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New complexes of dioxovanadium(V), zinc(Il), ruthenium(II), palladium(II), and platinum(II) with 6-methylpyridine-2-
carbaldehyde-N(4)-ethylthiosemicarbazone (HmpETSC) have been synthesized. The composition of these complexes is discussed
on the basis of elemental analyses, IR, Raman, NMR ('H, *C, and 'P), and electronic spectral data. The X-ray crystal structures
of [VO,(mpETSC)] and [Pt(mpETSC)Cl] are also reported. The HmpETSC and its [Zn(HmpETSC)Cl,] and [Pd(mpETSC)Cl]
complexes exhibit antineoplastic activity against colon cancer human cell lines (HCT 116).

1. Introduction

Interest in thiosemicarbazone chemistry has flourished for
many years, largely as a result of its wide range of uses,
for example, as antibacterial, antifungal, chemotherapeutic,
and bioanalytical agents [1-6]. One particular area of
thiosemicarbazone chemistry that has been increasing in
importance recently involves biologically active metal com-
plexes of thiosemicarbazone-based chelating (NNS) agents.
As the coordination of the metal ions to thiosemicarbazones
improves their efficacy and improve their bioactivity [6].
In this concept, zinc(Il), palladium(IIl), and platinum(II)
complexes of pyridine-2-carboxaldehyde thiosemicarbazone
and substituted pyridine thiosemicarbazone were tested
against human cancer breast and bladder cell lines and
found to be selectively cytotoxic to these malignant cell
carcinoma [7, 8]. We have previously studied the chemother-
apeutic potential of a series of Mo(VI), Pd(II), Pt(Il), and
Ag(I) complexes with N,O; N,S and O,0-donors. These
complexes were found to display significant anticancer
activity against Ehrlich ascites tumor cell (EAC) in albino

mice [9-12]. Copper(II) complexes of 6-methylpyridine-
2-carbaldehyde and its N(4)-methyl, ethyl, and phenyl
thiosemicarbazones have been reported as well as their
activity against pathogenic fungi [13]. In this paper, we
report the synthesis and spectroscopic characterizations of
new complexes of 6-methylpyridine-2-carbaldehyde-N(4)-
ethylthiosemicarbazone (HmpETSC, Figure 1) with V(V),
Zn(II), Ru(Il), Pd(II), and Pt(II). The X-ray crystal struc-
tures of [VO,(mpETSC)] and [Pt(mpETSC)Cl] have been
reported. Also, the anticancer activity of HmpETSC and its
Zn(IT) and Pd(IT) complexes toward colon cancer human cell
lines has been tested.

2. Experimental

All reagents were purchased from Alfa/Aesar and Aldrich.
[RuCl,(PPhj);] was prepared as previously reported in
[14]. Infrared spectra were recorded using a Nicolet
6700 Diamond ATR spectrometer in the 2004000 cm™!
range. Raman spectra were recorded on in Via Renishaw
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FIGUrg 1: Structure of 6-methylpyridine-2-carbaldehyde-N(4)-
ethylthiosemicarbazone (HmpETSC).
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FIGURE 2: Structure of [VO,(mpETSC)] with numbering scheme.

spectrometer using 785nm laser excitation. NMR spectra
were recorded on Varian Mercury 500 MHz spectrometer
in DMSO-d6 with TMS as reference. Electronic spectra
were recorded in DMF using Hewlett-Packard 8453 Spec-
trophotometer. Elemental analyses and X-ray crystallogra-
phy were performed in Université De Montréal. The human
cancer cell lines were obtained from the American Type
Culture Collection (ATCC catalog number): HCT116 human
colorectal carcinoma (CCL-247). Cells were maintained
in Roswell Park Memorial Institute (RPMI-1640) medium
(Wisent Inc., St-Bruno, Canada) supplemented with 10%
FBS, 10mM HEPES, 2mM L-gutamine, and 100 ug/mL
penicillin/streptomycin (GibcoBRL, Gaithersburg, MD). All
assay cells were plated 24 hours before drug treatment.

2.1. Preparation of the Ligand: 6-Methylpyridine-2-carboxal-
dehyde-N(4)-ethylthiosemicarbazone (HmpETSC). 6-Meth-
ylpyridine-2-carboxaldehyde (1.21g, 10 mmol) in ethanol
(10 cm?) was added to N(4)-ethylthiosemicarbazide (1.19 g,
10 mmol) in ethanol-water solution (V/V 1:1, 80cm?)
followed by the addition of drops of glacial acetic acid. The
reaction mixture was refluxed for 3 hours. The precipitate
obtained was filtered off, washed with water and ethanol,
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and recrystallized from ethanol then dried in vacuo. m. p.
= 201°C. Elemental analytical calculation for C;oH;3N,4S: C,
54.0, H, 6.4; N, 25.2; S, 14.4% found C, 54.0, H, 6.3; N, 25.1;
S, 14.2%.

2.2. Preparation of the Complexes

2.2.1. [VO,(mpETSC)]. To a solution of HmpETSC (0.044 g,
0.2mmol) in acetonitrile (10cm?), [VO(acac),] (0.053 g,
0.2 mmol) was added. The reaction mixture was refluxed for
1 hour. Upon cooling the yellowish green solution, orange
precipitate was obtained. It was filtered off, washed with
ethanol, and dried in vacuo. The brown crystals suitable for
X-Ray crystallography were obtained by a slow evaporation
of a solution of the complex in acetonitrile. The yield was
50% (based on the metal). Elemental analytical calculation
for C10H13N402SV2 C, 395, H, 4.3; N, 18.4; S, 10.5% found
C,39.4;H,4.0; N, 18.2; S, 10.3%.

2.2.2. [Zn(HmpETSC)CL]. A methanolic solution (10 cm?)
of HmpETSC (0.044g, 0.2mmol) was added to ZnCl,
(0.027 g, 0.2mmol) in methanol (10cm?®). The reaction
mixture was refluxed for 2 hours, and the off-white product
obtained was filtered off, washed with methanol, then dried
in air. The yield was 35% (based on the metal). Elemental
analytical calculation for CoH;4CL,N4SZn: C, 33.5; H, 3.9;
N, 15.6; S, 8.9% found C, 33.7; H, 3.7; N, 15.5; S, 8.8%.

2.2.3. [Ru(PPhs),(mpETSC),]. A hot ethanolic solution of
HmpETSC (0.044 g, 0.2 mmol) was added to [RuCl,(PPhs3)s]
(0.1g,0.1 mmol). EtzN (0.02 cm?, 0.2 mmol) was then added
and the reaction mixture was refluxed for 2 hours. The red
brown solution was filtered and upon reducing the volume
by evaporation a brown solid was isolated. It was filtered
off, washed with ethanol and ether. The yield was 33%
(based on the metal). Elemental analytical calculation for
C55H56N8P2R1182Z C, 630, H, 5.3; N, 105, S, 6.0% found that
C,62.8;H,5.1; N, 10.4; S, 5.8%.

2.2.4. [Pd(mpETSC)Cl]. A solution of K,[PdCl,] (0.1g,
0.3mmol) in water (2cm’®) was added to HmpETSC
(0.066 g, 0.3 mmol) in methanolic solution of KOH (0.018 g,
0.3 mmol; 15 cm?). The reaction mixture was stirred at room
temperature for 24 hours. The orange precipitate was filtered
off, washed with water methanol, and finally air-dried. Yield
was 60% (based on metal). Elemental analytical calculation
for C;oH;3CIN4PdS: C, 33.1; H, 3.6; N, 15.4; S, 8.8% found
G, 33.4;H, 3.2; N, 15.2; S, 8.5%.

2.2.5. [Pt(mpETSC)Cl]. An aqueous solution (3cm?®) of
K,PtCly (0.042g, 0.1 mmol) was added dropwise to a
methanolic solution of HmpETSC (0.022g, 0.1 mmol;
15 cm?). The reaction mixture was stirred overnight at room
temperature. Upon evaporation of the solvent, fine red
crystals were observed. These were suitable for single crystal
X-ray crystallography. Yield was 25% (based on metal).
Elemental analytical calculation for C;oH;3CIN4PtS: C, 26.6;
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F1Gure 3: Hydrogen bonding interaction in the lattice of [VO,(mpETSC)].

H, 2.9; N, 12.4; S, 7.1% found C, 26.8; H, 2.8; N, 12.1; S,
6.9%.

2.3. X-Ray Crystallography. The crystal structure were mea-
sured on The X-Ray Crystal Structure Unit, using a Bruker
Platform diffractometer, equipped with a Bruker MART
4K Charger-Coupled Device (CCD) Area Detector using
the program APEX II and a Nonius Fr591 rotating anode
(Copper radiation) equipped with Montel 200 optics. The
crystal-to-detector distance was 5 cm, and the data collection
was carried out in 512 X 512 pixel mode. The initial unit
cell parameters were determined by the least-squares fit of
the angular setting of strong reflections, collected by a 10.0
degree scan in 33 frames over three different parts of the
reciprocal space (99 frames total). One complete sphere of
data was collected.

The crystals of [VO,(mpETSC)] and [Pt(mpETSC)Cl]
were mounted on the diffractometer, and the unit cell
dimensions and intensity data were measured at 200 K.
The structures were solved by the least-squares fit of the
angular setting of strong reflections based on F?. The relevant
crystal data and experimental conditions along with the final
parameters are reported in Table 1.

2.4. Antineoplastic Testing. In the growth inhibition assay,
HCT116 cells were plated at 5,000 cells/well in 96-well flat-
bottomed microtiter plates (Costar, Corning, NY). After 24-
hour incubation, cells were exposed to different concentra-
tions of each compound continuously for four days. Briefly,
following HmpETSC and its Zn(II) and Pd(II) complexes
treatment, cells were fixed using 50 pl of cold trichloroacetic
acid (50%) for 60 minutes at 4°C, washed with water, stained
with 0.4% sulforhodamine B (SRB) for 4 hours at room

temperature, rinsed with 1% acetic acid, and allowed to dry
overnight [15]. The resulting colored residue was dissolved
in 200 ul Tris base (10 mM, pH 10.0), and optical density
was recorded at 490 nm using a microplate reader ELx808
(BioTek Instruments). The results were analyzed by Graph
Pad Prism (Graph Pad Software, Inc., San Diego, CA), and
the sigmoidal dose response curve was used to determine
50% cell growth inhibitory concentration (ICsg). Each point
represents the average of two independent experiments
performed in triplicate.

3. Results and Discussion

3.1. Synthesis and Physical Properties of the Complexes. The
preparative reactions for the complexes can be represented
by the following equations:

CH3;CN,T

VO(acac), + HmpETSC [VO, (mpETSC) |

ZnCl, + HmpETSC 2L [ Zn (HmpETSC)Cl |

[Ru(PPh;);Cl] + HmpETSC ZOELNT,

[Ru(PPhy), (mpETSC), |

H,O0/MeOH,T

K,PdCl, + HmpETSC [Pd(mpETSC)Cl]

K,PtCly + HmpETSC 2OMOML

[Pt(mpETSC)Cl]
All the complexes are microcrystalline or amorphous pow-
der, stable in the normal laboratory atmosphere, and slightly

soluble in common organic solvent but completely soluble in
DMF and DMSO.



Bioinorganic Chemistry and Applications

TaBLE 1: Crystal data and structure refinement for VO,(mpETSC) and Pt(mpETSC)Cl.

[VO,(mpETSC)] [Pt(mpETSC)CI]
Empirical formula CioH 3N, 0,8V C1oH;3CIN,PtS
Formula weight 304.24 451.84
Temperature 200K 150K
Wavelength 1.54178 A 1.54178 A
Crystal system Monoclinic Monoclinic
Space group P21/c P21/n
Unit cell dimensions
a(A), a (°) 8.5583(2), 90° 12.9824(2), 90
b(A), B (*) 13.4934(3), 03.679(1)° b =7.0655(1). 94.454(1)°
cR),y () 11.2697(3), 90° ¢ =13.6601(2), 90

Volume (A?)

Z, Density (calculated) g/cm?
Absorption coefficient
F(000)

Crystal size

Theta range for data collection (°)
Index ranges

Reflections collected
Independent reflections
Absorption correction

Max. and min. transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F2

Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

1264.52(5) (A3)

4;1.598 g/cm’

8.122mm™!

624

0.26 X 0.10 X 0.06 mm

5.20 to 72.30°
-10<h<10,-16 <h<16,-13 <1< 13
16371

2468 [Rip; = 0.033]
Semi-empirical from equivalents
0.6143 and 0.3013

Full-matrix least-squares on F2
2468/0/169

1.150

R; =0.0318, wR; = 0.0881

R; =0.0326, wR, = 0.0887

0.414 and —0.711 /A3

1249.22(3) (A3)

4;2.402 g/cm’®

24.402mm™!

848

0.12 x 0.08 x 0.02 mm
4.53t072.13
-15<h=<15-8<k<8,-16<l<16
15858

2442 [Rip; = 0.045]
Semi-empirical from equivalents
0.6138 and 0.3359

Full-matrix least-squares on F2
2442/0/157

1.065

R; =0.0277, wR;, = 0.0951

R; =0.0307, wR, = 0.0993
0.00036(6)

1.579 and —1.242 ¢/A>

TaBLE 2: Infrared and Raman spectral data of HmpETSC and its complexes®.

Compound y(NH) v(HC=N) y(C=C) y(N=CS) y(N-N) y(CS) y(M-N) v(M=S) y(M-CI)
HmpETSC 3267 1589 1530 — 992 812 — — —

1607 1579 1006 824

b

[VO,(mpETSC)] 3214 1652 1613 1576 1017 787 427 926

1651 1570 1586 1019 754 427 343 937b
(Zn(HmpETSC)Cl, | 3290 1625 1596 1009 805 466

1626 1598 1009 793 427 317 300
[Ru(PPhs),(mpETSC),] 3383 1572 1528 1479 999 788 465
[Pd(mpETSC)Cl] 3286 1608 1582 1572 1008 784 454

1617 1580 1570 1022 787 462 345 297
[Pt(mpETSC)Cl] 3322 1607 1580 1570sh 1020 779 424

1609 1584 1564 1009 779 421 330 306

aRaman data are in bolds, ®v(O=V=0) sym and asym.

3.2. Infrared and Raman Spectra. The infrared and Raman
spectral assignments of the ligand, HmpETSC, and its
reported complexes are listed in Table 2. HmpETSC has the
characteristic thioamide moiety (-HN-C(S)NHEt), which
can be present in either thione or thiol form (Figure 1)
[16, 17]. The IR and Raman spectra of HmpETSC show

the absence of absorption band in 25002600 cm™! region
indicating the presence of the free HmpETSC in thione
form [18]. HmpETSC shows a strong IR band at 1589 cm™},
observed at 1607 cm ™! in the Raman, which is corresponding
to the azomethine, v(HC=N), group [13, 19]. In the spectra
of the complexes, the shift of this band to higher frequency
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FIGURE 4: Structure of [Pt(mpETSC)Cl] with numbering scheme.

is observed, suggesting the participation of azomethine
nitrogen in the coordination to metal ions [20, 21]. This
feature is further supported by the shift of v(N-N) band in
the free ligand (at 992 and 1006 cm™! in IR and Raman,
respectively) to higher frequencies upon complexation [18,
22]. On the other hand, the participation of the deprotonated
thiol sulfur in coordination was indicated by the shift of
the IR band at 812cm™! (at 824cm™! in the Raman) in
the free ligand to lower frequencies in the complexes [19,
23]. This view is supported by the absence of v(N(3)H)
vibration with the observation of new band near 1570 cm™!
in the complexes which may assign to v(N(3)=C) [24].
Furthermore, the coordination of pyridine nitrogen atom is
indicated through the positive shift of the ring deformation
band in HmpETSC near 582 and 586cm™! in the IR
and Raman spectra, respectively [25]. Both IR and Raman
spectral data suggest mononegative tridentate (N, N, §7)
behavior of mpETSC™. In case of [Zn(HmpETSC)Cl;], the
y(N(3)H) band is observed at lower wave number as the
thione sulfur participates in coordination [26]. Also, there
is no shift observed in the pyridine ring deformation mode,
that is, HmpETSC acts as a neutral bidentate ligand through
both thione sulfur and azomethine nitrogen atoms [25].

The spectra of the complexes show that new bands in the
IR and Raman near 450 cm™!'may assign to v(M-N) [27].
Also, the far IR and Raman spectra show new bands near
325 and 300 cm™! can be assigned to v(M-S) and v(M-Cl),
respectively [9, 10].

In the 940-920 cm™! region the IR spectrum of the com-
plex [VO,(mpETSC)] shows two strong bands characteristic
of the cis-VO, moiety [28, 29].

The presence of the coordinated PPh; in the complex
[Ru(PPhs),(mpETSC),] is confirmed by the appearance of
the characteristic v(P-Cpy) and §(C-CH) band at 1085 and
720 cm™!, respectively [30].

3.3. NMR Spectra. Table 3 shows the 'H-NMR spectral data
of HmpETSC and its reported complexes in DMSO-ds
(see Figure 1 for numbering scheme) which are in a great
agreement with those reported in the literature [13, 31, 32].
In the spectrum of free HmpETSC, the singlet observed at &
11.62 ppm assigned to N(3)H is disappeared in the spectra
of the complexes indicating that the coordination takes
place through the deprotonated thiol sulfur atom [33]. In
[Zn(HmpETSC)Cl, ], this band is observed at § 11.63 ppm,
confirming the data observed in the IR and Raman spectra
that the coordination of HmpETSC to Zn(II) occurs through
the thione sulfur atom [34]. As expected. the singlet observed
at § 8.02 ppm in the free ligand assigned to the azomethine
H(7)C=N proton shows downfield shift in the complexes (§
8.22-8.71 ppm), due to the involvement of azomethine nitro-
gen in coordination [16, 33]. The spectrum of HmpETSC
shows singlet at § 8.66 ppm assigned to the thioamide N(4)H
proton, this signal is shifted upfield upon complexation [32,
34]. This feature may be due to the sequence of establishment
of hydrogen bonds formation [35, 36]. The spectrum of
HmpETSC exhibits triplet and quartiplet signals at §1.14 and
3.58 ppm assigned to H(10) and H(9), respectively. Also, the
pyridine protons appear in & 7.22-8.059 ppm region [33].
As expected, these protons are shifted downfield complexes
(except in case of [Zn(HmpETSC)ClL;]) due to the decrease
in the electron density caused by electron withdrawal by
the metal ions from the sulfur, azomethine nitrogen, and
pyridine nitrogen atoms.

I3C-NMR assignments of the HmpETSC and its com-
plexes are listed in Table 4 and are in agreement with the
reported data [13]. The spectrum of the free ligand shows
number of resonances at & 14.98, 24.49, 38.81, 117.69,
123.78, 137.14, 142.74, 153.18, 158.28, and 177.28 ppm,
assigned to C(10), C(11), C(9), C(5), C(3), C(4), C(7),
C(6), C(2), and C(8), respectively. In the complexes, the
resonances of the carbon atoms adjacent to the coordination
sites (C(7), C(8), C(2), and C(6)) are shifted downfield
relatively to their positions in the free ligand [37, 38]. This
feature may be due to an increase in current brought about by
coordination to azomethine nitrogen, pyridine nitrogen, and
deprotonated thiol sulfur atoms [25, 39]. In the spectrum of
[Zn(HmpETSC)Cl,] complex, the resonances arising from
C(6), C(2) are more or less in the same positions as in the free
ligand indicating that HmpETSC acts as a neutral bidentate
ligand through thione sulfur and azomethine nitrogen atoms
[25].

The 3'P-NMR spectrum of [Ru(PPh;),(mpETSC),]
shows a sharp singlet at § 52.48 ppm, suggesting the presence
of the two PPhs groups in trans-configuration [30].

3.4.  Electronic  Spectra. The electronic spectrum of
HmpETSC shows bands at 340 and 300nm assigned to
n — n*andn — 7* of the azomethine and pyridine ring
transitions, respectively [40, 41]. In the complexes, both
transitions undergo blue shifts indicating the coordination
via the azomethine and pyridine nitrogen atoms [42].

The electronic spectra of [M(mpETSC)CI] (M(II) = Pd,
Pt) show that two bands near 475 and 330 nm can be assigned
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FIGURE 5: Hydrogen bonding interaction in the lattice of [Pt(mpETSC)CI].

TasLE 3: '"H-NMR spectral data of HmpETSC and its complexes.

H(3 H(4 H(5 H(7)CH=N H(9 H(10 Me N(3)H N(4)H
Compound <<(1>) (i>) (<(i)) | )<s> <£p) ((t) ) <§1;Y) (<s>) 8
HmpETSC 8.06 7.71 7.22 8.02 3.58 1.14 2.45 11.62 8.67
[VOz(mpETSC)] 7.56 8.11 7.67 8.58 3.32 1.12 2.48 — 8.19
[Zn(HmpETSC)CL, ] 8.02 7.73 7.23 8.71 3.58 1.13 2.46 11.63 8.67
[Ru(PPhg)z(mpETSC)z] 7.55 7.45 7.38 8.63 3.34 0.88 2.38 — —a
[Pd(mpETSC)Cl] 7.55 7.95 7.38 8.22 3.23 1.07 2.49 — 7.95
[Pt(mpETSC)Cl] 7.55 8.55 7.46 8.22 3.31 1.08 2.48 — 7.98

2 Overlapped with Ph protons.

TaBLE 4: *C-NMR spectral data of HmpETSC and its complexes.

Compound C(2) C(3) C(4) C(5) C(6)  C(HC=N) (C(C=S)) C(9)  C(10) C(11)
HmpETSC 15828 12378  137.14  117.69  153.18 142.74 177.28 38.81 1498  24.49
[VO,(mpETSC)] 163.16 12739 14276 12326  153.75 149.43 175.46 39.82 1485 2634
[Zn(HmpETSC)Cl,] 158.01  124.01 13759  118.06  152.82 142.22 177.25 38.83 1494 2407
[Ru(PPh;),(mpETSC),]  157.32  127.08  137.82  117.45  155.44 143.41 183.48 3637 1594  24.94
[Pd(mpETSC)Cl] 163.54  127.87 14056  123.52  157.64 149.90 178.56 4185 1474 2570
[

Pt(mpETSC)Cl] 164.02 129.06 140.61 123.56 157.88 146.54 180.45 40.55 14.92 25.93
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TaBLE 5: Selected bond lengths and bond angles for [VO,(mpETSC)].
bond lengths (A) Bond angles (°)

V(1)-O(1) 1.6145(12) 0(2)-V(1)-S(8) 96.73(5)

V(1)-0(2) 1.6356(12) N(1)=V(1)-S(8) 151.43(4)

V(1)=N(1) 2.1333(14) N(7)=V(1)=S(8) 76.48(4)

V(1)-N(7) 2.1651(13) C(8)-S(8)-V(1) 100.39(6)
V(1)-S(8) 2.3800(5) C(2)-N(1)-C(6) 118.72(14)
S(8)-C(8) 1.7472(17) C(2)-N(1)-V(1) 125.52(11)
N(1)-C(2) 1.351(2) C(6)-N(1)-V(1) 115.75(11)
N(1)-C(6) 1.361(2) C(7)-N(7)-N(8) 116.94(13)
N(7)-C(7) 1.287(2) C(7)-N(7)-V(1) 116.04(10)
N(7)-N(8) 1.3708(17) N(8)-N(7)-V(1) 127.01(10)
N(8)-C(8) 1.322(2) C(8)-N(8)-N(7) 111.43(13)
N(9)-C(8) 1.339(2) C(8)-N(9)-C(9) 124.07(16)
N(9)-C(9) 1.454(2) N(1)-C(2)-C(3) 120.41(16)
C(1)-C(2) 1.494(2) N(1)-C(2)—-C(1) 119.13(15)
C(2)-C(3) 1.398(2) C(3)-C(2)-C(1) 120.45(15)
C(3)-C(4) 1.379(3) C(4)-C(3)-C(2) 120.71(15)
C(4)-C(5) 1.390(2) C(3)-C(4)-C(5) 118.81(16)
C(5)-C(6) 1.385(2) C(6)-C(5)-C(4) 118.35(16)
C(6)-C(7) 1.451(2) N(1)-C(6)-C(5) 122.94(16)
C(9)-C(10) 1.509(3) N(1)-C(6)-C(7) 115.08(14)
C(5)-C(6)-C(7) 121.98(15)

N(7)-C(7)-C(6) 117.71(14)

N(8)-C(8)-N(9) 118.62(15)

N(8)-C(8)-S(8) 124.50(12)
N(9)-C(8)-S(8) 116.87(13)
N(9)-C(9)-C(10) 112.49(17)

0(1)=V(1)-0(2) 107.64(7)

O(1)=V(1)=N(1) 96.08(6)

0(2)-V(1)=N(1) 101.30(6)

O(1)=V(1)-N(7) 113.29(6)

0(2)-V(1)-N(7) 139.07(6)

N(1)-V(1)-N(7) 75.37(5)

O(1)-V(1)-5(8) 99.35(5)

TaBLE 6: Bond lengths [A] and angles [°] related to the hydrogen
bonding for [VO,(mpETSC)].

D-H A d(D-H) d(H.A) d(D.A) <DHA
N(9)-H(9) O(2)no.1 0.82(2) 2.30(2) 2.994(2) 144(2)

Symmetry transformations used to generate equivalent atoms: no. 1 —x +1,
and y — 1/2, -z +3/2.

to 'Aj; — 'Bjgand 'A;; — 'E, transitions, respectively, in
square planar configurations [9-12].

The electronic spectrum of the diamagnetic
[Ru'(PPh3),(mpETSC),] shows bands at 532, 354, and
393nm (A; — Ty, 'Ajg — Ty, and ligand (p-dp)
transitions, respectively). These are attributed to a low-spin
octahedral geometry around Ru(II) [10-12].

The electronic spectrum of the diamagnetic
[VO,(mpETSC)] shows that two bands at 440 and 360 nm

may be assigned to MLCT and n-7* transitions, respectively
[43].

3.5. X-Ray Crystallography. The structure of the complexes
[VO,(mpETSC)] and [Pt(mpETSC)Cl], together with the
atoms numbering scheme adopted is shown in Figures 2,
3, 4, and 5, respectively. The selected bond distances and
bond angles of the complexes are listed in Tables 5, 6, 7,
and 8, respectively. The complexes [VO,(mpETSC)] and
[Pt(mpETSC)Cl] are crystallized in monoclinic lattice with
space group symmetry P21/c and P21/n, respectively.

The X-ray crystal structure of [VO,(mpETSC)] shows
that the vanadium(V) atom has a distorted square pyramidal
environment in which mpETSC™ is coordinated to the
metal ion as a tridentate chelating agent binding via the
deprotonated thiolat sulfur S(8), the azomethine nitrogen
N(7), and pyridine nitrogen N(1) atoms, yielding two five-
membered chelate rings (Figure2) with bond distances
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TasLE 7: Selected bond lengths and bond angles for the [Pt(mpETSC)CI] complex.

Bond angles (°)

bond lengths (A)
Pt(1)-N(7) 1.979(5)
Pt(1)-N(1) 2.116(3)
Pt(1)-S(1) 2.2533(8)
Pt(1)-CI(1) 2.3178(15)
S(1)-C(8) 1.757(3)
N(1)-C(2) 1.350(4)
N(1)-C(6) 1.370(5)
N(7)-C(7) 1.287(8)
N(7)-N(8) 1.365(6)
N(8)-C(8) 1.333(5)
N(9)-C(8) 1.331(4)
N(9)-C(9) 1.449(4)
C(1)-C(2) 1.494(4)
C(2)-C(3) 1.400(5)
C(3)-C(4) 1.370(5)
C(4)-C(5) 1.389(5)
C(5)-C(6) 1.381(5)
C(6)-C(7) 1.426(8)
C(9)-C(10) 1.491(5)

C(8)-S(1)-Pt1 95.02(11)
C(2)-N(1)-C(6) 118.6(3)
C(2)-N(1)-Pt1 132.4(2)
C(6)-N(1)-Pt1 109.0(2)
C(7)-N(7)-N(8) 121.8(5)
C(7)-N(7)-Pt1 116.1(4)
N(8)-N(7)-Pt1 121.9(3)
C(8)-N(8)-N(7) 113.4(4)
C(8)-N(9)-C(9) 127.1(3)
N(1)-C(2)-C(3) 120.3(3)
N(1)-C(2)-C(1) 119.7(3)
C(3)-C(2)-C(1) 120.0(3)
C(4)-C(3)-C(2) 121.1(3)
C(3)-C(4)-C(5) 118.4(3)
C(6)-C(5)-C(4) 119.1(3)
N(1)-C(6)-C(5) 122.3(3)
N(1)-C(6)-C(7) 116.5(4)
C(5)-C(6)-C(7) 121.2(4)
N(7)-C(7)-C(6) 117.7(6)
N(9)-C(8)-N(8) 116.8(3)
N(9)-C(8)-5(1) 118.8(3)
N(8)-C(8)-S(1) 124.4(3)
N(9)-C(9)-C(10) 113.1(3)
N(7)-Pt1-N(1) 80.15(16)
N(7)-Pt1-S(1) 85.25(14)
N(1)-Pt1-S(1) 165.40(8)
N(7)-Pt1-Cl1 174.13(12)
N(1)-Pt1-Cl1 105.02(8)
S(1)-Pt1-Cl1 89.57(4)

HCT116 colon cancer (n = 2)

Control (%)

60 80 100 120
Concentration (uM)
—a— [Zn(HmpETSC)Cl;]

—— [Pd(mpETSC)Cl]
—— [HmpETSC]

FIGURE 6: Antineoplastic activity in human colon carcinoma
HCT116 cells by a growth inhibition SRB assay after 96-hour treat-
ment of HmpETSC, [Zn(HmpETSC)Cl, ], and [Pd(mpETSC)Cl].

(V-N(1), 2.1333(14) A, V-N(7), 2.1651(13) A, and V-S(8),
2.3800(5) A). The other two sites are occupied by oxo ligands

TasLE 8: Bond lengths (A) and angles (°) related to the hydrogen
bonding for [Pt(mpETSC)Cl].

D-H WA d(D-H) d(H.A) d(D.A) <DHA
N(9)-H(9) CLlno.1  0.88 262 3372(3) 1436

Symmetry transformations used to generate equivalent atoms: no. 1 x+1/2,
—y+3/2,and z + 1/2.

TABLE 9: Antineoplastic activity in human colon tumor cell lines
(HCT116) by growth inhibition SRB assay after 96-hour treatment.

Compound HmpETSC [Zn(HmpETSC)Cl,] [Pd(mpETSC)Cl]
ICs9, uM 14.59 16.96 20.65
SD 0.81 0.46 1.60

O(1) and O(2) in cis-configuration. The O(1) occupies the
basal position with mpETSC™ donor while the O(2) occupies
the apical position (V-O(1), 1.6145(12)A and V-O(2),
1.6356(12) A) [42]. In the present complex [VO,(mpETSC)],
the bond distances C(8)-N(8), 1.322(2) A and C(7)-N(7),
1.287(2) A are not intermediate between single and double
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bonds, but they are closer to double bonds. Also, the N(7)-
N(8), 1.322(2) A bond length is very close to a single
bond (Table 5). Moreover, the C(8)-S(8) bond length in the
complex (1.7472(7) A) is intermediate between a C-S double
bond (1.62A) and a C-S single bond (1.82 A), indicating
that this bond maintains a partial double-bond charac-
ter [42]. The bond angles data, N(1)-V-N(7), 75.37(5) °;
N(7)-V-S(8), 76.48(4)°, O(2)-V-S(8), 96.73(5)°, O(1)-V-
0(2), 107.64(7)°, O(1)-V-N(1), 96.08(6)°, indicate that the
complex has a distorted square pyramidal geometry, which
may be attributed to the restricted bite angles of mpETSC~
[44, 45]. The network structure is stabilized by the inter-
molecular hydrogen bonding interaction, N(9)H....... 0(2)
bond (Table 6, Figure 3).

In case of [Pt(mpETSC)Cl], mpETSC"™ is also coor-
dinated platinum(II) in the same tridentate manner, and
chloride atom has taken up the fourth coordination site
on Pt(II) in planar configuration (Figure4). The bond
lengths, Pt-N(1), 2.116(8) A, Pt-N(7), 1.979(5) A, Pt-S(1),
2.2533(8) A, Pt-Cl(1), 2.3178(3)A, in the complex are
longer than those found in other reported square-planar
platinum(II) complexes with N,S-donors [34-36, 42]. The
data show that [Pt(mpETSC)CI] has short N-N and long
C-S bond lengths (Table 7) compared with other reported
complexes. The bond angles of N(1)-Pt-S(1), 165.40(8)° and
N(7)-Pt-CI(1), 174.13(12)° are deviated substantially from
that expected for a regular square-planar geometry. The
monomer units of this complex are linked together into
polymeric net chain through N(9)H.....Cl intermolecular
hydrogen bonds as shown in Table 8 and Figure 5 [46].

3.6. Antineoplastic Activity. HmpETSC, [Zn(HmpETSC)CL ],
and [Pd(mpETSC)CI] were tested for their antineoplas-
tic activity against the human colon tumor cell lines
(HCT 116). The three compounds exhibited remarkable
growth inhibitory activities with mean ICs values of 14.59,
16.96, and 20.65 uM, respectively (Table 9 and Figure 6). 2-
Formy and 2-acetylpyridine-N(4)-ethylthiosemicarbazones
and their complexes [M(f4Et),] and [M(Ac4Et),] (M(II)
= Pd, Pt, f4Et, Ac4Et = 2-formy and 2-acetylpyridine-
N(4)-ethylthiosemicarbazone) have been tested in a panel
of human colon, breast, and ovary tumor cell lines and
were found to exhibit very remarkable growth inhibitory
activities with mean ICsgvalues of 0.9—0.5 nM [47]. It is clear
that the complexation of f4Et and Ac4Et in [Pd(f4Et),],
[PA(Ac4Et),], [Pt(f4Et);], and [Pt(Ac4Et);] modified their
activities towards the tumor cells [47]. The complex
[Zn(HmpETSC)Cl,] exhibits much better antineoplastic
activity against HCT 116 compared to [Pd(mpETSC)CI]
which is more active than [Pt(mpETSC)CI]. The substitution
and modes of chelations of HmpETSC in the complexes
[Zn(HmpETSC)ClL;] and [Pd(mpETSC)CI] are different
than both f4Et and Ac4Et in the reported Pd(II) and Pt(II)
complexes [48]. As reported, cis-N, and cis-S, configuration
in the complexes [M(f4Et),] and [M(Ac4Et),] (M(II) =
Pd, Pt) display their significant antitumor activity [46,
49]. Also, in the [Zn(HmpETSC)Cly], HmpETSC acts as
a neutral bidentate chelating agent which is different than

its behavior (mononegative tridentate) in [Pd(mpETSC)Cl].
Furthermore, the presence of the intermolecular hydrogen
bonds in the later complex may reduce its antineoplastic
activity [48].

4. Conclusion

The aim of this report is to study the structure and antineo-
plastic activity of 6-methylpyridine-2-carbaldehyde-N(4)-
ethylthiosemicarbazone (HmpETSC) and its complexes with
dioxovanadium(V), zinc(II), ruthenium(II), palladium(II),
and platinum(II). The X-ray crystal structure of the com-
plexes [VO,(mpETSC)] and [Pt(mpETSC)Cl] was reported.
HmpETSC behaves as mononegative tridentate through the
pyridine nitrogen, azomethine nitrogen and the deproto-
nated thiol sulfur atoms except in case of Zn(II) complex, it
behaves as a neutral bidentate through azomethine nitrogen
and thione sulfur atoms. HmpETSC and its Zn(II) and Pd(II)
complexes show antineoplastic activity against the human
colon tumor cell lines (HCT 116).
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