataset up the U.S. population. We categorized the race/ethnicity of
participants as ’non-Hispanic White’, ’non-Hispanic Black’, and ’Mexican-American’.
Participants who self-identified as Mexican-American in NHANES III represent a
heterogeneous race-ethnic population of primarily Hispanic American Indian and Hispanic
White. Because specific information on which current Office of Management and Budget
categorization each of these participants represents is not available, we will use the term
Mexican-American for the purposes of this publication.

2 Methods
Denote the genotype (the pair of alleles) for participant k at locus j as lj,k. The full DNA
profile of the 15 Identifiler® loci is Pk = (l1,k, l2,k, …, l15,k). Statistical evidence in favor of a
hypothesized familial relationship R (such as parent-child, full-siblings, etc.) between the
two participants providing DNA profiles (P1, P2) is measured by the likelihood ratio (LR)

(1)

We use the exact method and the IBS method to compute the LR as well as maximum
likelihood estimates of relationships.

2.1 Exact Method
The likelihood for two profiles P1, P2 within the same household given a relationship is
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(2)

because the loci are on different chromosomes and are thus independent.

To make further progress, relationships can be parameterized in terms of Identical-By-
Descent (IBD) probabilities. Two people can share 0, 1, or 2 alleles IBD. For the pair in
Table 1, they share 0 alleles IBD at D13S317, at most 1 allele IBD at D16S539 (at most 1
because their matching allele 11 could be from two different ancestors, so they could share 0
alleles IBD), and at most 2 alleles IBD at CSF1PO. The probability of sharing i alleles IBD
is denoted by ki and Σki = 1.

All familial relationships are defined by their IBD probabilities (Thompson, 1991) (Table 2).
For example, a person must share both alleles IBD within himself or his monozygotic
(identical) twin. Two unrelated people cannot share any alleles IBD (they can merely appear
to share to due to chance; their shared alleles would be from different ancestors and so
cannot be IBD). Since each parent contributes 1 allele at each locus for their child, they must
share exactly 1 allele IBD. For example, the pair in Table 1 cannot be the same person or
monozygotic twins, and they cannot be parent-child because they share no alleles at
D13S317. As Table 2 shows, the 2nd degree relationships (grandparent-grandchild, uncle-
nephew, half-sibling) have the exact same IBD probabilities and so cannot be distinguished
based on IBD alone. However, IBD plus age information usually suffices. We note that 2nd
degree relationships can be distinguished from each other by using correlated genetic loci
(McPeek and Sun, 2000).

Using IBD, the likelihood for two profiles is

(3)

The second term is the k0, k1 and k2 probabilities for each relationship in Table 2. The
genotype probabilities P(lj,1, lj,2) are independent of R given the IBD sharing because IBD
defines which alleles are fixed (from a common ancestor) and the others are random.

The genotype probability calculations P(lj,1, lj,2|IBD = i) are in Table 3 (Thompson, 1991).
Although the Identifiler® alleles are labeled by numbers, we label the four alleles in a pair
of genotypes generically by A, B, C, D. The constant factors of two and four in Table 3
reflect the fact that alleles within genotype are unordered (i.e. AB is equivalent to BA). When
IBD=0, the two genotypes are independent, so P(lj,1, lj,2|IBD = 0) = P(lj,1)P(lj,2). When
IBD=2, the two genotypes are completely dependent, so P(lj,1,lj,2|IBD = 2) = P(lj,1) = P(lj,2).
When IBD=1, the calculations are more complex, e.g.

because the conditional probability involves the probabilities of having an A, the probability
the IBD allele is indeed A (1), and the probability that the IBD allele is in the second
position (0.5) (first term) or in the first position (0.5) (second term). See (Wagner et al.,
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2006;Evett and Weir, 1998) for more details. In Table 3, we also represent each probability
as the probability over the alleles not IBD, so that, e.g. P(lj,1 = AA, lj,2 = AA|IBD = 1) =
P(AAA). This notation will be convenient for section 2.1.1 that relaxes the assumption of
independent non-IBD alleles.

We note that throughout this paper, we assume that no participants within households are
inbred and that all particiants between households are unrelated. Furthermore, we assume
that no loci are missing data in any way informative of relatedness; in this way, the product
(2) can be safely done over the observed loci alone.

2.1.1 Accounting for Cryptic Relatedness—Identifiler® allele frequencies vary
between ethnicities, and even within ethnicity, allele frequencies can vary between
subpopulations within ethnicities (Budowle et al., 2001). For example, the particular
European/African ancestry of the non-Hispanic whites/blacks in NHANES III is not
collected, and allele frequencies can vary within these groups. The effect of unknown
subpopulations means that heterogeneous allele frequences between the unknown
subpopulations will cause intraclass correlation of alleles within ethnicity (Devlin and
Roeder, 1999), violating the independence assumption required to calculate the genotype
probabilities of Table 3. Furthermore, all unrelated humans still share small amounts of
DNA IBD from distant common ancestors, and this cryptic relatedness (Devlin and Roeder,
1999) results in nebulous subpopulations that further increase the intraclass correlation.

Genotype probability calculations can be extended to account for the intraclass correlation
of alleles within ethnicity, called FST (Wright, 1969) (or the coancestry coefficient (Evett
and Weir, 1998)). FST is positive and can be interpreted as the probability that two alleles
are IBD from an unknown common ancestor. FST is accounted for by using a Dirichlet-
Multinomial distribution (Evett and Weir, 1998, pg. 123-5). The genotype probability
calculation for a single participant is altered as (Balding and Nichols, 1994)

since with probability FST the two A's are IBD from a distant common ancestor. Similarly,

since different alleles cannot be IBD. The genotype probability calculations for pairs of
genotypes (for IBD=0) can be calculated using the Dirichlet-Multinomial recursion relation
(Balding and Nichols, 1995)

The recursion relation is used to calculate the probability of observing the alleles that are not
IBD; these alleles are no longer independent but have correlation FST . For concreteness, the
genotype probabilty calculations for these IBD=0 alleles are
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For example, P(AAAA) = P(A|AAA)P(AAA). Under independent alleles P(A|AAA) = P(A), but
with positive intraclass correlation FST , the probability of observing another A given that 3
A's have been observed is higher and is specified by the recursion relation. Similarly,
P(ABCD) = P(D|ABC)P(ABC) and P(D|ABC) conditions on not having observed D before,
so the probability of observing D decreases.

To calculate the final genotype probability, plug in the above expressions into Table 3.
Expressions for the LR accounting for FST exist (Ayres, 2000), but the above likelihood
contributions are needed for maximum likelihood estimation of relationships via estimating
the IBD probabilities k0, k1, k2.

2.2 IBS Method
The IBS (Identical By State) method (Chakraborty and Jin, 1993; Presciuttini et al., 2002)
estimates the LR using only the fact that alleles match at each locus. For the example pair of
Table 1, CSF1PO is considered a match on two alleles, D13S317 a match on zero alleles,
and D16S539 a match on one allele. The IBS method relies on heterozygosity Hj, the
probability that the two alleles at locus j are different. The probability that i = 0, 1, 2 alleles
match at locus j in profiles P1 and P2 for a given relationship R is denoted z(i|Hj, R). The z(i|
Hj, R) as a function of heterozygosity at each locus, familial relationship, and for each i = 0,
1, 2 are empirically by cubic functions with little residual variation (Presciuttini et al., 2002,
Fig. 1). The empirical estimates of the cubic functions ẑ(i|Hj, R) are available (Presciuttini et
al., 2002, Table 2), and the IBS method estimates the LR in (1) as

(4)

The IBS method does not distinguish between types of alleles and has no need for allele
frequencies, and thus loses information versus the exact method by ignoring the rarity or
commonality of matches. But the IBS method is robust when allele frequencies are
unavailable or inappropriate. For example, in a mass disaster (such as a plane crash), allele
frequencies are unavailable for use to match DNA from the remains with DNA samples
provided by relatives. For another example, it is unclear how allele frequencies from
nonU.S.-population-based databases of DNA profiles are for use in the general population.

2.3 Accounting for Genotyping Errors
As noted in section 1.1, the DNA was extracted by cell lysis, a sub-optimal method of DNA
extraction that could introduce more genotyping errors than ordinarily expected. We adopt a
simple model that the true genotype is observed with probability 1−∈, but with probability
∈, the observed genotype is drawn randomly from the population (Broman and Weber,
1998; Epstein et al., 2000). The genotype probability calculations of section 2.1 and 2.1.1 in
Table 3 are altered as
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(5)

because a randomly drawn genotype from the population has no IBD sharing. The exact LR
under errors takes a simple form. By (3), the contribution each locus j makes to the usual LR
is

(6)

With errors (denoting e = (1 − (1 − ∈)2)), the contribution is now

Since the IBS LR is meant to estimate the exact LR, we can use the above functional form to
modify the contributions to the IBS LR in (4).

We note that STRs can, on rare occasions, spontaneously mutate. Thus the overall
genotyping error rate combines both measurement error and mutation. Since the cells were
crudely lysed to extract the DNA, we believe that measurement error dominates the error
rate parameter.

2.4 Maximum-Likelihood Estimation of Relationships
Instead of hypothesis testing for relationships, the best relationship can be directly estimated
with maximum-likelihood estimates of the IBD probabilities k0, k1 and k2 (Milligan, 2003).
We maximize the exact likelihood (3), modifying the genotype probability calculation P(lj,1,
lj,2|IBD = i) to account for errors as in (5) and for cryptic relatedness as in section 2.1.1.
Within the simplex formed by k0, k1 and k2, the feasible region of maximization for non-
inbred families is  (Thompson, 1991).

3 Inferring Family Relationships in NHANES III
3.1 Allele Frequencies

Allele frequencies for the U.S. and for each ethnicity (non-Hispanic white, non-Hispanic
black, Mexican American) were estimated in the standard way of estimating a proportion
using sample weights in a Horvitz-Thompson estimator (ignoring finite population
corrections) (Raj, 1968, pg. 42).

To assess the informativeness of a locus, we calculate the entropy of its allele frequency
distribution. The entropy is the sum over each allele i of −piln(pi) where pi is the frequency
of allele i. A locus with high entropy will have many alleles and low allele frequencies, and
so can better distinguish people than a low entropy locus. Figure 2 plots the entropies for the
U.S., each ethnicity, and for each locus, ordered by the entropy of the loci for the U.S.. The
least informative locus is TPOX, for which only two alleles account for over 75% of its
alleles; at D2S1338 the top two alleles account for only 35% of its alleles. The allele
distributions for Non-Hispanic blacks generally have more entropy than those for other
ethnicities, especially for the least- and most- informative loci. Thus the Non-Hispanic
blacks appear to have more genetic diversity than the other ethnicities in NHANES III.
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Figure 3 shows the actual allele frequecies. Alleles are ordered by frequency in the U.S.
population and alleles with frequency < 1% are not shown. Some loci have only 5 alleles
with frequency >= 1%, some have as many as 11. Most loci have many alleles with
frequency 1 – 5%, and the presence of such alleles can be very informative for inferring
family relationships. D2S1338 has the highest entropy, due to having 11 alleles, many with
frequency 1 – 5%. D3S1358 has a flat allele distribution, but only 5 alleles, so has low
entropy. TPOX has a sharply dropping distribution, emphasizing its low entropy. There are
clear ethnic differences in allele frequencies at many loci, especially for non-Hispanic blacks
(e.g. D13S317, CSF1PO, D18S51 ).

3.2 Exact method vs. IBS method
We classified the most likely relationship for a pair of household members by the highest
exact or IBS LR in favor of that relationship. If each LR for each relationship for a pair is
less than one, we classify the pair as most likely unrelated. When the pair reported the same
ethnicity, the LR used the allele frequencies for that ethnicity. The overall U.S. allele
frequencies were used for the LRs for the 54 pairs reporting different ethnicities.

Table 4 classifies the most likely relationship for a pair of household members (highest LR
in favor of that relationship) by the exact (FST = 0 and ∈ = 0) and IBS methods. The two
methods strongly agree on which pairs are most likely parent-child or siblings. No IBS LR
for cousin was presented in Presciuttini et al. (2002), so for the cousin pairs by the exact
method, the IBS LR parcels them out to 2nd degree and unrelated. The Spearman
correlations of the exact and IBS LR for parent-child, sibling, and 2nd-degree are 0.97, 0.98,
0.94 respectively, underscoring that the two methods rank relationships equally. This strong
agreement changes negligibly with different FST or ∈.

We considered whether the most likely relationship is consistent with the reported ages.
Only 5% (59) of the parent-child pairs had an age difference of under 16 years and 9% (42)
of the sibling pairs had an age difference over 25 years. A more refined analysis might
attribute these pairs to another likely relationship consistent with the ages of the pair.
Furthermore, seven pairs had identical observed DNA profiles, implying that they are either
identical twins or they are the same individual (some of these pairs have differing ages or
ethnicities).

Figure 4 plots the exact and IBS LRs for three relationships, limiting to pairs where either
the exact or IBS LR is greater than one. For siblings, the IBS LR underestimates the exact
LR (a smooth loess curve is added to make this clear). For parent-child and 2nd-degree, the
underestimation is pronouced at higher exact LRs, where the true parent-child or 2nd-degree
pairs are likely to be. So while the two methods agree on the ranking of relationships, they
can disagree on the quantification of the LR.

3.3 Distribution of exact LRs by ethnicity, error rate, and FST
We did not estimate error rates or FST from our complex survey data, but instead assessed
sensitivity to plausible values. We observed a 1% sex mismatch rate (section 1.1),
suggesting that perhaps a 2% error rate overall is reasonable; we also considered 0% and
4%. A National Research Council report recommends using FSTs of 1 – 3% (National
Research Council II Report, 1996). We considered FSTs of 0%, 1%, and 3%.

Table 5 shows the distribution of the exact LR for the most likely relationship by FST. The
most striking observation are the rather low LRs for 2nd-degree, cousin, and unrelated,
suggesting that the Identifiler® loci are not informative enough to conclusively determine
these three relationships. Second, the parent-child and sibling LRs are sensitive to FST , with
median LRs changing by factors of 3-7 as FST increases, and Q3 LRs changing by factors of
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10. Although these intraclass correlations (FST) are small, the exact LR changes a lot
because the exact method derives powerful information from matching on rare alleles
(Ayres, 2000). Any non-zero FST implies that a match on rare alleles could well be a result
of sharing unknown distant relatives rather than sharing a close familial relationship. This
result is analogous to the inflation of the variance under cluster sampling with a small
intraclass correlation but large clusters (Korn and Graubard, 1999).

Table 6 shows the counts of the best relationship (by exact LR) by error rates and FST .
Increasing the error rate increases the number of parent-child relationships because a single
genotyping error causing a perfect mismatch at a locus eliminates the possibility of a parent-
child relationship. Allowing for an error rate removes this possibility, allowing the other loci
to contribute meaningfully to the parent-child LR. Sibling relationships are not sensitive to
error rates. 2nd-degree and cousin relationships are sensitive, mostly because the LRs in
favor of these relationships are very small and are vulnerable to small changes. Increasing
FST decreases the counts of parent-child and sibling relationships on the order of 5%. Thus
FST has little effect on the determination of the most likely relationship, but strongly affects
the quantification of the LR in its favor.

Table 7 shows the distribution of the exact LR by most likely relationship, by ethnicity. We
fixed ∈ = 2%, FST = 1% as our most plausible values. When parent-child is most likely, the
LR for non-Hispanic blacks tends to be the highest, possibly due to greater entropy in the
non-Hispanic black allele frequencies. However, when sibling is most likely, the LRs seem
somewhat more comparable, although somewhat lower for Mexican Americans.

3.3.1 Ability to infer unrelated individuals—Without complete and conclusive
reporting of family history, we cannot formally verify how close the inferred familial
relationships are to the truth. But as an approximation to truly unrelated individuals, we
consider to be unrelated the 500 household pairs where either member is over the age of 40,
have ages within 12 years of each other, and are of opposite sexes. Most likely, these are
married or unmarried couples, i.e., pairs who are highly likely to be unrelated. We use the
LR assuming ∈ = 2% and FST = 1%. To make decisions about relationships, we have set LR
cutoffs. To be conservative, we consider an LR > 104 to be strong evidence for the
relationship. Since we expect far more unrelated individuals than second-degree
relationships, we consider an LR < 103 to be evidence for being unrelated. We are equivocal
for LRs between 103 and 104.

Of these 500 pairs, the LR maximizes at unrelated for 382. Another 17 and 86 LRs
maximize at halfsib or cousin, respectively. The maximum LR for halfsib is only 16 and for
cousin is merely 3, indicating that each of these 103 pairs are most likely unrelated. Four
pairs had maximum LR at parent-child (with maximum LR of 457), but these pairs all had
age differences under 7 years, so they are not parent-child relationships, and their small LRs
indicate that they are most likely unrelated. The remaining 11 pairs have maximum LR for
full siblings; 6 have LR under 1000 (most likley unrelated), one has LR of 6000 (equivocal),
the remaining four have LRs of 106, 107, 108, and 1013 (overwhelmingly full sibling). Thus
we believe the genetic data naturally infers the 495 unrelated pairs in this group of 500 pairs,
identifies another 4 who are most likely full siblings, and only one pair is unresolved.

3.4 Inferring Household Family Structure
The LRs can be used to help infer the most likely family structure within each household.
We can infer family structure only amongst household members with genotyping results.
We use only the exact LR assuming ∈ = 2% and FST = 1%. We restrict our presentation to
households with two- or three-persons with genotyping results (88% of the households) as
larger households are more likely to contain half-siblings and cousins, non-immediate
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relationships that our LR has little ability to detect. We assume that all pairs with LRs
maximizing at half-sibling or cousin are truly unrelated. A thorough analysis that infers
family structure by carefully considering age, race, ethnicity, and other demographic
variables, especially to account for household members without genotyping results (who are
not in our dataset), is beyond the scope of this article.

For the 1070 households with two individuals with genotyping results, the LR maximizes at:
576 unrelated, 350 parent-child, and 144 full-sibling relationships. Purely full-sibling
relationships in a two-person household may imply the presence of other household
members for whom we do not have genotyping results. For the 329 households with three
individuals with genotyping results, the LR maximixes at: 95 2-parent 1-child trios, 81
parent-child plus an unrelated, 51 single parent raising two full-siblings, 19 unrelated person
raising 2 full-siblings, 53 completely unrelated, and 30 maximized at inbred or impossible
family structures.

3.5 IBD probability estimates
We estimated maximum-likelihood estimates of the IBD probabilities k0, k1 and k2
numerically using the Nelder-Mead simplex algorithm as implemented by the R function
optim(). We fixed ∈ = 2% and FST = 1% as our most plausible values. It took 5 hours on a
Pentium 4 3Ghz computer to compute IBD probabilities for all 3610 pairs.

Table 8 shows the distribution of the estimated IBD probabilites by ethnicity. For parent-
child, there is not much difference in the distributions of k̂1, k̂2 by ethnicity. For siblings,
non-Hispanic whites in our NHANES III sample tend to have the highest k̂1, k̂2, followed by
non-Hispanic blacks for k̂2. In particular, both of their median k̂2 are elevated over 0.25 and
the non-Hispanic white median k̂1 = 0.524 is also elevated over 0.5. These slight elevations
suggest that non-Hispanic white siblings in our NHANES III sample may be more closely
related than expected, and suggest the presence of cryptic relatedness.

An advantage of estimating IBD probabilities is flagging potentially non-standard
relationships. Twenty pairs had 0.4 ≤ k̂2 < 1; these are non-standard (possibly inbred)
familial relationships for which we do not compute an LR.

4 Discussion
The NHANES III genetics data will be an unparalleled resource for incorporating genetics
into a comprehensive understanding of the determinants of health in the U.S. and for
developing, targeting, and evaluating policies for disease prevention that use genetic
information. However, these analyses are handicapped until family relationships amongst
household members are inferred. We evaluated two methods for relationship inference, the
exact and IBS methods, and find that while they often agree on the most likely relationship,
the IBS method generally underestimates the LR in favor of a relationship. This
underestimation occurs because the exact method can take advantage of the informativeness
of matches on rare alleles. The IBS method is robust to inadequate or inappropriate allele
frequencies, but the NHANES III allele frequencies are a large population-based sample, so
the exact method seems appropriate (notwithstanding possible concern about the stability of
the less common (1 – 5%) allele frequency estimates). Accounting for genotyping errors and
FST is critical for quantifying the LR, but has little effect on which relationship is judged
most likely. The genotyping error rate has most effect on parent-child relationships. LRs for
non-Hispanic blacks tend to be most informative because their allele frequencies have the
most entropy.
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Other health surveys worldwide have begun collecting genetic information, such as the
Health 2000 survey (Samani et al., 2008) and the Canadian Health Measures Survey. We
expect that future health surveys will routinely collect genetic information. Our results are
likely relevant to other surveys since Identifiler® is usually conducted for specimen tracking
by most DNA labs.

Furthermore, even if family relationships are believed to be accurately reported, genetic data
are critical to verify reported relationships and identify data quality issues. We noted an
observed gender/chromosomal sex mismatch rate of 1% (so overall would be about 2%). In
our experience with other datasets, we have observed non-trival sex mismatch rates of 1-4%.
In section 3.2, we found that 5% of the parent-child pairs and 9% of the full-sibling pairs
had implausible reported ages, seven participants were either identical twins with household
members or else duplicates in the data, and twenty pairs may have non-standard (inbred)
relationships. Furthermore, our methods could also be used to detect unsuspected familial
relationships across households. Discrepancies could reflect either on misreporting by
household members (perhaps lack of knowledge of true paternity) or on specimen handling/
analysis problems in the survey. Regardless of the source of the discrepancy, the genetic
analysis helps identify such problems.

Both the exact and IBS methods can also be viewed from the perspective of probabilistic
record linkage (Herzog et al., 2007) because they compare two data vectors for matches. For
relationship inference, there are ”record linkages” of different types based on the different
possible relationships. The difference between the exact and IBS methods is whether to
extract information from the commonality or rareness of matches, akin to a similar debate in
the record linkage literature (Herzog et al., 2007, Ch. 9).

While the LR can be used to infer the most likely familial relationship, estimating IBD
probabilities has two advantages. IBD probabilities provide a continuous measure of the
amount of DNA shared by two household members. All relatives have, only on average, the
IBD sharing in Table 2, and the estimated IBD probabilities estimate the true IBD sharing.
Another advantage of IBD probability estimates is their ability to improve regression
modeling of survey data, regardless of whether the model uses genetic information, via
specifying the correlation structure of a continuous outcome measured on household
members. For example, a simplified model for the correlation of two household members'
outcomes y1, y2 using the average IBD sharing I = 0k0 + 1k1 + 2k2 is

(Lange, 2002, pg 101). Specified within-household correlation of outcomes can be exploited
in regression modeling to improve efficiency of parameter estimates (Korn and Graubard,
1999). This correlation matrix applies regardless of whether the model involves genetic
information.

Our ethnically-specific allele frequecy estimates are unique because they are explicitly
nationally-representative. Comparing our estimates to other established estimates (Budowle
et al., 2001; Einum and Scarpetta, 2004) shows agreement on common allele frequencies,
but disagreements on rarer (1 – 5%) allele frequencies that are the most informative yet most
vulnerable to small uncertainties. Our estimates may be helpful for calculating the
probability that a given DNA profile matches by chance with a random individual from the
U.S. population, or to infer whether individuals in a genetic database may be relatives of an
individual with a given DNA profile (Bieber et al., 2006).
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Our STR loci are not informative enough to conclusively determine that pairs are 2nd-
degree relatives, cousins, or unrelated. Relationship inference could be improved by using
large numbers of Single Nucleotide Polymorphisms (SNPs) instead of STRs. The available
SNPs in NHANES III were chosen as candidate polymorphisms from a priori hypotheses for
association with diseases of potential public health significance (Chang et al., 2009). These
SNPs are unlikely to be included as a group in SNP panels used for sample tracking, quality
control and assessment of cyptic relatedness. However, future NHANES genotyping may
involve dense genotyping panels including over one million SNPs, and these data will be
important for resolving distant relationships.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank the National Center for Health Statistics for use of their Research Data Center to conduct this research.
This research was supported in part by the Intramural Research Program of the NIH/National Cancer Institute.

References
Ayres KL. Relatedness testing in subdivided populations. Forensic Sci Int 2000;114(2):107–115.

[PubMed: 10967251]
Balding DJ, Nichols RA. DNA profile match probability calculation: how to allow for population

stratification, relatedness, database selection and single bands. Forensic Sci Int 1994;64(2-3):125–
140. [PubMed: 8175083]

Balding DJ, Nichols RA. A method for quantifying differentiation between populations at multi-allelic
loci and its implications for investigating identity and paternity. Genetica 1995;96(1-2):3–12.
[PubMed: 7607457]

Bieber FR, Brenner CH, Lazer D. Human genetics: Finding criminals through DNA of their relatives.
Science 2006;312(5778):1315–1316. [PubMed: 16690817]

Broman KW, Weber JL. Estimation of pairwise relationships in the presence of genotyping errors. Am
J Hum Genet 1998;63(5):1563–1564. [PubMed: 9792888]

Budowle B, Shea B, Niezgoda S, Chakraborty R. CODIS STR loci data from 41 sample populations. J
Forensic Sci 2001;46(3):453–489. [PubMed: 11372982]

Butler JM. Genetics and genomics of core short tandem repeat loci used in human identity testing. J
Forensic Sci 2006;51(2):253–265. [PubMed: 16566758]

Chakraborty R, Jin L. Determination of relatedness between individuals using DNA fingerprinting.
Hum Biol 1993;65(6):875–895. [PubMed: 8300084]

Chang M-H, Lindegren ML, Butler MA, Chanock SJ, Dowling NF, Gallagher M, Moonesinghe R,
Moore CA, Ned RM, Reichler MR, Sanders CL, Welch R, Yesupriya A, Khoury MJ, CDC/NCI
NHANES III Genomics Working Group. Prevalence in the united states of selected candidate gene
variants: Third National Health and Nutrition Examination Survey, 1991–1994. Am J Epidemiol
2009;169(1):54–66. [PubMed: 18936436]

Chanock SJ, Hunter DJ. Genomics: when the smoke clears …. Nature 2008;452(7187):537–538.
[PubMed: 18385720]

Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999;55:997–1004.
[PubMed: 11315092]

Easton DF, Eeles RA. Genome-wide association studies in cancer. Hum Mol Genet
2008;17(R2):R109–R115. [PubMed: 18852198]

Einum DD, Scarpetta MA. Genetic analysis of large data sets of North American Black, Caucasian,
and Hispanic populations at 13 CODIS STR loci. J Forensic Sci 2004;49(6):1381–1385. [PubMed:
15568726]

Katki et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2010 July 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Epstein MP, Duren WL, Boehnke M. Improved inference of relationship for pairs of individuals. Am J
Hum Genet 2000;67(5):1219–1231. [PubMed: 11032786]

Evett, I.; Weir, B. Interpreting DNA Evidence: Statistical Genetics for Forensic Scientists. Sinauer
Associates; Sunderland, MA: 1998.

Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet 2006;7(2):
85–97. [PubMed: 16418744]

Gail MH. Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast
cancer risk. J Natl Cancer Inst 2008;100(14):1037–1041. [PubMed: 18612136]

Herzog, TN.; Scheuren, FJ.; Winkler, WE. Data Quality and Record Linkage Techniques. Springer;
2007.

Korn, EL.; Graubard, BI. Analysis of Health Surveys. John Wiley & Sons; 1999.
Lange, K. Mathematical and Statistical Methods for Genetic Analysis. Springer-Verlag Inc; 2002.
Lin BK, Clyne M, Walsh M, Gomez O, Yu W, Gwinn M, Khoury MJ. Tracking the epidemiology of

human genes in the literature: the huge published literature database. Am J Epidemiol
2006;164(1):1–4. [PubMed: 16641305]

McPeek MS, Sun L. Statistical tests for detection of misspecified relationships by use of genome-
screen data. Am J Hum Genet 2000;66(3):1076–1094. [PubMed: 10712219]

Milligan BG. Maximum-likelihood estimation of relatedness. Genetics 2003;163(3):1153–1167.
[PubMed: 12663552]

National Research Council II Report. The evaluation of forensic evidence. National Academy Press;
Washington D.C.: 1996. Technical report

NCHS. National center for health statistics. plan and operation of the third national health and nutrition
examination survey, 1988-94. Vital and Health Statistics 1994;1(32)

Pharoah PDP, Antoniou AC, Easton DF, Ponder BAJ. Polygenes, risk prediction, and targeted
prevention of breast cancer. N Engl J Med 2008;358(26):2796–2803. [PubMed: 18579814]

Presciuttini S, Toni C, Tempestini E, Verdiani S, Casarino L, Spinetti I, Stefano FD, Domenici R,
Bailey-Wilson JE. Inferring relationships between pairs of individuals from locus heterozygosities.
BMC Genet 2002;3:23. [PubMed: 12441003]

Raj, D. Sampling Theory. McGraw-HIll; 1968.
Samani NJ, Raitakari OT, Sipil K, Tobin MD, Schunkert H, Juonala M, Braund PS, Erdmann J,

Viikari J, Moilanen L, Taittonen L, Jula A, Jokinen E, Laitinen T, Hutri-Khnen N, Nieminen MS,
Kesniemi YA, Hall AS, Hulkkonen J, Khnen M, Lehtimki T. Coronary artery disease-associated
locus on chromosome 9p21 and early markers of atherosclerosis. Arterioscler Thromb Vasc Biol
2008;28(9):1679–1683. [PubMed: 18599798]

Thompson, EA. Estimation of relationships from genetic data. In: Rao, CR.; Chakraborty, R., editors.
Handbook of Statistics Volume 8: Statistical Methods in Biological and Medical Sciences.
Elsevier; North-Holland: 1991. p. 255-269.

U.S. Department of Health and Human Services (DHHS). National Center for Health Statistics. Third
National Health and Nutrition Examination Survey, 1988-1994, NHANES III Household Adult
Data File. Centers for Disease Control and Prevention; Hyattsville, MD: 1996. Technical report

Wagner AP, Creel S, Kalinowski ST. Estimating relatedness and relationships using microsatellite loci
with null alleles. Heredity 2006;97(5):336–345. [PubMed: 16868566]

Wright, S. Evolution and the genetics of populations. Vol II: The theory of gene frequencies.
University of Chicago Press; 1969.

Katki et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2010 July 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
DNA locus D7S820 with the tetranucleotide motif repeat gata upcased. This version has 13
gata repeats, so is named allele 13. The locus is broken into chunks of length 10 for ease of
counting the position of each nucleotide (the numbers give the position of the nucleotide at
the far left). The DNA bases are a for adenine, c for cytosine, g for guanine, and t for
thymine.
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Figure 2.
Entropy of allele distributions for each locus, for overall U.S. population (thickest line) and
for each ethnicity.

Katki et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2010 July 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
NHANES III Identifiler® allele frequencies (> 1%) for the U.S. (US) [thickest line] and by
ethnicity: (W) non-Hispanic white, (B) non-Hispanic black, (M) Mexican-American.
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Figure 4.
Exact LR vs. IBS LR for 3 familial relationships, with line where the LRs are equal.
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Table 2

IBD probabilities k0, k1, and k2 for defined relationships. 2nd degree relationships include half-siblings, uncle-
nephew, and grandparent-grandchild.

Relationship k0 k1 k2

Self or identical twin 0 0 1

Unrelated 1 0 0

Parent-Child 0 1 0

Full Sibilings 0.25 0.5 0.25

2nd Degree 0.5 0.5 0

Cousin 0.75 0.25 0
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Table 3

Probability of observing genotypes given IBD sharing.

Genotypes lj,1, lj,2 IBD=0 IBD=1 IBD=2

AA,AA

AA,AB 0

AA,BB 0 0

AA,BC 0 0

AB,AB P(AAB) + (ABB) = pApB(pA + pB) 2P(AB) = 2pApB

AB,AC P(ABC) = pApBpC 0

AB,CD 4P(ABCD) = 4pApBpCpD 0 0
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