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Abstract
The distinction of between-person age differences from within-person age changes is necessary for
understanding aging-related change processes. Although longitudinal studies are required to
address issues relating to within person change, most studies begin using age-heterogeneous
samples and conclude using survival-heterogeneous samples. Given the numerous potential
confounds associated with age-heterogeneous samples, careful treatment of between-person age
differences is essential to obtain the correct inferences regarding within-person age change. We
demonstrate how failure to differentiate between-person age effects (and by extension, of survival
age or other effects producing sample heterogeneity) will lead to uninterpretable inferences
regarding within-person change. We recommend that convergence of age differences and age
changes be formally evaluated whenever possible.

A major objective of developmental and aging research on cognitive functioning is to
describe patterns of change across the lifespan, including differentiation of function in early
developmental trajectories, age of peak performance in different cognitive abilities, and
magnitude of aging and health-related declines in mid-life and later life. Many types of
cross-sectional and longitudinal research designs have been used to understand such
developmental trajectories across the lifespan. Age-heterogeneous cross-sectional studies
that describe age differences have been used as a basis for inferring aging-related change.
However, comparisons of findings from cross-sectional and longitudinal studies have often
yielded different conclusions about the patterns and rates of age-related change across the
lifespan. As noted by Schaie and Hofer (2000), “comparison of longitudinal to cross-
sectional findings provides evidence of both concordance and disagreements (either full or
in part).”

Schaie (1996, 2008) has emphasized the importance of evaluating historical factors
associated with birth cohort when evaluating longitudinal patterns of cognitive change. To
that end, longitudinal studies (see Schaie & Hofer, 2000) have used Schaie’s most efficient
sampling design —based on a combination of cross-sectional and longitudinal sequences.
This sampling approach permits investigation of how level of functioning or rate of change
differs across birth cohorts or how period of testing effects influence outcomes. A more
common sampling approach is that of accelerated longitudinal designs (Bell, 1953; 1954;
McArdle & Bell, 2000), in which individuals from sequential cohorts (e.g., birth cohort,
grade in school) are followed longitudinally for a limited period of time. Measuring different
cohorts that overlap with respect to age permits estimation of a single trajectory across the
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entire range of observed age, a much larger range than what is observed directly through
longitudinal follow-up. Although the combination of age information across cohorts and
over time allows for the optimal estimation of parameters in models of change, it does so
only under the assumption of age convergence, or that cross-sectional age differences and
longitudinal age changes converge onto a common trajectory. That is, for such age
convergence models to produce valid results predicted values should depend only on one’s
age at a particular observation, and not on when the person was that particular age. Age
convergence is a hypothesis that can be evaluated statistically, and there are a number of
published examples of how do so when combining longitudinal data across multiple discrete
cohorts (e.g., Mehta & West, 2000; Miyazaki & Raudenbush, 2000).

Age convergence models have also been used to analyze data from longitudinal studies
without discrete cohorts at the first occasion, but rather that consist of individuals with
continuously varying ages at baseline. For example, some studies of adult aging have
applied age convergence models to samples with age ranges at baseline spanning 30 to 40
years (e.g., Ferrer et al., 2005) or even 90+ years (McArdle, Ferrer, Hamagami, &
Woodcock, 2002). Such wide age ranges encompass a large number of discrete birth
cohorts, and so multiple group approaches for testing convergence become impractical
(Mehta & West, 2000). Accordingly, the purpose of this article is to describe an alternative
approach for testing age convergence in studies with continuous age heterogeneity at
baseline.

The Importance of Convergence
Consider the following model of within-person change, as shown in Equation (1):

(1)

This model predicts the value of outcome y at time t for individual i based on the population
average intercept (β0), the population average age slope (β1), an individual-specific intercept
deviation (b0i), and a residual term (rti). Terms with a subscript i vary between individuals
whereas terms with a subscript ti vary both between individuals (i) and within individuals
over time (t). Accordingly, the within-person variability (across t) reflects the longitudinal
component of the data (i.e., age changes) and the between-person variability (across i)
reflects the cross-sectional component (i.e., age differences). The composite nature of the
variability in the age predictor (i.e., age varies across both i and t) implies that the the
average age slope (β1) is a mixture of both cross-sectional and longitudinal effects. If the age
convergence assumption is met, then the resulting composite age slope β1 will be more
efficient than an age slope estimated using either purely longitudinal or purely cross-
sectional information.

One method of distinguishing temporal (within-person) effects from cohort (between-
person) effects of age involves scaling the age variable. In between-person age scaling, the
origin of the time variable is set to a common age. For example, one could set the reference
age as 80 by including (Ageti − 80) as a predictor rather than as age at birth as implied by
using Ageti. In contrast, within-person age scaling involves representing change as a
function of time passed, which is specific to a given individual rather than to a given age.
Within-person age scaling is usually implemented by using the person’s age at the initial
assessment as the reference (i.e., by including Ageti − Age1i as a predictor rather than Ageti),
but other reference points have also been used (Sliwinski et al., 2003; Wilson et al., 2003).
The same longitudinal information is provided from individual-level data whether age is
scaled between-persons (Ageti − 80) or within-persons (Ageti − Age1i). The choice of age

Sliwinski et al. Page 2

Res Hum Dev. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scaling will, however, influence how between-person age variance is represented in the
model for change.

Testing Age Convergence
Testing for age convergence (e.g., Hoffman & Stawski, in press) involves a simple extension
of a technique described in texts on longitudinal data analysis (Diggle, Liang & Zeger,
1994) and multilevel modeling (Raudenbush & Bryk, 2002). Because Equation (1) estimates
a single age slope (βl), it constrains the longitudinal and cross-sectional age effects equal.
Adding each individual’s mean age  to the model relaxes this constraint. Equation (2)
includes  and groups all terms that are constant for a given individual in brackets:

(2)

The variable  conveys information only about cross-sectional age differences, and its
addition to the model changes the interpretation of the β1 slope for Ageti. In Equation (1), the
β1 slope for Ageti reflected the effect of both cross-sectional differences in age and
longitudinal age changes. In Equation (2) the effect of the β1 slope for Ageti is now its
unique effect after controlling for the cross-sectional age variation in  via β2. The
unique effect of Ageti is its longitudinal or within-person effect. The precise interpretation of
the β2 slope for  is clarified by taking the person-level average on both sides of the
equal sign, thus aggregating over all sources of longitudinal information in Equation (3):

(3)

The terms in this equation can be rearranged as shown in Equation (4):

(4)

The result is a model that reflects information derived exclusively from between-person age
differences and shows that the between-person or cross-sectional age slope is given by the
quantity(β1 + β2). This implies that the slope β2 reflects the difference between the
longitudinal and cross-sectional age effects. If age convergence holds (i.e., if β2 = 0), then
the predicted values from Equation (2) will be equivalent to those from Equation (1).
Within-person age scaling could be used as well, in which each individual’s average age is
set as the reference point by including  rather than Ageti in Equation (2). This
within-person age scaling would leave the interpretation of the βl age slope unchanged, but
the β2 slope for  would now directly reflect the between-person age effect rather than
the difference of the within-person and between-person age effects. It is more common in
longitudinal studies to set the reference to each individual’s age at baseline (e.g., Mehta &
West, 2000; Sliwinski & Buschke, 2004). Using baseline age as a reference produces
comparable results to the steps outlined in Equations (1-4), except that the between-person
age effect would reflect how an individual’s age at the first occasion related to his or her
score on the first occasion, rather than how his or her average age related to his or her
average score. Age at baseline is likely to provide a better index of cohort and selection
effects than would scaling relative to mean age, which is likely to be biased due to study
attrition and population mortality.
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Equation (4) illustrates that age convergence will fail so long as the between-person age
slope and within-person age slope differ, even in the absence of cohort differences on the
age slope. Figures 1a and 1b illustrate this point with hypothetical data. Figure 1a shows
four-year trajectories for three overlapping birth cohorts. Individuals at any point in time
differ from individuals who are four years older by an amount that is exactly equal to the
amount of change that they experience over the same interval. In this case, information
about longitudinal, within-person age changes and cross-sectional, between-person age
differences converges on the same answer, such that the β2 slope for  in Equation (2)
expressing the difference in these effects would be equal to zero. Figure 1b shows the same
longitudinal trajectories as Figure 1a, but with a positive effect of birth cohort (β2 > 0), such
that subsequent birth cohorts (i.e., those beginning the study at a younger age) have higher
predicted outcomes than earlier birth cohorts (who began the study at an older age). The
thick solid line represents the between-person age slope (βB), as obtained from β1 + β2 in
Equation (2), which is steeper than the within-person age slope (βW), as obtained from β1 in
Equation (2). Thus, even if the rate of age change is identical across cohorts (as in this
example), combining information about cross-sectional age differences and longitudinal age
changes in the presence of intercept differences across age cohorts would yield a biased
estimate of the true developmental aging effect.

Quantifying the Longitudinal and Cross-Sectional Influences
The estimate of the age convergence slope β1 in Equation (1) reflects information about how
individuals change as they age as well as how people of different ages vary from each other.
Even if age convergence obtains such that the cross-sectional and longitudinal age effects
are equal, it would be useful to know the relative contribution of both types of information
to the estimation of the age convergence slope, or βC. The formal relationship among the
between-person (βB), within-person (βW), and convergence (βC) age slopes is expressed in
Equation (5) as

(5)

The quantity ω is the mixing weight that controls the relative contribution of the cross-
sectional (βB) and longitudinal age slope (βW) to the estimation of the convergence age slope
(βC). The higher the value of ω, the more βC would reflect the cross-sectional information
about between-person age differences, and the lower the value of ω̣ the more βC would
reflect the longitudinal information about age changes. A single occasion cross-sectional
study would have ω̣ = 1, whereas a longitudinal study of individuals identical in age at
baseline would have ω̣ = 0. Longitudinal studies with age heterogeneous samples will have
values of ω that range between 0 and 1.

Calculating the value of ω for a given study informs the extent to which the results are
driven by between-person age variance in the data. Although the value of ω would equal the
ratio of the between-person sum of squares for age to the total sum of squares for age given
ordinary least squares estimation and balanced data, the relative weighting of βB and βW is
quite complex in the general case (Raudenbush & Bryk, 2002). Fortunately, it is possible to
determine the relative contribution of cross-sectional and longitudinal information to the
estimate of the age convergence slope. This can be done by using parameter estimates and
rearranging the terms in Equation (5) to solve for ω ̂ as shown in Equation (6):

(6)
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The weighting parameter ω ̂ can be calculated by estimating the three different age effects
(β ̂C, β ̂W and β ̂B for a given data set and then solving for ω ̂. For example, if β ̂C = -1.0, β ̂B =
-1.5, and β ̂W = -0.5, then ω ̂ would be .5, indicating exactly equal weighting of the cross-
sectional and longitudinal age variance in the estimation of the convergence age slope.

The relative amount of longitudinal and cross-sectional age variance available to estimate βC
is an important determinant of the magnitude of ω ̂ for a given data set. In practical terms,
this implies that increasing the range of age at baseline and reducing the amount of follow-
up drives ω ̂ upward (i.e., towards the between-person, cross-sectional age effect), whereas
restricting the initial age range and increasing the amount of follow-up reduces ω ̂ (i.e.,
towards the within-person, longitudinal age effect). The second implication is that the
amount of residual within-person variance will influence estimation ofω ̂. As the amount of
residual variance decreases, the relative weight of the longitudinal age variance increases,
and vice-versa. A formal test of age convergence coupled with an assessment of the relative
weighting of cross-sectional and longitudinal age information can help to understand why
age convergence does or does not obtain in a given application. However, in extreme cases,
such as when 95% of the age variance is between-persons, it may be harder to detect non-
convergence because there would be so little information on which to base the test of age
convergence.

Application to Simulated Data
The purpose of this simulation study is twofold. First, we will illustrate that cohort
differences in level of an outcome (intercept) but not rate of change are sufficient to bias age
convergence slopes. Second, we examine how different study design features (e.g., follow-
up frequency, interval, and duration) and sample characteristics (e.g., age range)
systematically influence estimates of age convergence effects. This is important because
results from a longitudinal study do not necessarily reflect exclusively or even mostly
intraindividual change. Depending on the study design, sample characteristics, and the
analytic model, estimates of aging effects from longitudinal data could reflect primarily
cross-sectional age differences, telling us very little about developmentally relevant
intraindividual change.

Each simulated data set consisted of an age-heterogeneous sample measured longitudinally.
Three design factors were varied across simulations. The first factor was age range at
baseline, which was set to either 20 or 40 years. Age was uniformly distributed across its
range. The second factor was the number of assessments, which was set to 2, 3, 4, or 5. The
third factor was the interval between assessments, which was set to either 1 or 2 years.
Sample size was fixed to 500 for each simulated sample. Data for the simulations were
generated using the model in Equation (7):

(7)

in which β0 is the population average intercept, β1 is the population average age slope, and
β2 is the linear effect of cohort (i.e., birth year). The parameters b0i and b1i represent each
person’s deviation from the population average intercept and age slope, respectively. Each
simulation specified values for the fixed effects (β0, β1, and β2). The population values for
β0 and β1 were set to be 50 and -.25 for all simulations. The value for β2 was set to either 0
or -.20. When β2 = 0, the cross-sectional age effect (β1 + β2) corresponded exactly to the
longitudinal effect. When β2 = -.20, the cross-sectional age effect was equal to -.45. Note
that there is no interaction between age and cohort; the difference between cohorts, if
present, was constant across all ages. The random intercept and age slope were assumed to
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follow a bivariate normal distribution with variances of ζ0 and ζ1, respectively. For
simplicity, the covariance between the two random effects was assumed to be 0 and the
values for ζ0 and ζ1 were set to 100 and .5, respectively, for all simulations. In addition, the
variance of the level-1 residual (rti) was assumed to be independently distributed from a
univariate normal distribution, with a mean of 0 and variance σ2, set to either 30 or 10 for all
simulations. The values for the intercept variance (ζ0) and residual variance (σ2) implies a
dependent measure with a SD = 10 and an intraclass correlation (an index of reliability) of
either .77 or .91 when σ2 is set to 30 and 10, respectively. Crossing all elements of the
simulation design resulted in 64 different simulations, and each simulation consisted of 1000
samples, producing a total of 64,000 simulations. Simulations were conducted in SAS (v
9.1) and analyses of the simulated data sets were performed using PROC MIXED.

Analysis and Results of Simulation Study
Two models were fit to each simulated data set, using SAS PROC MIXED and full
information maximum likelihood estimation, as shown in Equations (8) and (9):

(8)

(9)

Model (10), the age convergence model, assumes no effect of birth cohort and hence that
longitudinal and cross-sectional age effects are equivalent. Model (9), the age change + age
differences model, is identical to the model (7) used to generate the data because birth year
and average age are perfectly correlated. In practice, birth year and average age would be
perfectly correlated if the baseline assessment occurred on the same date for all individuals
and there were no missing data (i.e., no attrition). Although this circumstance would likely
never occur, the correlations between birth year and average age should tend to be extremely
high in most circumstances.

The top portion of Table 1 shows that both the models in (8) and (9) recovered the true value
for the age slope (β̣l = -0.25) when there was no effect of birth year (β2 = 0). Model (9) also
accurately recovered the null birth year effect (average β2 = 0.001 across all simulations)
and the age slope and birth year effects when fit to simulated data with a birth year effect of
β2 = -0.20. Variance components closely approximated their populations values in all
simulations. However, the age convergence slope estimate from model (8) was consistently
biased in the presence of cohort effects, with an average β= -0.35 across all simulations.
Bias tended to be larger for simulations with the shorter compared to longer follow-up
interval (-0.38 vs -0.33) and when reliability was lower (-0.37 vs -0.34).

This bias reflects a mixture of both longitudinal (-0.25) and cross-sectional (-0.40) effects.
Importantly, these results show that an effect of cohort on the intercept can bias estimates of
convergence age slopes, even when there is no cohort by age change interaction. Next, a
value of ω was computed for each simulated data set and these were averaged across data
sets for each of the 128 simulation conditions. Preliminary inspection of the results indicated
that presence or absence of cohort effects did not influence values of ω, and therefore were
collapsed across this condition, yielding a total of 64 values.

Figures 2a and 2b and plot values of ω as a function of years of follow-up years for residual
variances equal to 30 (ICC = .77) and 10 (ICC = .91), respectively. Figure 2a shows results
from simulations with a reliability of .77 (σ2 = 30). Age convergence slopes reflected
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primarily cross-sectional information (i.e., ω̣ > .80) when follow-up was less than 2 and 3
years for samples with a 30 and 40 year age ranges, respectively. Four years of follow-up
was required for convergence age slopes to mostly reflect longitudinal information for
samples with a 20 year age range, and 6 years of follow-up was required for samples with a
40 year age range. Eight years of follow-up was required for samples with 20 year age
ranges and > 8 years would be required for samples with a 40 year age range to primarily
reflect longitudinal information (ω̣ < .20). Comparing Figures 2a and 2b indicates that
smaller values of ω are associated with the smaller residual variance (i.e., higher reliability)
for a given follow-up duration, interval, and age range. When reliability is high (.91), age
convergence slopes from samples with a 20 year age range primarily reflected longitudinal
information after 4 years of follow-up, and convergence estimates from samples with a 40
year age range primarily reflected longitudinal information after about 7 years of follow-up.
Thus, increasing reliability (i.e., reducing residual variance) increases the relative weighting
of longitudinal information.

The solid lines in Figures 2a and 2b represent results from simulations with 1 year intervals
between assessments, and dotted lines represent results from simulations with 2 years
separating each assessment. For a given amount of follow-up, results indicated by the solid
lines are based on twice the number of assessments than are results indicated by the dashed
lines for a given age range. The graphs show that ω decreases slightly with increased
assessments, but that this effect is not nearly as large as the decrease that results from
additional follow-up time. Overall, these results indicate that under moderate reliability (.
77), at least 6 years of follow-up is required for age convergence slopes to primarily reflect
information about intraindividual developmental change. When follow-up is short (i.e., < 2
years), age convergence slopes mostly reflect cross-sectional information about age
differences, even if reliability is very high.

Discussion
Longitudinal studies are necessary to directly measure within person change. However, most
longitudinal studies begin as age-heterogeneous samples and, particularly in studies of
change in later life, will conclude as survival-heterogeneous studies. Careful treatment of the
between-person age differences observed in such studies is essential to obtain correct
inferences about within-person age change. This article demonstrated how to empirically
assess the differential effects of cross-sectional age differences and longitudinal age changes
rather than simply assuming that they converge onto the same trajectory. We have shown
how omission of between-person age effects (by extension, survival age or other effects
producing sample heterogeneity) will lead to estimated within-person age effects that in
reality reflect an uninterpretable blend of both kinds of effects, the weighting of which
depends on the particular parameters of the sampling design (e.g., age range at baseline,
length of follow-up).

There are a number of potential causes for a lack of convergence of the between- and
within-person effects of age. The importance of context in individual development has long
been recognized (e.g., Kuhlen, 1940; Schaie, 1965; 2008;) and perhaps most frequently
made manifest in terms of birth cohort differences. The importance of influences related to
birth cohort was underscored in Schaie’s (1965) most efficient design that involved repeated
assessments of individuals sampled from different birth cohorts initially, with additional
samples added at subsequent occasions. This design permits evaluation of cohort-sequential,
time-sequential, and cross-sequential studies within a single sampling design. The inherent
confounds of age, period, and cohort mean that these effects cannot be independently
evaluated—one factor must be assumed to be zero or some other fixed value so that the
other two random factors may be analyzed instead.
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Mortality selection is also likely to have an important role in the lack of age convergence. In
longitudinal studies of aging, at each new wave of testing the sample becomes less
representative of the population from which it originated and generalizations from the
sample of continuing participants to the initial population become more difficult to justify
(e.g., Baltes, Schaie, & Nardi, 1971; Hofer & Hoffman, 2007). Whereas some forms of non-
participation can logically permit inference to a single population, in the case of mortality,
such an inference is impossible because individuals have left the population. In this case,
inferences must be defined as conditional on the probability of surviving and/or remaining in
the study (e.g., DuFouil, Brayne, & Clayton, 2004). Initial sample selection and attrition
relate to population inference differently for designs based on either age-heterogeneous or
age-homogeneous sampling. In age-heterogeneous samples, whether cross-sectional or
longitudinal, inference to individual aging processes is not possible in the aggregate sample
because initial sample selection of individuals varying in age is confounded with population
mortality (Schaie, Labouvie, & Barrett, 1973).

Retest effects may also cause a lack of age convergence (e.g., Salthouse, 2009) by biasing
estimates of longitudinal aging effects. Age convergence models that also include
parameters for retest rely on the effects of between-person age differences to correct for the
within-person retest effects (e.g., Ferrer et al., 2005), but seldom explicitly evaluate the age
convergence assumption. Simply because longitudinal estimates may be biased (e.g., due to
retest effects) does not imply that cross-sectional age differences do not reflect cohort,
selection, mortality or other contaminating influences. In general, studies that correct for
retest effects in longitudinal data produce estimates of aging effects that primarily reflect
cross-sectional information (i.e., high values of ω̣ because statistically partially for retest
will remove much of the longitudinal information from the age variable. This approach is a
defensible approach only if one can be confident that cross-sectional age differences
represent an unbiased estimate of maturational effects. Unfortunately most analyses that
correct for retest effects in longitudinal data do not attempt to formally assess the
convergence assumption, check for cohort or mortality effects, or in any way evaluate
whether cross-sectional age differences can serve as a valid anchor for estimation of true
aging effects.

The question then arises of whether estimates that primarily reflect cross-sectional
information should be framed as a “longitudinal result” that reflects “change”, even if based
on a sample with lengthy follow-up. There is no single value of ω that should be deemed
acceptable or unacceptable for all circumstances. However, we can identify values less
than .50 as a natural threshold at which the convergence age slopes mostly reflect
longitudinal and opposed to cross-sectional information. In general, values of ω̣ < .20
indicate that the convergence age slope primarily reflects longitudinal information, and
values > .80 indicate that the convergence age slope primarily reflects cross-sectional
information. As a rule of thumb, we would caution against fitting age convergence models
without testing the convergence assumption, especially when ω̣ >.80. Failure to test for
convergence under this circumstance undermines the rationale for having conducted a
longitudinal study.

Finally, we wish to recognize that the extent to which tests of age convergence have
sufficient power to be practically useful depends to a great extent on the longitudinal
sampling design used. Although tests of age convergence on the intercept are likely to have
sufficient power, tests of convergence on the age slopes (or on higher-order age terms) may
be problematic except in studies that have large amounts of longitudinal follow-up. In such
cases, the most useful alternative approach would likely depend on the context of the study.
For instance, in studies of children in successive grade cohorts, it may be reasonable to
utilize a between-person age scaling that assumes convergence of the higher-order
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coefficients of age change (e.g., quadratic terms), given that the children were sampled
largely from the same specific context, that the total amount of time covered across grade
cohorts is rather limited, and that differential selection and attrition may not be an issue. In
contrast, in longitudinal studies of adult development and aging that feature a wide range of
age at baseline, it may not be reasonable to assume convergence of higher-order rates of
change, given that the study recruitment itself is likely the only commonality of the
individuals sampled, and given the likely effects of non-random selection processes over
time. In this case, it may be more reasonable to use within-person age scaling instead, which
requires no assumptions of age convergence.

In summary, although longitudinal studies provide direct estimates of within-person change,
they usually also provide information about between-person age differences. Failure to
explicitly account for the differential effects of these two sources of age information can
lead to incorrect estimates of age change. When relying on between-person age scaling in
models of change, it is critical that one tests explicitly for convergence of the effects of
between-person age differences and within-person age changes. Although between-person
age scaling may result in more efficient estimates when age convergence obtains, this rarely
seems to occur in samples of older adults in practice. In such cases, a within-person age
scaling that provides a clear demarcation of the cross-sectional and longitudinal age effects
may be more useful instead. Regardless, however, results that are based on models that
falsely assume convergence of the effects of between-person age differences and within-
person age changes cannot be interpreted, as they represent an unknown mix of two different
kinds of effects.
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Figure 1.
Examples of age convergence (1a) and age non-convergence (1b).
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Figure 2.
Simulation results for proportion of cross-sectional to longitudinal information in
convergence age slope for reliabilities of .77 (a) and .91 (b)
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