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Abstract.—Because a constant rate of DNA sequence evolution cannot be assumed to be ubiquitous, relaxed molecular
clock inference models have proven useful when estimating rates and divergence dates. Furthermore, it has been recently
suggested that using relaxed molecular clocks may provide superior accuracy and precision in phylogenetic inference
compared with traditional time-free methods that do not incorporate a molecular clock. We perform a simulation study
to determine if assuming a relaxed molecular clock does indeed improve the quality of phylogenetic inference. We ana-
lyze sequence data simulated under various rate distributions using relaxed-clocks, strict-clocks, and time-free Bayesian
phylogenetic inference models. Our results indicate that no difference exists in the quality of phylogenetic inference
between assuming a relaxed molecular clock and making no assumption about the clock-likeness of sequence evolution.
This pattern is likely due to the bias–variance trade-off inherent in this type of phylogenetic inference. We also compared
the quality of inference between Bayesian and maximum likelihood time-free inference models and found them to be
qualitatively similar. [Bayesian; bias–variance trade-off; maximum likelihood; relaxed molecular clock; Robinson–Foulds
tree-to-tree distance.]

The concept of a molecular clock has played a central
role in evolutionary biology since its introduction nearly
half a century ago by Zuckerkandl and Pauling (1962).
Despite its auspicious beginnings, however, the concept
of a universal, strict molecular clock has fallen out of
favor (Li 1993; Ayala 1997; Bromham and Penny 2003;
Kumar 2005). It is now widely recognized that nu-
cleotide and amino acid substitutions do not generally
accumulate at a constant and universal rate even across
closely related lineages. Instead, the molecular clock
fluctuates. So-called relaxed molecular clock inference
models lie on a continuum between strict-clock infer-
ence models, which assume a constant evolutionary rate
across lineages, and time-free inference models, which
do not incorporate evolutionary rates across lineages
at all.

Relaxed molecular clocks were introduced by
Sanderson (1997, 2002) and Thorne et al. (1998) to esti-
mate the time to most recent common ancestor (tMRCA)
in the absence of rate constancy. Their models assumed
that the sequences evolve with an inherent temporal
component, even though this clock does not tick uni-
formly across the entire phylogeny or through time.
Sanderson’s method relied upon semiparametric pe-
nalized likelihood estimation, whereas Thorne et al.
embedded the problem of rate estimation in a Bayesian
Markov chain Monte Carlo (BMCMC) framework; an
expectation of autocorrelation of rates along closely
related branches is a feature of both methods. More
recently, developments in BMCMC relaxed-clock phy-
logenetic inference models have allowed uncorrelated
rates to be sampled from a variety of distributions,
including exponential and lognormal (Drummond et al.
2006). These rate distributions differ in their assump-
tions of where on the phylogeny changes in the evolu-
tionary rates occur: at internal nodes

(exponential) or along branches (lognormal). Drum-
mond et al. (2006) modeled uncorrelated rates because
their phylogenetic analysis suggested that autocorrela-
tion of rates is not predominant. While testing these new
relaxed-clock inference models, Drummond et al. (2006)
put forth the intriguing proposition that incorporation
of relaxed molecular clocks might improve the topolog-
ical accuracy and precision of phylogenetic inference. If
true, relaxed molecular clock inference models should
supersede traditional time-free phylogenetic analyses,
whether or not estimations of substitution rates or tM-
RCA are desired.

Correctly modeling nucleotide substitution parame-
ters generally increases the probability of inferring the
correct phylogenetic tree. This pattern has been demon-
strated for the classic 4-taxon tree using simulated se-
quence data (Gaut and Lewis 1995) as well as for real
sequence data (Sullivan and Swofford 1997). These ob-
servations have led to the development and implemen-
tation of more realistic models of molecular sequence
data, including unequal base frequencies (Felsenstein
1981), rate heterogeneity (Yang 1993), and codon posi-
tion partitioning (Shapiro et al. 2006), along with com-
putational tools designed to determine the appropriate
model for a given data set (Posada and Crandall 1998).
Furthermore, seminal work by Huelsenbeck and Hillis
(1993) explicitly examined the ability of inference mod-
els that assumed a strict molecular clock to reconstruct
a tree from sequence data that clearly violated this
assumption. They found that, although this model cor-
rectly inferred phylogenies for clock-like data, it fared
extremely poorly on non–clock-like data. Therefore, it
seems reasonable to expect that if one can correctly
model the rate of evolution along the branches of a tree,
one should better be able to correctly infer the topology
of that tree.
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Statistical theory, however, does not necessarily sup-
port this supposition because of the bias–variance trade-
off (Burnham et al. 2002). Bias reflects the ability of a
model to accurately predict the data, whereas variance
refers to the sensitivity of the model to the sampled
data. As variance increases, the precision of the estimate
decreases. A model that underfits the data, because it
has fewer parameters, is generally highly biased but has
low variance. A low-parameter model may not be realis-
tic, but it might be useful when encountering new data.
Increasing the number of parameters may well increase
the fit of the model to the data, but this comes at the ex-
pense of a decrease in both explanatory power and the
precision of estimates. Theoretically, the best model
is one with an intermediate number of parameters
that simultaneously minimizes bias and variance. The
question remains whether, in practice, modeling rate
variation among branches can improve phylogenetic
inference.

Drummond et al. (2006) set out to answer this ques-
tion by testing the quality of relaxed-clock, strict-clock,
and time-free inference models in a variety of taxa, in-
cluding bacteria, yeast, and mammals. They inferred a
“true tree” from large sequence data sets, broke these
data sets into subregions, and compared the inferred
phylogenies for each of the subregions to the true
tree. Their results suggested that relaxed-clocks pro-
vide more accurate and precise phylogenetic inference;
however, their analyses had several limitations. First,
their data sets contained relatively few (8 or 9) taxa and
their true trees were highly asymmetrical. Second, given
the nature of coalescent processes and horizontal gene
transfer, their true tree was likely the incorrect tree for
many subregions (Ochman et al. 2000; Edwards et al.
2007). Finally, their conclusion regarding the superior-
ity of relaxed molecular clocks was not accompanied
by statistical analyses. In many cases, the differences in
accuracy and precision among the clock models were
slight or nonexistent.

Here, we study whether or not the assumption of a
relaxed molecular clock significantly improves the qual-
ity of phylogenetic inference. We simulated sequence
data under relaxed-clock and strict-clock scenarios and
inferred phylogenies under the assumptions of vari-
ous clock models. Our findings shed light on the bias–
variance trade-off in phylogenetic inference, find little
evidence in support of the conclusions of Drummond
et al. (2006), and suggest that additional metrics be-
yond accuracy and precision are needed to determine
whether relaxed-clocks improve the quality of phyloge-
netic topological reconstructions.

METHODS

Sequence Simulation

We constructed 800 sequence alignments that con-
formed to several models of sequence evolution (Fig. 1).
First, we used APE (Paradis et al. 2004) to simulate 200
ultrametric trees ranging in size from 5 to 50 taxa, in

5-taxon intervals (i.e., 20 trees per interval). Individ-
ual branch lengths are the product of the time elapsed
between nodes and the rate of evolution along a branch.
The study by Drummond et al. (2006) explicitly recog-
nized that all sequences evolve with an inherent tem-
poral component. Therefore, we manipulated only the
rate component along each branch by sampling from
distributions comprised of 10,000 “rates.” Specifically,
4 rate distributions (exponential, lognormal, strict, and
uniform) were separately applied to each of the 200
tree topologies, and each branch was assigned its own
randomly selected number (Fig. 2). These trees are avail-
able as supplemental online data files (available from
http://www.sysbio.oxfordjournals.org). The exponen-
tial (mean and standard deviation equal to 0.01) and
lognormal (mean equal to 0.01 and variance equal to
0.5) distributions represent relaxed-clock models of se-
quence evolution. The shapes of these rate distributions
were based on previous simulations by Drummond
et al. (2006). The strict distribution, representing a strict
molecular clock, was defined by a single value (1). The
uniform distribution (range from 0.0001 to 1.0) is also
a relaxed-clock model, which essentially minimized
the model’s information about rates among all possible
probability distributions but retained the biologically
relevant assumption that all sequences evolve over
time. We emphasize that this uniform distribution is
not intended to reflect the assumptions made by the
time-free phylogenetic inference model.

After the heights (i.e., time from root to tip) of these
800 phylogenies were standardized in TreeEdit
(Rambaut and Charleston 2002), we proceeded to gen-
erate sequence data for each tree using Seq-Gen v1.5.3
(Rambaut and Grassly 1997). Each sequence generated
was 1000 bases in length and was evolved according to
an HKY + Γ4 (κ= 2 ; α= 1) substitution matrix. To incor-
porate variable root height into the data, each tree’s root
height was scaled by a random integer (1–30) in Seq-
Gen. This scaling created alignments with uncorrected
pairwise distances consistent with biologically relevant
sequence data used in studies of molecular evolution
(approximately 2–40% maximum pairwise distance).

Phylogenetic Analysis

Each of these 800 alignments was analyzed using
4 different molecular clock models utilizing BMCMC
phylogenetic inference (2 relaxed-clock models, 1 strict-
clock model, and 1 time-free model where no estimation
of rates is performed). The 2 relaxed-clock inference
analyses and strict-clock inference analysis were per-
formed using BEAST v1.4.6 (Drummond and Rambaut
2007) under an HKY + Γ4 substitution model. Uninfor-
mative priors were assigned for both kappa and alpha.
Each analysis was performed for 30,000,000 generations,
and the first 10% were removed as a burn-in. For each
run, 9000 post–burn-in trees were sampled. Conver-
gence of the BMCMC was confirmed using Tracer v1.4
(Rambaut and Drummond 2007). If the effective sample
size (ESS) for a given parameter was <100, the analysis
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FIGURE 1. Flowchart of Bayesian inference simulation study. Software packages used at each step are noted in parentheses.

was rerun for up to 100,000,000 generations until the ESS
values for all parameters were > 100. Root height ESS
values of < 100 were not addressed as the subsequent
analyses were performed on unrooted trees (see below).
BEAST infers the position of the root as a by-product of
its rate estimation analysis. Twenty-nine percent of the
BEAST analyses needed to be rerun. BEAUti templates,
the input files for BEAST, for each inference model
are available as online Appendices 1–3 (available from
http://www.sysbio.oxfordjournals.org).

Time-free phylogenetic analysis (i.e., what Drummond
et al., 2006, referred to as the unrooted Felsenstein
model) was performed using MrBayes v3.1 (Ronquist
and Huelsenbeck 2003) under an HKY + Γ4 substitution
model. Time-free analysis is not an available feature
of BEAST. Each MrBayes analysis was performed for
1,000,000 generations, and the first 10% were removed
as burn-in. If ESS values for a given parameter were
< 100, the analysis was rerun for up to 3,000,000 gener-
ations until sufficient ESS values were achieved. Gen-
erations compute severalfold faster in BEAST, making

a direct comparison of run times difficult. Thirty-eight
percent of the MrBayes analyses needed to be rerun. For
each run, 9000 post–burn-in trees were sampled. The
MrBayes block template is available as online Appendix
4 (available from http://www.sysbio.oxfordjournals.org).

We also compared the overall quality of maximum
likelihood (ML) time-free inference methods with the
aforementioned Bayesian inference methods. The 800
ML trees were inferred in PAUP* v4.1 (Swofford 2002)
under an HKY + Γ4 substitution model with a heuristic
search utilizing the subtree pruning regrafting branch
swapping algorithm. We also performed nonparamet-
ric bootstrapping (100 replicates) on all 800 sequence
alignments.

Metrics of Phylogenetic Inference Quality

To compare the BEAST and MrBayes analyses, we
unrooted all post–burn-in trees using PAUP*. Measure-
ments of accuracy and precision of the phylogenetic
analyses were performed using TreeLogAnalyser (part
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FIGURE 2. Distributions sampled to model evolutionary rates among branches according to a) exponential, b) lognormal, c) strict, and
d) uniform distributions.

of the BEAST package). First, the 95% credible set of
trees from each analysis was identified. If the true tree,
the topology generated in APE, was found in that cred-
ible set, then the analysis was categorized as accurate.
The number of trees in the 95% credible set was used
to quantify precision. We also used a third metric, the
Robinson–Foulds tree-to-tree distance (Robinson and
Foulds 1981), which calculates the number of nodes
separating 2 trees. We determined the distance between
the true tree topologies and each of the post–burn-in
topologies sampled (for the Bayesian analyses) and the
ML tree or the bootstrap replicates (for the ML analyses).
These values were scaled by the theoretical maximum
Robinson–Foulds tree-to-tree distance to standardize
across topologies with varying taxon number. The mean
of these values was used as an indicator of the overall
distance of the sampled trees from the true tree.

We used these 3 metrics (accuracy, precision, and
Robinson–Foulds tree-to-tree distance) to compare the
performance of each of the molecular clock models of
phylogenetic inference on sequences generated under
all 4 rate distributions. Accuracy, a binary outcome,
was assessed using logistic regression. Precision, given
its non-normalizable distribution, was partitioned into
quintiles and analyzed using ordinal logistic regression.
Robinson–Foulds tree-to-tree distance data were ana-
lyzed using multiple linear regression. We chose to ana-
lyze the data using regression analyses so that we could
adjust for taxon number, Seq-Gen scaling factor, and
Colless’s imbalance as fixed effects. Colless’s imbalance
(Colless 1995) is a measurement of topological asym-
metry and was calculated using Mesquite (Maddison
WP and Maddison DR 2007). We also treated the 200
tree topologies as a random effect in the regression
analyses. All statistical analyses were performed in
Stata v9.2 (StataCorp 2005). For each statistical analysis,

significance was assessed with α= 0.05. Because we per-
formed a simulation study, and our power to detect sig-
nificant differences was dependent on the length of the
simulation, we also employed an additional relevance
cutoff. We discounted differences in mean Robinson–
Foulds tree-to-tree distances whose β-coefficients were
< 1%. Any difference smaller than this would not
actually result in a different final tree topology and
would therefore not be biologically meaningful. This
second cutoff was employed only for the strict-clock
inference model in which the variance was so low that
small differences, β-coefficient <1%, were significantly
different.

RESULTS

To determine if incorporating a relaxed molecular
clock improved the quality of phylogenetic inference,
we analyzed sequences simulated under a variety of
rate distributions and constructed phylogenies assum-
ing relaxed molecular clocks, a strict molecular clock,
and time-free inference.

Accuracy of Inference Methods

The first metric we used to assess the quality of phylo-
genetic inference was accuracy (i.e., whether or not the
true tree was recovered in the 95% credible set). Analy-
ses using relaxed molecular clock inference models con-
sistently were the most accurate (Table 1), though the
differences in accuracy were significant only if the se-
quences had been simulated under an exponential or
lognormal relaxed molecular clock (i.e., darker colored
circles on the targets; Fig. 3).

Analysis using a strict-clock inference model resulted
in significantly poorer accuracy if the sequences were



2010 WERTHEIM ET AL.—RELAXED MOLECULAR CLOCKS AND PHYLOGENETIC INFERENCE 5

TABLE 1. Performance of inference models on sequence simulated under various rate distributions

Metric Inference model Rate distribution
Exponential Lognormal Strict Uniform

Accuracya (%) Exponential 57.0 81.5 85.0 68.5
Lognormal 55.0 76.5 84.5 66.5
Strict 19.0 56.5 84.0 41.0
Time-free 49.0 74.0 83.5 64.5

Precisionb Exponential 3944 2148 1396 2858
Lognormal 4035 1881 1097 2718
Strict 2866 1721 1076 2065
Time-free 3782 1738 1032 2469

RF distancec (%) Exponential 21.5 12.8 10.0 15.1
Lognormal 21.6 12.3 9.2 15.1
Strict 28.8 14.1 9.1 17.4
Time-free 22.3 12.6 9.6 15.4
ML time-freed 15.5 9.0 7.0 11.3
ML time-free bootstrap 20.3 13.2 10.4 15.4

aPercentage of the runs in which the true tree was recovered in the 95% credible set.
bMean number of trees in the 95% credible set.
cMean Robinson–Foulds (RF) tree-to-tree distance between the true tree and sampled trees expressed as a percentage of the maximum possible
distance.
dML time-free RF tree-to-tree distance is always significantly closer (P < 0.001) to the true tree than the Bayesian inference methods (see text for
details).

evolved under an exponential, lognormal, or uniform
relaxed molecular clock distributions of rates (i.e., the
circles for strict inference models are lighter in Fig. 3a,
b,d); however, when sequences were evolved under a
strict clock, there were no significant differences in accu-
racy among the 4 inference models (Fig. 3c). There was
not a pattern of increased accuracy of inference mod-
els when analyzing sequence data that fit the assump-
tions of that inference model. In general, relaxed-clock
inference models were the most accurate, followed by
the time-free model, whereas the strict-clock inference
model was consistently the least accurate.

Precision of Inference Methods

The precision estimates of the inference models (i.e.,
the number of distinct topologies sampled in the 95%
credible set) appear to show the opposite trend of
accuracy (Table 1 and Fig. 3). Relaxed-clock infer-
ence models were the least precise in every case, with
the exponential relaxed clock faring the worst under
every rate distribution except exponential. The strict-
clock inference model was almost always the most
precise (Table 1). When analyzing sequences generated
under exponential, lognormal, and uniform rate distri-
butions, the strict-clock inference model sampled sig-
nificantly fewer trees than the other 3 inference models
(i.e., the strict inference model has the smallest circles
on the targets in Fig. 3a,b,d). There were no significant
differences in precision among the 4 inference models,
when sequences were evolved under a strict clock (Fig.
3c). The time-free inference model generally resulted
in intermediate precision, sampling significantly fewer
trees than the relaxed-clock inference models when
the rates were generated under nonstrict distributions.
Similar to accuracy, there was not a pattern of greater
precision of inference models when analyzing sequence
data that fit the assumptions of that inference model.

Robinson–Foulds Tree-to-Tree Distance

Relaxed-clock models are the most accurate, but the
least precise, of the inference models tested here. But
these results still do not answer the question, which
inference model provides the highest quality of phy-
logenetic inference? We found that a third metric, the
Robinson–Foulds tree-to-tree distance (i.e., the number
of nodes that separate the sampled trees from the true
tree), best encapsulates the relative quality of phyloge-
netic inference (Table 1). For exponential, lognormal,
and uniform rate distributions, strict-clock inference
found topologies that were significantly more distant
from the true tree than those of the other inference
models (i.e., strict-clock circles are the farthest from the
center of the target in Fig. 3a,b,d). When sequences were
simulated under a strict molecular clock, all 4 inference
models sampled trees with indistinguishable Robinson–
Foulds distances (i.e., all 4 circles are equidistant from
the center of the target in Fig. 3c). Among exponential,
lognormal, and time-free inference models, there were
no significant differences in the observed Robinson–
Foulds tree-to-tree distance measurements (i.e., circles
are equidistant from the center of the target; Fig. 3).
Relaxed molecular clocks fared no better or worse than
the time-free inference model. Although informative,
neither accuracy nor precision completely summarized
the quality of phylogenetic inference. Robinson–Foulds
tree-to-tree distance, however, was the most revealing
metric of phylogenetic inference quality because it was
informed by both accuracy and precision.

In addition, we tested for interaction between the in-
ference models and 3 fixed effects (i.e., number of taxa,
maximum pairwise distance, and Colless’s imbalance)
using Robinson–Foulds distance as an outcome. As
taxon number increased, strict-clock inference per-
formed increasingly worse than lognormal and expo-
nential relaxed-clock inference methods (P < 0.05) and
marginally worse than time-free inference (P = 0.08).
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FIGURE 3. Summary of Bayesian phylogenetic inference quality. Accuracy, precision, and Robinson–Foulds tree-to-tree distance of exponen-
tial, lognormal, strict, and time-free inference models on sequence data evolved under a) exponential, b) lognormal, c) strict, and d) uniform rate
distributions. For a given rate distribution (i.e., target), the darker the circle, the more accurate the inference model on sequences evolved under
that rate distribution. Smaller circles indicate better precision. The distance from the center of each circle to the middle of its target represents
the Robinson–Foulds distance of the sampled trees from the true tree. Within each target, differences in darkness, size, and distance from the
center represent significance at α= 0.05.

Strict-clock inference also performed worse than the
other 3 inference methods as the maximum pairwise
distance among the taxa increased (P < 0.001). There
were no significant interactions between Colless’s im-
balance and the inference model. In general, the more
complex the sequence data, the worse strict-clock infer-
ence performed.

ML Inference Quality

Our data set provided us the opportunity to explore
how the quality of ML inference compares to Bayesian
approaches. We measured the Robinson–Foulds tree-
to-tree distance from the true tree to the tree inferred

under time-free ML phylogenetic inference. This mean
distance (for sequences simulated under each of the 4
rate distributions) was always smaller than the mean
Robinson–Foulds distance from the true tree to the
9000 post–burn-in Bayesian topologies (P < 0.001)
(Table 1). We note, however, that nonparametric boot-
strapping is commonly used to assess confidence in the
ML topology. Therefore, we also calculated the mean
Robinson–Foulds distance between the true tree and the
bootstrap replicates (Table 1). For sequences simulated
under an exponential rate distribution, the ML boot-
strap trees were significantly closer to the true tree than
the posterior trees from all 4 Bayesian inference methods
(P < 0.05). For sequences simulated under a lognormal
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rate distribution, there were no significant differences
among the ML bootstrap trees and the Bayesian trees
according to our β-coefficient criterion (see Methods
section). Surprisingly, for sequences evolved under
a strict rate distribution, ML bootstrap trees were
significantly farther from the true tree than trees inferred
under all 4 Bayesian inference methods (P < 0.001).
Finally, for sequences evolved under a uniform rate
distribution, ML bootstrap trees were better than strict-
clock inference (P < 0.001) but similar to the other
Bayesian inference methods.

DISCUSSION

When comparing relaxed molecular clock and time-
free methods of Bayesian phylogenetic inference, a
trade-off exists between accuracy and precision in our
simulation study. Both these methods sample trees
with indistinguishable Robinson–Foulds tree-to-tree
distances from the true tree, but their levels of accu-
racy and precision are model-dependent (Fig. 3). The
Robinson–Foulds tree-to-tree distance measurements
do not change among these 3 clock models; as accu-
racy increases, precision must decrease, and vice versa.
Therefore, the quality of the trees sampled when a
relaxed molecular clock is assumed is no different than
when no assumption is made about a molecular clock.
However, if a strict molecular clock is assumed for
non–strict-clock sequence data, this trade-off is not dis-
cernible. Inference under a strict clock on non–strict-
clock sequence data has extremely high precision, but
its accuracy is so poor that the Robinson–Foulds tree-to-
tree distance measurements are significantly worse than
if the clock was relaxed or was not assumed at all.

These results support the existence of a bias–variance
trade-off in topological inference when incorporating a
relaxed molecular clock. Relaxing the clock, by adding
rate parameters, increases the probability of finding the
true tree (accuracy/bias), but it comes at the expense
of sampling many more trees (precision/variance).
Not making an assumption about a molecular clock
(i.e., the time-free inference model) decreases variance
(better precision) but biases the analyses (less accurate).
Time-free inference appears to underfit the data, but
relaxed molecular clock inference may tend to over-
fit (i.e., overparameterize) the data. In contrast, when
a strict molecular clock is violated, the analysis is so
highly biased that the true answer is rarely recovered
when using a strict-clock inference model. Collectively,
these patterns indicate that assuming a relaxed molecu-
lar clock does not improve the quality of phylogenetic
inference over a time-free inference model because of a
trade-off between bias and variance. We note that over-
parameterization does not necessarily mean increasing
the total number of parameters in the inference model.
Relaxed-clock inference models technically have fewer
parameters than time-free models; however, relaxed-
clock inference models parameterize rates. Our analysis
suggests that including information about rates does not

improve topological inference and is therefore an over-
parameterization. Nonetheless, unreasonable assump-
tions, such as a strict molecular clock when multiple
evolutionary rates exist, can severely decrease the qual-
ity of phylogenetic inference and should be avoided
unless there is strong evidence that the sequences in
question evolved under a single evolutionary rate.

Our findings contradict those reported by Drummond
et al. (2006). Whereas they found an increase in both
accuracy and precision of relaxed molecular clock phy-
logenetic inference compared with the time-free model,
we found a trade-off between these metrics suggest-
ing no difference in inference quality. This discrepancy
might be due to the decision by Drummond et al. (2006)
to remove the least precise 10% of runs from their com-
parisons. This might have led to artifactually improved
precision estimates by relaxed-clock methods, which we
found to be the least precise.

This study casts doubt on the claim that relaxed
molecular clock inference results in improved topolog-
ical reconstruction. However, one important difference
between the study of Drummond et al. (2006) and ours
is that they used real sequence data, whereas we looked
at simulated sequenced data. There are 2 possible ex-
planations for our differing results. First, they may have
failed to detect the bias–variance trade-off in their anal-
ysis. An alternative explanation may be that there are
important differences between real and simulated se-
quence data, and relaxed-clock inference models may
actually be superior when analyzing real sequence data
(e.g., Liu et al. 2008). Future work will be required to
distinguish between these 2 possibilities.

There does appear to be a relationship between the
underlying distribution of rates and the ability of an
inference model to reconstruct high-quality trees as
measured by Robinson–Foulds tree-to-tree distance.
Specifically, all inference models (Bayesian and ML)
performed best on sequences simulated under a strict
rate distribution, followed by lognormal and uniform;
inference methods always performed the worst on se-
quences simulated under an exponential rate distribu-
tion (Table 1).

The single ML time-free topology was strikingly
closer to the true tree than the posterior distribution
of Bayesian trees; however, comparisons between the
bootstrapped ML trees and the Bayesian posterior dis-
tribution of trees appeared to be qualitatively similar.
This finding is in concordance with previous studies
that have compared ML and Bayesian phylogenetic
inference methods on empirical and simulated data
(Alfaro et al. 2003; Cummings et al. 2003; Douady et al.
2003; Erixon et al. 2003; Mar et al. 2005). Nevertheless,
there certainly appear to be instances where ML analy-
sis is preferable to Bayesian inference (and vice versa).
Our findings suggest that a systematic exploration of
the conditions (beyond rate distribution) that favor ML
or Bayesian topological inference should be undertaken.
Our findings also support the notion that the Robinson–
Foulds tree-to-tree distance is a highly useful metric for
gauging the overall quality of phylogenetic inference.
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SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://www.
sysbio.oxfordjournals.org/.
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