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Abstract
As the number and complexity of partially sampled dynamic imaging methods continue to
increase, reliable strategies to evaluate performance may prove most useful. In the present work,
an analytical framework to evaluate given reconstruction methods is presented. A perturbation
algorithm allows the proposed evaluation scheme to perform robustly without requiring
knowledge about the inner workings of the method being evaluated. A main output of the
evaluation process consists of a 2D modulation transfer function (MTF), an easy-to-interpret
visual rendering of a method’s ability to capture all combinations of spatial and temporal
frequencies. Approaches to evaluate noise properties and artifact content at all spatial and
temporal frequencies are also proposed. One fully sampled phantom and three fully sampled
cardiac cine datasets were subsampled (R=4 and 8), and reconstructed with the different methods
tested here. A hybrid method, which combines the main advantageous features observed in our
assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5
and 6.3 (skip factor of 4 and 8, respectively). This approach combines features from methods such
as k-t sensitivity-encoding (k-t SENSE), unaliasing by Fourier encoding the overlaps in the
temporal dimension-SENSE (UNFOLD-SENSE), generalized autocalibrating partially parallel
acquisition (GRAPPA), sensitivity profiles from an array of coils for encoding and reconstruction
in parallel (SPACE-RIP), self, hybrid referencing with UNFOLD and GRAPPA (SHRUG) and
GRAPPA-enhanced sensitivity maps for SENSE reconstructions (GEYSER).
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Introduction
Several clinical applications of MRI involve acquiring a time series of images, to capture
dynamic changes within the anatomy of interest. Such dynamic applications include cardiac
cine imaging, functional MRI (fMRI), time-resolved contrast-enhanced angiography and
perfusion imaging. Partially-sampled methods, whereby only a fraction of a full k-space
matrix actually gets acquired, can accelerate the acquisition process and enable valuable
improvements such as increased temporal resolution, spatial coverage, spatial resolution
and/or contrast. Common methods to achieve this are parallel imaging and partial-Fourier
imaging, which can be of great value in both dynamic and non-dynamic applications.
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However, the presence of a temporal dimension in dynamic applications lends itself to
further acceleration strategies and extra imaging speed. Methods specifically designed for
dynamic applications include ‘Unaliasing by Fourier encoding the overlaps in the temporal
dimension’ (UNFOLD) (1), ‘kt Broad-use Linear Acquisition Speed-up Technique’ (k-t
BLAST) (2), ‘Adaptive sensitivity encoding incorporating temporal filtering’ (TSENSE) (3),
UNFOLD-SENSE (4), k-t SENSE (2), ‘Patient-adaptive reconstruction and acquisition in
dynamic imaging with sensitivity encoding’(PARADISE) (5) ‘Reconstruction of
undersampled dynamic images by modeling the motion of object elements’ (6), keyhole (7),
x-f choice (8), ‘reduced field-of-view imaging by direct Fourier inversion’ (Noquist) (9),
‘Time-resolve imaging of contrast kinetics’ (TRICKS) (10) and ‘UNFOLD using a temporal
subtraction and spectral energy comparison technique’ (T-SUSPECT) (11).

As the variety and complexity of partially sampled dynamic imaging methods continue to
increase, understanding how these methods relate and perform becomes increasingly
difficult. Modulation transfer functions (MTF) have been used extensively in medical
imaging in general, and X-ray imaging in particular, to evaluate the performance of imaging
systems. An MTF graphically displays the ability of a given imaging system to correctly
capture a range of spatial frequencies. A sharp drop in the MTF marks the resolution limit of
a given system, as depicted in Fig. 1 with a tick mark on the spatial frequency axis. In
dynamic imaging, both spatial and temporal variations are of interest, and accordingly we
propose extending the MTF approach to a 2D plane featuring both spatial and temporal
frequency dimensions, labeled k and f, respectively. An ideal dynamic imaging method
would be characterized by a homogenous MTF, equal to one across the entire k-f plane.

Typically, the performance of given dynamic imaging methods might have been measured
based on particular examples, such as cardiac results from one or more human subject(s).
While very useful, such tests remain anecdotal in nature, as they cannot establish whether
the tested method would perform similarly well on different objects and/or subjects, as
different combinations of spatial and temporal frequency variations might be present. The
primary goal of the present work is to propose a more thorough strategy to evaluate a
method’s performance by testing its response to all possible combinations of spatial and
temporal frequencies. While the present 2D MTF approach aims at visualizing how well
signal gets captured by a given imaging process, noise is another crucial marker of image
quality. We further propose a Monte Carlo scheme to evaluate noise properties at all
combinations of spatial and temporal frequencies, to complement the signal evaluation from
the 2D MTF approach.

The present work is most definitely not aimed at judging or ranking existing dynamic
imaging methods, but rather at identifying the main strengths of these methods in a hope that
favorable characteristics might prove compatible and give rise to improved hybrid schemes.
Our work to date has focused, to a large degree, on testing a number of variations of the k-t
SENSE and UNFOLD-SENSE approaches. The power of the clever regularization scheme
introduced by Tsao et al. (2), based on low-resolution prior knowledge, is clearly captured
by our 2D MTF approach. Strengths of the UNFOLD-SENSE sampling strategy, with larger
k-space offsets from frame to frame, are also demonstrated. The merger of these strengths,
i.e., the k-t SENSE regularization strategy and the UNFOLD-SENSE encoding scheme,
leads to a hybrid approach that performs better than UNFOLD-SENSE at higher
acceleration settings and arguably as fast as k-t SENSE, without any of the ‘blind spots’ in
temporal frequency that affect k-t SENSE reconstructions and to which UNFOLD-SENSE is
mostly immune. This hybrid approach has been tested in a retrospectively gated cardiac cine
application, and results are presented here.
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Implementing and evaluating all dynamic imaging methods in existence today would prove
a very ambitious goal, one that the present manuscript of course cannot come close to
achieving. It is hoped however that in time, the introduction of more thorough procedures
for evaluating performance will help toward identifying desirable features and combining
them into improved hybrid methods, as done here with the development of a (k-t SENSE)-
(UNFOLD-SENSE) hybrid.

Our proposed 2D MTF measurement method is described in the Theory section, along with
a Monte Carlo algorithm for evaluating noise properties. Following background information
about k-t space sampling, the UNFOLD-SENSE and k-t SENSE reconstruction strategies are
explained and merged. Still in the Theory section, the use of prior knowledge in several
existing dynamic-imaging methods will be described and compared. UNFOLD-SENSE, k-t
SENSE and a merged version of the two were evaluated in terms of 2D MTF, noise and
artifact properties, based on phantom and in vivo results, as shown in the Results section.

Theory
1. Performance evaluation based on 2D MTF measurements

The image acquisition process can typically be represented as a linear problem of the form

[1]

where ρ represents the imaged object (in either x-y-z-t space, kx-ky-kz-f space, or some other
hybrid space), η denotes the noise, K is the measured signal, F is an optional filter and E
represents the encoding process. The filtering operation refers to cases such as in UNFOLD
whereby artifacts are encoded into pre-determined regions of the space encompassed by K,
and then removed.

In principle at least, as long as the encoding matrix can be explicitly constructed, the inverse
problem can be analytically solved through a matrix inversion and/or an iterative solver. But
especially in dynamic imaging, where a time series of images is obtained, the size of the
problem described in Eq. 1 may be daunting. Existing accelerated dynamic imaging methods
successfully break this reconstruction problem into a large number of smaller and more
manageable ones, while introducing prior knowledge and assumptions into the solution.

Assuming for a moment that Eq. 1 could be solved despite its size, a typical approach would
be to use a least-squares minimization solution along with a Tikhonov regularization term:

[2]

where the superscript H represents the adjoint operation, and a Gram matrix LH L with
weight λ is used for regularization purposes. In a case where the ‘truth’ ρ is actually known,
combining Eqs 1 and 2 leads to:

[3]

The H matrix essentially transforms signal from the actual object to its imaged version.
Expressing Eq. 3 in terms of the individual elements of H, one obtains:
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[4]

For an ideal imaging system, where the image of an object is identical to the object itself, the
Hii and Hij coefficients would be equal to, respectively, ones and zeros. In a case where ρ is
expressed in the spatial-temporal frequency domain (kx-ky-f), the Hii coefficients in Eq. 4
correspond to the MTF we are seeking to build, as they represent the ability of a given
imaging system to capture all combinations of spatial and temporal frequencies. Non-zero
Hij terms, on the other hand, represent artifacts introduced by the imaging system, whereby
signal that belongs to a given combination of spatial and temporal frequencies gets
erroneously mapped to a different frequency location.

As previously stated, due to the large size of the problem expressed in Eq. 1, the matrix H as
expressed in Eq. 3 may not be explicitly known. Instead, we propose a perturbation
approach to evaluate the MTF associated with a given imaging process. As can be seen from
Eq. 4, for any given value of i, the desired MTF entry Hii would act as a slope in a plot of ρ̂i
vs ρi. A small perturbation Pi,p is added to the ‘truth’ ρi, where the subscript p denotes the
index of the perturbation. This new ‘truth’, with ith entry ρi,p, is subsampled and
reconstructed to yield a new imaged version, with ith entry ρ̂i,p. After adding successively
several different amounts of perturbation, linear regression is performed on ρi,p and ρ̂i,p:

[5]

where Ai and Bi are fit coefficients. The perturbation should be kept very small as significant
changes to the ‘truth’ could artificially render the prior knowledge and assumptions used by
various methods inaccurate, and unfairly affect their measured performance. Round-off
errors appear to be the only factor limiting how small the perturbations can be made. The fit
slope Bi, like Hii in Eq. 4, represents how well signals get transferred from object (input) to
image (output). The intercept Ai, on the other hand, reveals signal erroneously reconstructed
at a given frequency, whose presence and intensity in the output is independent of whether
we perturb this frequency at the input.

The variables in Eq. 5 represent individual elements from corresponding arrays described as
ρ ̂(kx, ky, f, p), A(kx,ky,f), ρ(kx, ky, f, p) and B(kx,ky,f), respectively. In 2D imaging cases
where the sampling is Cartesian along kx, no variations in MTF are expected along this
direction and a sum is performed, leaving only a 2D MTF with ky and f coordinates. After
summation and proper scaling, the fit coefficients B(kx,ky,f) and A(kx,ky,f) give rise to the 2D
MTF and signal to artifact measures used in the present work:

[6]

[7]
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2. Performance evaluation based on noise measurements
Monte Carlo methods have been extensively applied to assess statistical properties of
stochastic processes, and involve using random numbers through several simulated
iterations. Such approach can be used here to capture the noise properties of a given
algorithm (12), without the need to explicitly obtain the H matrix in Eq. 3. For each iteration
complex Gaussian distributed random numbers were input in place of the acquired data, for
all coils and all time frames. The purely noisy data were undersampled in accordance with
the sampling scheme and acceleration factor being probed. The resulting noise datasets were
reconstructed using parameters, such as sensitivity maps and regularization information,
obtained from the original acquired dataset, giving rise to noisy reconstructed results ρ ̂R
where R stands for the acceleration factor. A noise enhancement ratio is obtained by
dividing the variance at each spatial and temporal frequency location by the corresponding
variance from the R = 1 case(9):

[8]

Because Eq. 8 estimates a ratio, the scaling of the noise being introduced as part of the
Monte Carlo approach has no impact on the results, as any non-zero finite scaling would
simply cancel out in Eq. 8.

While the 2D MTF and noise measurement algorithms described here are, in principle at
least, were aimed at a fairly wide range of dynamic imaging methods, results in the present
work were obtained for variants of the k-t SENSE and UNFOLD-SENSE schemes,
including a hybrid of the two. Accordingly, the following sections give a quick overview of
the main characteristics of these two approaches, focusing especially on characteristics that
will prove useful toward interpreting our 2D MTF and noise results.

3. On the sampling of k-t space
Several dynamic imaging methods involve shifting or rotating the sampling function in k-
space from time frame to time frame (13). The rationale for such time-varying acquisition
schemes is illustrated in Fig. 2, for an acceleration factor R = 4. In any given image pixel
(xo, yo), up to 4 components overlap: 3 aliased (dashed lines in Fig. 2) and 1 non-aliased
(solid line). Time-varying sampling schemes have the effect of moving some or all of the
aliased energy away from the temporal DC region, where most of the non-aliased signal
remains (1). The steeper the slope in k-t space, the further the aliased energy gets displaced,
although wraparound does occur from −Nyquist to +Nyquist and vice-versa. In Fig. 2, much
of the artifact energy (dashed lines) was moved away from the DC region, creating a zone
near DC and highlighted in green where the aliasing problem has been considerably
simplified. Because much of the non-aliased signal is found near DC, a simplified signal
reconstruction problem around DC can lead to considerably improved overall image quality.

The downside of such time-varying sampling strategies can be appreciated looking at the
temporal frequency regions highlighted in red in Fig. 2. The aliased energy displaced from
DC must of course appear somewhere else, and weak non-aliased signal is unlikely to be
properly recovered when overwhelmed by strong aliased signal. In k-t SENSE, a relatively
small slope setting is used in k-t space, i.e., the k-space increment from frame to frame is
relatively small (Fig. 2). While the overlap problem near DC (green zone) is almost entirely
resolved, several difficult areas are created (red zones). With an acquisition scheme based on
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variable-density sampling and a steeper slope in k-t space, UNFOLD-SENSE creates only
one difficult region (near Nyquist, shown in red), although it only partly solves the aliasing
problem near DC. This difference in the preferred slope setting in k-t space gives rise to
some of the main differences we noted between the 2D MTF obtained from the two
methods.

A great strength of such methods with a time-varying sampling function is that the DC
region (green band, Fig. 2) can be easily obtained once most or all aliased components have
been cleared away. On the other hand, a typical weakness is the difficulty to recover weak
non-aliased signals wherever they are overwhelmed by intense aliased signals (red bands,
Fig. 2). For display purposes and if so desired, 2D y-f plots at a given x0 location, of the type
used in (2), could be used just as well as the 1D f plots at a given (xo,yo) location used in Fig.
2 and in (1).

4. UNFOLD-SENSE and k-t SENSE reconstruction methods
UNFOLD-SENSE—The UNFOLD-SENSE reconstruction equation is given by (14)

[9]

Where Kγ is the signal from coil number γ, Ol is a parallel imaging reconstruction operator
with acceleration factor of l, Or with an acceleration factor of r, F+DC is a temporal filter
that selects the DC region and F−alias rejects the region where aliased components are
located. Equation 9 can be readily understood looking at Fig. 2: Of the r = 4 components
sharing a same bandwidth, only l = 2 have significant energy near DC. The signal near DC is
extracted and reconstructed with an acceleration factor of 2 (first term, Eq. 9) and the rest of
the bandwidth except for the corrupted Nyquist region is reconstructed with an acceleration
of 4.

k-t SENSE—Starting with Eq. 9, in a case where all aliased components have been
displaced from DC (l = 1, Fig. 2b k-t SENSE case), where the F+DC{} filter is chosen to be
a delta function at DC and where F−alias = (1 − F+DC), one obtains:

[10]

where S is the coil sensitivity matrix and X, Xalias and X represent, respectively, the
reconstructed signal, the pre-reconstruction aliased signal and the reconstructed (all coils
combined) temporally-averaged DC signal. In the case where Cartesian SENSE would be
used for the parallel imaging reconstruction, the Or{} operator takes the form
(SHΨ−1S)−1SHΨ−1 with Ψ as a noise covariance matrix (15,16), and Eq. 10 becomes:

[11]

For regularization purposes, one might typically have used a zeroth-order Tikhonov
regularization (ZTR), setting L to an identity matrix in Eq. 2 (17). The very insightful
innovation in k-t SENSE introduces adaptive prior knowledge into the reconstruction, within
the Tikhonov regularization term. The Gram matrix is replaced by M−2, which is estimated
from a training scan, leading to the k-t SENSE reconstruction equation (2):
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[12]

5. On the use of prior knowledge
Regions of support—As depicted in Fig. 3, methods such as UNFOLD, UNFOLD-
SENSE, PARADISE and several others involve regions of support in x-y-f space where non-
aliased signal is expected and allowed. Spatial locations provided with a wide bandwidth
along f can accommodate very dynamic temporal variations, while spatial locations provided
with a narrow bandwidth can accommodate only static or nearly-static material. In a cardiac
application for example, the heart would be located in the dynamic region for methods
depicted in Fig. 3a–c. Periodic signals can be represented using only a subset of all
frequencies (DC, the fundamental and all harmonics), and for this reason some applications
like real-time cardiac imaging and fMRI where periodic signal variations are expected can
be handled using discontinuous regions of support along the f axis (Fig. 3c–d). UNFOLD-
SENSE makes very little assumptions, as it features regions of support that nearly cover the
entire x-y-f volume and treat equivalently all x-y locations (Fig. 3e). Only the outer ~10% of
the bandwidth along the f axis, near the Nyquist frequency, is not included into the
UNFOLD-SENSE region of support.

Training data—k-t SENSE on the other hand uses a much richer set of prior knowledge,
using actual image data rather than regions of support (Fig. 3f). This prior knowledge is
cleverly used in the form of a regularization term, as part of the reconstruction equation (Eq.
12). In our results, the use of the M-based Tikhonov regularization at high acceleration
settings proved much superior to ZTR. By using the M regularization matrix rather than
ZTR in UNFOLD-SENSE and UNFOLD SPACE-RIP reconstructions as part of the Ol{}
and Or{} parallel imaging operators (Eq. 9), a (k-t SENSE)-(UNFOLD-SENSE) hybrid
called hybrid-SENSE here was readily obtained.

6. Further information on the reconstruction algorithms used here
Scaling of the M regularization matrix—Because the calculation of the sensitivity S
typically involves dividing the data from a given coil by data from all coils (15), the term
SHΨ−1S in Eqs 11 and 12 is typically properly scaled, as any arbitrary scaling on the image
magnitude would cancel out through the division. This is not the case however for the
additive M−2 regularization term, which can become larger or smaller and cause the system
to become over- or under-regularized depending on arbitrary signal gains at the receive
stage, or on whether a given FFT software applies scaling factors or not, for example.
Under-regularized solutions are expected to be overly noisy, while over-regularized
solutions are expected to introduce artifacts, making it important to strike the right balance.
In analogy with ZTR, where a scalar may multiply an identity matrix with norm 1, we found
it useful to divide the M matrix by its Froebinius norm, and multiply the result by a scalar
that controls the amount of regularization performed. The regularization term thus becomes:

[13]

Retrospective cardiac cine reconstruction—The cardiac cine results presented here
were reconstructed using retrospective gating, to properly capture the end-diastolic cardiac
phases. Combining the temporal strategy in k-t SENSE and UNFOLD-SENSE with the
temporal strategy in retrospective gating is not trivial, and an approach based on non-
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Cartesian sampling and the use of a conjugate gradient solver was presented in (18) for k-t
SENSE. An alternative approach using various tricks to avoid the use of a solver (at least for
the temporal direction) was presented in (19) for UNFOLD with parallel imaging, to reduce
processing time by many-folds. Both approaches were implemented here for our (k-t
SENSE)-(UNFOLD-SENSE) hybrid and very similar results were obtained from both.

Low spatial resolution data for sensitivity mapping and for M regularization—
In the cardiac cine results presented here, a small central k-space region was used for
sensitivity mapping and regularization purposes. While this central region could be fully
sampled, we instead sub-sampled it by a factor of two in a way similar to ‘self, hybrid
referencing with UNFOLD and GRAPPA’ (SHRUG) (4), for greater imaging speed.
Because the sensitivity map of the imaged object is typically expected to be relatively static
within a breath-hold experiment, the correlation between points near the very center of k-
space is not expected to change in a dynamic way. A fully-populated region, only a few k-
space lines wide, was obtained near k-space center through temporal filtering, and GRAPPA
coefficients were calculated from this region as suggested in T-GRAPPA (20). GRAPPA
was then used (21), with an acceleration factor of 2, to reconstruct the entire central region
(typically about 10% of the ky extent). This GRAPPA-reconstructed central region then
allowed low-spatial resolution sensitivity maps as well as the regularization matrix M to be
calculated. This self-calibration, self-referenced scheme is very reminiscent of the
‘GRAPPA-enhanced sensitivity maps for SENSE reconstructions’ (GEYSER) method
presented in (22).

Materials and Methods
1. Phantom data

Phantom experiments were performed on a 3.0 T MR system equipped with manufacturer-
supplied 8-channel head coil (GE Signa CVi, Milwaukee, WI) using a balanced steady state
free precession (bSSFP) sequence, with TE = 2.4 ms, TR = 7 ms and FOV =12 cm. The
receiver bandwidth was 125 kHz. The relatively long TR was a consequence of the
relatively small object size and FOV. The phantom consisted of an orange immersed in a
cylindrical water container, and the whole phantom was rotated to produce dynamic changes
(see Fig. 4a). The phantom was imaged for several repetitions at each angular location,
giving rise to a dataset featuring 24 frames of different rotations and 45 repetitions for each
frame. Each one of the 45 equivalent datasets were undersampled and reconstructed
independently. While data from only the first one were used to generate an MTF and to
obtain the parameters for reconstruction, data from all 45 were used to measure a noise
amplification ratio, as defined in Eq. 8. A second measure of the noise amplification ratio
was also obtained through our Monte Carlo approach, using only the first dataset. The
measure using all 45 acquired datasets was then compared to that from the Monte Carlo
approach using only a single dataset, to validate the latter.

2. Fully-acquired in vivo data
Four fully sampled short-axis cardiac cine datasets were obtained, with informed consent
and proper IRB approval, and were sub-sampled to simulate various acceleration factors
(bSSFP sequence, product eight-channel cardiac array coil, flip angle = 45°, slice thichness
= 7 mm, acquisition bandwidth = 125 kHz, TE/TR = 1.7/3.5 ms, 24 reconstructed phases).
For faster processing, only the very dynamic region around the heart (e.g., see Fig. 4b) was
used for MTF assessment purposes, as other regions featured mostly static signals and could
not help the MTF evaluation beyond the immediate temporal DC region. The datasets with
and without simulated perturbations (Pi,p in Eq. 5) were under-sampled according to both
the UNFOLD-SENSE and k-t SENSE acceleration schemes, for various acceleration factors.
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A regulation factor λ of 3% was used (Eq. 13). Monte Carlo simulations using 45 iterations
were performed to evaluate the noise amplification associated with each reconstruction.
Although the different in vivo datasets were associated with significantly different anatomies
and functions, the measured MTF, signal to noise ratio and noise enhancement were quite
similar for all datasets and slices, suggesting our evaluation scheme does appear to be
mostly object-independent, as expected and aimed for.

3. Accelerated in vivo data
Two subjects were imaged with an accelerated retrospective cardiac cine sequence, using the
variable-density sampling strategy described in (4) (IRB-approved, short axis view, one
subject at 3 T, flip angle = 45°, TR=4.0ms, TE=1.8ms, 7 mm thickness for 4 slices, matrix
size = 192×160, and the other at 1.5 T, flip angle = 45°, TR = 3.5 ms, TE = 1.5 ms, 7 mm
thickness for 6 slices, matrix size = 192×192. The images were acquired using the product
8-channel cardiac array coil equipped on each scanner. The skip factor for the outer ky
regions was either 4 (datasets at 1.5 T) or 8 (dataset at 3T), and only 2 near k-space center.
The central region covered about 15% of the whole extent, enabling net acceleration factors
of 3.5 and 6.3, respectively

Results
Figure 5 presents image results for two different acceleration settings (4-fold and 8-fold),
three different reconstruction algorithms (UNFOLD-SENSE with ZTR, k-t SENSE and
hybrid-SENSE), and two different datasets (phantom dataset and one of the downsampled in
vivo datasets). In (b) and (c), the temporal changes for the line in the 2D spatial images that
intersects the heart are also shown at the left.

1. 2D MTF results
Figure 6 presents the 2D MTF results associated with the image reconstructions in Fig. 5. A
perfect imaging method would be characterized by a uniform 2D MTF, equal to one at all
spatial and temporal frequency locations. As could be expected, the MTF tends to be more
degraded for a higher (8-fold) acceleration than for a lower (4-fold) one, for all methods.
Looking either at Fig. 6 or the associated image results from Fig. 5, it can be seen that
UNFOLD-SENSE with ZTR was most degraded evolving from good quality to artifact-
plagued as the acceleration factor increases. The regularization scheme from k-t SENSE
performed better than ZTR at higher acceleration. A main advantage of the k-t SENSE
regularization scheme, used both in k-t SENSE and in hybrid-SENSE, can be seen in the
form of a faint horizontal line near ky=0 in Fig. 6c (see arrows), reflecting a better ability to
capture low spatial frequencies.

A main advantage of the UNFOLD-SENSE acquisition scheme, used both in UNFOLD-
SENSE with ZTR and in hybrid-SENSE, is the continuous coverage of the entire temporal
frequencies axis except for a region around Nyquist. The k-t SENSE method, on the other
hand, features R−1 blind frequency values for a sub-sampling factor of R, as can be
understood from Fig. 2 and associated text. Because signals are not expected to be smooth
along the temporal frequency axis, these missing locations may not be reliably recoverable
through interpolation. With increased acceleration, the missing frequencies increase in
number and get closer to the signal-rich f = 0 region, leading to a reduction in signal fidelity.
Hybrid-SENSE combined desirable properties from both k-t SENSE and UNFOLD-SENSE,
as can be seen from the higher-intensity horizontal lines near ky = 0 and the continuous
coverage along f in Fig. 6c.iii.
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2. Artifact measurement results
Figure 7 presents signal-to-artifact-ratio results calculated through Eq. 7 and associated with
the image results and MTF results from Figs 5 and 6. A main strength of k-t SENSE can be
seen from Figs 7b.ii and 7c.ii in the form of a bright line at f = 0. This feature can be
understood from Fig. 2b and associated text, as nearly all aliased energy is displaced from
the f = 0 location and the corresponding non-aliased signal can be recovered without any
further processing. In contrast, UNFOLD-SENSE does not displace all overlapped signals
away from DC (Fig. 2a), and still partly relies on parallel imaging to recover the f = 0
location.

While aliased energy can be displaced along the temporal frequency axis, it must of course
appear somewhere. Spreading aliasing components throughout the bandwidth causes some
frequency locations to be missed (red bands in Fig. 2b and black bands in Fig. 6c.ii), but
may allow a high signal-to-artifact ratio at the f = 0 location (Fig. 7c.ii). On the other hand,
displacing half the components to Nyquist and keeping the others at DC allows a continuous
bandwidth to be recovered (Fig. 2a and Fig. 6c.iii), but may lead to a lower signal-to-artifact
ratio at the f = 0 location (Fig. 7c.iii). Accordingly, as acceleration is increased, k-t SENSE
tends to gradually fail due to a loss in signal fidelity that comes from an increasing number
of temporal frequency locations being missed, while UNFOLD-SENSE with ZTR and
hybrid-SENSE tend to fail due to an increasingly large amount of DC artifacts obscuring the
underlying anatomy.

Unlike MTFs, signal-to-artifact-ratio maps depend on the actual signal, which in turn
depends on the object being imaged. Maps in Fig. 7a may appear different from those in Fig.
7b and 7c because the phantom used in Fig. 7a looks very different from the short axis
cardiac images used in Figs 7b and 7c. While signal-to-artifact-ratio maps can be useful for
comparing results from different methods or different reconstruction settings, they cannot
reliably be used to compare results from different objects.

3. Noise measurement results
Figure 8 presents noise measurement results for the phantom experiment, calculated in two
different ways: From the 45 repetitions (Eq. 13, Fig. 8a), and from our Monte Carlo
approach using the information from the first repetition only (Fig. 8b). The purpose of Fig. 8
is to validate the Monte Carlo approach, so that noise measurements might then be presented
for other datasets acquired without multiple repetitions.

Results from Fig. 8a and 8b are strikingly similar, except for a darker band near ky = 0 in
Fig. 8a. We have found these dark bands to be caused by instabilities in our scanner that
induce signal, and not only noise, to vary from repetition to repetition. These field
instabilities tended to affect the whole object globally and impacted mostly the ky = 0 region
in Fig. 8a. As they tended to increase both the numerator and denominator in Eq. 8 by a
similar additive term, these instabilities made the ratio smaller and the corresponding entries
darker in Fig. 8a. As the only substantial differences between Fig. 8a and Fig 8b were traced
to hardware imperfections, we interpret the results in Fig. 8 as a successful validation of the
Monte Carlo approach.

Figure 9 illustrates the noise amplification factor as measured through the Monte Carlo
approach, from an in vivo dataset. The DC region where signals were reconstructed using a
lower acceleration factor are associated with lower noise amplification, as could be
expected. Such DC region is larger in UNFOLD-SENSE (about 10% of the bandwidth) and
narrower with k-t SENSE (only the f = 0 location), it has a value of exactly the square root
of the acceleration factor with k-t SENSE and can be higher in UNFOLD-SENSE.
Variations along both spatial and temporal dimensions imply that the noise is neither
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spatially nor temporally homogeneous in the reconstructed images. The results in Fig. 9 are
highly dependent on the amount of regularization used, i.e., the chosen value for λ (Eq. 13).
Lower noise amplification can be readily obtained, at the price of extra blurring, by
increasing λ. Compared to UNFOLD-SENSE and hybrid-SENSE, k-t SENSE had a
tendency to have less noise amplification at f = 0, more noise amplification at locations near
(but not equal to) f = 0, and less amplification at higher frequencies.

4. In vivo image results
Data were acquired according to our proposed hybrid-SENSE scheme, with a sub-sampling
factor of two near k-space center for sensitivity mapping and regularization purposes. The
outer k-space regions were sub-sampled by a factor of either 4 or 8, for a net acceleration of
3.5 or 6.3, respectively. Results for two cardiac phases (mid-systole and mid-diastole) are
presented in Fig. 10, for both datasets. The acquired data were reconstructed using two
different algorithms that allow for retrospective cardiac gating, one originally proposed in
conjunction with but not restricted to k-t SENSE (18) (left half of Fig. 10) using 2D
conjugate gradients, and one originally proposed in conjunction with but not restricted to
UNFOLD parallel imaging (19) (right half of Fig. 10). Especially in the presence of
arrhythmia, elaborate non-linear schemes may be employed to map acquired time points
onto a cardiac phase axis, and both approaches are equally capable of handling such
schemes. Both approaches provided essentially equivalent results, although the one from
(19) processed about 8 times faster. A combination of GRAPPA and SPACE RIP were used
for reconstruction of the low and high temporal frequencies, respectively.(23) Artifacts,
especially visible in the higher-acceleration case, were found to be nearly static, as expected
and previously mentioned (Fig. 2a and Fig. 7c.iii).

Discussion
The present work was aimed at developing an object- and application-independent
methodology to evaluate the performance of dynamic imaging methods. The output consists
of easy-to-interpret 2D renderings that capture the frequency-dependent properties of given
methods in terms of signal, artifacts and noise, as a function of spatial (k) and temporal (f)
frequencies. Our analysis tools demonstrate the performance degradation that occurs in each
reconstruction method with increasing acceleration (e.g., R = 8 in Fig. 6c compared to R = 4
in Fig. 6b). Performance of reconstruction algorithm also varied with the general setup, e.g.,
acceleration proved harder to achieve in the small-FOV phantom application than in the
larger-FOV in vivo results (e.g., Fig. 6a compared to Fig. 6b). Variations were also found
from method to method (e.g., Fig. 6c.i compared to Figs 6c.ii and 6c.iii). For the setup used
here (i.e., given coil array and FOV) and a given dynamic imaging method, very little
variations were found in results from different slices and volunteers, which is consistent of
an object-independent evaluation. However, because these methods depend on the acquired
data for self-calibration purposes and sometimes for regularization purposes as well, the
evaluation of these methods could never be entirely object-independent.

Comparing results from different methods proved instructive in terms of visualizing and
quantifying their main strengths and weaknesses. Methods based on the UNFOLD-SENSE
sampling scheme were capable of capturing an uninterrupted temporal bandwidth (Fig 6a–
c.i), but they can be vulnerable to static parallel-imaging artifacts (Fig 7a–c.i). On the other
hand, with k-t SENSE, R-1 problematic locations were created along the temporal frequency
axis where signal cannot be accurately recovered (Fig 6a–c.ii). While static parallel-imaging
artifacts are mostly avoided by not performing any parallel imaging reconstruction on the
DC component (Fig 7a–c.ii), the approach is vulnerable to overall losses in signal fidelity
from these missing frequency locations. With respect to regularization schemes, the prior-
knowledge based scheme from k-t SENSE proved useful at higher acceleration settings to

Chao et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



maintain image quality, as compared to ZTR. This regularization scheme, from k-t SENSE,
also proved entirely compatible with the sampling scheme from UNFOLD-SENSE, leading
to the hybrid method proposed here. Our results suggest that the hybrid method
advantageously combined desirable characteristics from both previous methods, as it
captured continuous temporal frequency bandwidths while exploiting prior knowledge to
maintain performance at higher acceleration settings.

Because the evaluation process requires the knowledge of a ‘truth’, and because different
methods sub-sample k-space differently, the evaluation work had to be performed using
datasets that were fully sampled and then sub-sampled at the reconstruction stage.
Nevertheless, results were also presented that were actually acquired in an accelerated
fashion (Fig. 10), and reconstructed using the proposed hybrid method. Reconstruction with
k-t SENSE could not be performed on these datasets, as they were acquired using the
UNFOLD-SENSE sampling scheme. Because these were cardiac cine datasets, two different
retrospective-gating algorithms could be chosen for their reconstruction. One was proposed
as part of k-t SENSE work but is not specific to k-t SENSE, and one was proposed as part of
UNFOLD-SENSE work but is not specific to UNFOLD-SENSE. Both were found to
provide similar results, although the one from (19) had a processing speed several-fold faster
with a same conjugate gradient kernel. To enhance the performance of the proposed hybrid
method, the parallel imaging part of the reconstruction algorithm was replaced by a
combination of GRAPPA and SPACE RIP. GRAPPA was used to generate the sensitivity
maps and the training data from the under-sampled central k-space region in a way similar to
GEYSER (22), and to reconstruct signals in the region near temporal DC. SPACE RIP was
used to reconstruct signal at higher temporal frequencies, as described in (23).

A notable limitation of the present evaluation method comes from the fact it is based on a
linear problem (Eq. 3). Accordingly, the treatment of nonlinear algorithms such as
compressed sensing appears to be beyond the scope of this work. The proposed
methodology can handle reconstruction methods and regularization schemes that can be
expressed in matrix form, but not the L1-norm regularization scheme from compressed
sensing. By assuming sparsity, signal perturbations may or may not be thoroughly ignored
by the regularization scheme in Compressed Sensing, making the evaluation of a 2D MTF
problematic. A more general evaluation strategy may be required to handle such non-linear
algorithms. Computation effort represents another potential drawback. In the proposed
approach, perturbations for the MTF calculations are introduced one at a time, leading to
multiple reconstructions. But once an evaluation is complete, it should be relevant to any
application of the method under test, as the evaluation tool extracts algorithm-dependent
features and is mostly object-independent. As a further limitation, the present noise-
estimation tool neglected noise correlation, which may be significant especially with arrays
featuring large numbers of coil elements. The inclusion of measured pre-scan noise data, as
done in (16), could in principle improve our noise estimates in terms of accuracy. Finally,
while k-f representations were found most informative for the methods tested here, it should
be noted that alternative representations, e.g., in the x-f space, would be readily obtainable
through minor modifications to the proposed algorithms and could prove helpful in given
situations.

Conclusions
An approach to evaluate in a visually intuitive way the performance of dynamic imaging
methods in terms of 2D MTF, signal to noise ratio and noise amplification was presented. A
hybrid method that combines the main desirable characteristics observed from k-t SENSE
and UNFOLD-SENSE was introduced.

Chao et al. Page 12

Magn Reson Med. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
The authors wish to thank Dr. Jing Yuan for useful discussions and his help with the experimental setup. Support
from NIH U41-RR019703, NIH R01 HL073319 and NSC NSC-96-2628-E- 002-006-MY3 is acknowledged. The
content of this manuscript is the sole responsibility of its authors.

References
1. Madore B, Glover GH, Pelc NJ. Unaliasing by fourier-encoding the overlaps using the temporal

dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999;42:813–828.
[PubMed: 10542340]

2. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate
exploiting spatiotemporal correlations. Magn Reson Med 2003;50:1031–1042. [PubMed:
14587014]

3. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal
filtering (TSENSE). Magn Reson Med 2001;45:846–852. [PubMed: 11323811]

4. Madore B. UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression.
Magn Reson Med 2004;52:310–320. [PubMed: 15282813]

5. Sharif, B.; Aggarwal, N.; Bresler, Y. PARADISE: Patient-adaptive reconstruction and acquisition in
dynamic imaging with sensitivity encoding. Proceedings of Joint Annual Meeting ISMRM-
ESMRMB; Berlin, Germany. 2007. p. 151

6. Prieto C, Batchelor PG, Hill DL, Hajnal JV, Guarini M, Irarrazaval P. Reconstruction of
undersampled dynamic images by modeling the motion of object elements. Magn Reson Med
2007;57:939–949. [PubMed: 17457881]

7. van Vaals JJ, Brummer ME, Dixon WT, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar
JL, den Boer JA. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn
Reson Imaging 1993;3:671–675. [PubMed: 8347963]

8. Malik SJ, Schmitz S, O’Regan D, Larkman DJ, Hajnal JV. x-f Choice: reconstruction of
undersampled dynamic MRI by data-driven alias rejection applied to contrast-enhanced
angiography. Magn Reson Med 2006;56:811–823. [PubMed: 16897770]

9. Brummer ME, Moratal-Perez D, Hong CY, Pettigrew RI, Millet-Roig J, Dixon WT. Noquist:
reduced field-of-view imaging by direct Fourier inversion. Magn Reson Med 2004;51:331–342.
[PubMed: 14755659]

10. Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR
angiography. Magn Reson Med 1996;36:345–351. [PubMed: 8875403]

11. Wu Y, Jeong EK, Parker DL, Alexander AL. UNFOLD using a temporal subtraction and spectral
energy comparison technique. Magn Reson Med 2002;48:559–564. [PubMed: 12210926]

12. Thunberg P, Zetterberg P. Noise distribution in SENSE- and GRAPPA-reconstructed images: a
computer simulation study. Magn Reson Imaging 2007;25:1089–1094. [PubMed: 17707171]

13. Madore, B. Dynamic Imaging Methods Assessed with A 2D MTF Approach. Proceedings of the
16th Annual Meeting of ISMRM; Toronto, Canada. 2008. p. 1496

14. Madore B. Using UNFOLD to remove artifacts in parallel imaging and in partial-Fourier imaging.
Magn Reson Med 2002;48:493–501. [PubMed: 12210914]

15. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast
MRI. Magn Reson Med 1999;42:952–962. [PubMed: 10542355]

16. Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR
measurement. Magn Reson Med 2005;54:1439–1447. [PubMed: 16261576]

17. King, KF.; Angelos, A. SENSE image quality improvment using matrix regularization.
Proceedings of the 9th Annual Meeting of ISMRM; Glasgo, Scotland. 2001. p. 1771

18. Hansen MS, Baltes C, Tsao J, Kozerke S, Pruessmann KP, Eggers H. k-t BLAST reconstruction
from non-Cartesian k-t space sampling. Magn Reson Med 2006;55:85–91. [PubMed: 16323167]

19. Madore, B.; Chu, R.; Zientara, GP. Accelerated cardiac cine imaging, with retrospective gating.
ISMRM 14th Scientific Meeting & Exhibition; Seattle, Washington, USA. 2006. p. 763

Chao et al. Page 13

Magn Reson Med. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



20. Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel imaging using
temporal GRAPPA (TGRAPPA). Magn Reson Med 2005;53:981–985. [PubMed: 15799044]

21. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A.
Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med
2002;47:1202–1210. [PubMed: 12111967]

22. Hoge WS, Brooks DH. Using GRAPPA to improve autocalibrated coil sensitivity estimation for
the SENSE family of parallel imaging reconstruction algorithms. Magn Reson Med 2008;60:462–
467. [PubMed: 18666113]

23. Chao, TC.; Hoge, WS.; Madore, B.; Yuan, J.; Chung, HW. Reconstruction of retrospectively-gated
cardiac data using a combination of GRAPPA, SPACE-RIP, UNFOLD and an adaptive
regularization scheme. Proceedings of the 17th Annual Meeting of ISMRM; Honolulu, Hawaii,
USA. 2009. p. 4566

Chao et al. Page 14

Magn Reson Med. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
An MTF captures the resolving power of a given imaging process, in terms of spatial
frequency. In the depiction shown here, a tick mark indicates the resolution limit where a
sharp drop can be observed.
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Figure 2.
The sampling schemes of UNFOLD-SENSE (a) and k-t SENSE (b) are depicted here. The
spectrum for one single (xo,yo) pixel in the aliased image is shown on the right, side, for
each sampling scheme. The steeper slope typically selected in UNFOLD-SENSE pushes
half of all overlapped signals to the Nyquist frequency. In contrast, the gentler slope selected
in k-t SENSE evenly distributes the aliased components along the temporal bandwidth. For
both methods, their strength comes from reducing the amount of overlap found at DC
(frequency bands highlighted in green) and their weakness from the fact that weak non-
aliased signal cannot be reliably recovered when overwhelmed with strong aliased signal
(frequency bands highlighted in red).

Chao et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Prior knowledge about the imaged object can often be expressed in the form of a region of
support in x-y-f space, where non-aliased signal is expected/allowed. A few examples are
given here, for a few different dynamic imaging methods. A cube encompassing the whole
FOV along x and y and bandwidth along f would represents full support, i.e., no assumption.
The (x,y) locations provided with a wide bandwidth along f may contain very dynamic
material, such as a beating heart, while locations provided with a narrow bandwidth can
accommodate only nearly-static materials. A discontinuous support along f is appropriate in
applications where the expected signal is periodic in time, giving rise to harmonics along f.
When combined with parallel imaging, a nearly-full volume can be supported (about 90% of
the f axis). In k-t SENSE, the prior knowledge can take instead the form of a low-resolution
image.
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Figure 4.
(a) A phantom dataset with different rotations for different frames and (b) a cardiac cine
dataset are displayed here. Temporal changes for the location indicated with a dotted line are
plotted on the left, in (b). On the right, the datasets are represented in ky-f space (root sum of
mean square along kx). As could be expected, much of the signal resides near the spatial and
temporal DC region.

Chao et al. Page 18

Magn Reson Med. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
The reconstructed images for (a) the 4-fold undersampled phantom data, (b) the 4-fold and
(c) 8-fold undersampled cardiac cine data are presented here. Arrows point to some of the
main artifacts. In UNFOLD-schemes with ZTR, artifacts were found to be more static and
related to the parallel imaging reconstruction near temporal DC. With k-t SENSE, artifacts
were related to missing temporal frequencies.
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Figure 6.
2D MTFs are presented for the three scenarios from Fig. 5: (a) phantom data at acceleration
R=4, (b) in-vivo data at R=4 and (c) R=8. T̄MTF was defined by the average of the overall
TMTF. Banding structure along the spatial frequency axis and sharp transitions along the
temporal frequency axis can be observed in UNFOLD-SENSE with ZTR. The k-t SENSE
results feature a greater ability at capturing the spatial low-frequency region (see brighter
horizontal band, pointed to by a black arrow) and difficulty to capture some temporal
frequencies (see black vertical bands). The hybrid method (Hybrid SENSE) appears to
combine desirable features from both approaches, as it captures a continuous region along
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the temporal frequency axis and captures well the low-spatial frequency region (see black
arrow).
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Figure 7.
Maps of signal-to-artifact ratios are presented for the same scenarios as in Fig. 6. With a
subsampling factor of 4, similar results were obtained for all tested methods. As acceleration
increases, deviations between UNFOLD-SENSE with ZTR and k-t SENSE become clearer.
See text for more details.
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Figure 8.
Noise amplification map, in ky-f space, were measured on phantom data in two different
ways: (a) Using 45 repetitive measurements, and (b) using a single repetition and a Monte
Carlo approach. For all tested methods, (i) unregularized UNFOLD-SENSE, (ii) UNFOLD-
SENSE with ZTR, (iii) k-t SENSE and (iv) hybrid-SENSE, both noise-amplification
measurement methods gave essentially identical results, except for a central darker band in
(a) associated with signal instability in repetitive measurements on our scanner. These
results are interpreted here as a successful validation of the Monte Carlo approach.
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Figure 9.
Noise amplification maps, for the in-vivo data, were evaluated using the Monte Carlo
approach. Lower acceleration settings at or near DC are associated with smaller noise
amplification. The k-t SENSE regularization scheme allowed good noise suppression at high
temporal frequencies (a.ii and b.ii), while UNFOLD-SENSE with ZTR performed well at
low temporal frequencies (a.i and b.i). The performance of hybrid-SENSE (a.iii and b.iii),
not surprisingly, is a compromise between the two other methods.
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Figure 10.
While other results in this work were obtained from subsampled versions of fully-sampled
datasets, truly accelerated results are presented here. The results were reconstructed using
our proposed hybrid approach, and could not be reconstructed with k-t SENSE as it requires
a different subsampling scheme (see Fig. 2). Datasets were acquired for an acceleration
factor of 3.5 (4-fold undersampling in outer k-space and 2-fold near center), and 6.3 (eight-
fold in outer k-space and 2-fold near center). Two different retrospective-gating
reconstruction strategies were implemented and provided equivalent results, although one
processed about an order of magnitude faster. See text for more details.
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