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Abstract.—Evolutionary biologists have introduced numerous statistical approaches to explore nonvertical evolution, such
as horizontal gene transfer, recombination, and genomic reassortment, through collections of Markov-dependent gene trees.
These tree collections allow for inference of nonvertical evolution, but only indirectly, making findings difficult to interpret
and models difficult to generalize. An alternative approach to explore nonvertical evolution relies on phylogenetic net-
works. These networks provide a framework to model nonvertical evolution but leave unanswered questions such as the
statistical significance of specific nonvertical events. In this paper, we begin to correct the shortcomings of both approaches
by introducing the “stochastic model for reassortment and transfer events” (SMARTIE) drawing upon ancestral recombi-
nation graphs (ARGs). ARGs are directed graphs that allow for formal probabilistic inference on vertical speciation events
and nonvertical evolutionary events. We apply SMARTIE to phylogenetic data. Because of this, we can typically infer a
single most probable ARG, avoiding coarse population dynamic summary statistics. In addition, a focus on phylogenetic
data suggests novel probability distributions on ARGs. To make inference with our model, we develop a reversible jump
Markov chain Monte Carlo sampler to approximate the posterior distribution of SMARTIE. Using the BEAST phylogenetic
software as a foundation, the sampler employs a parallel computing approach that allows for inference on large-scale data
sets. To demonstrate SMARTIE, we explore 2 separate phylogenetic applications, one involving pathogenic Leptospirochete
and the other Saccharomyces. [Ancestral recombination graph; Bayesian; horizontal gene transfer; phylogenetic network;
reassortment; species tree.]

The transfer of genetic material through nonvertical
phenomena plays a significant role in evolution and
evolutionary theory. Examples include horizontal gene
transfer (HGT) in bacteria, archeabacteria, unicellular
eukaryotic organisms, plants, and metazoans (Lawrence
and Ochman 1998; Nelson et al. 1999; Andersson et al.
2003; Richardson and Palmer 2007; Gladyshev et al.
2008); recombination and reassortment in viruses (Temin
1991; Nelson and Holmes 2007; Wilson et al. 2009); hy-
bridization and introgression in both plants and animals
(Buckley et al. 2006; Mallet 2007); and meiotic recombi-
nation in eukaryotes (McVean et al. 2004).

As little as 30 years ago, biologists generally lent lit-
tle credit to nonvertical events in shaping evolution,
believing these to be extremely rare (Doolittle 1999).
But with the move into the genomic era in biology,
biologists have discovered widespread instances of
nonvertical evolution, causing them to rethink several
fundamental biological theories, including a univer-
sal tree of life (Wolf et al. 2002; Doolittle and Bapteste
2007) and neo-Darwinian evolution (Koonin 2009).
In addition to a central role in evolutionary theory,
nonvertical evolution also has numerous public health
implications (Brown 2003). For example, in the past cen-
tury genomic reassortment has been directly associated
with major influenza A pandemics in 1957 and 1968
(Lindstrom et al. 2004). More recently, genomic reas-
sortment has rendered the drug amantadine ineffective
against circulating influenza A virus (Bright et al. 2006;
Simonsen et al. 2007), causing researchers to question
the effectiveness of the drug oseltamivir in the event
of a major influenza H5N1 avian influenza epidemic

(Simonsen et al. 2007; Enserink 2009). In addition to
reassortment, homologous recombination plays a sig-
nificant role in the emergence of drug-resistant HIV
virions (Rambaut et al. 2004; Nora et al. 2007), and
in microbes, HGT has been the dominant force in the
emergence of the multidrug-resistant bacteria Enterobac-
teriaceae (Leverstein-van Hall et al. 2002).

With such pressing public health concerns and with
such a central role in biology, it becomes worrisome that
methods to infer and examine nonvertical transmission
events remain limited (Philippe et al. 2005). Method-
ological progress on these problems is being made in
population genetic, phylogenetic, and computational
biology contexts, but no unified model exists to conduct
formal statistical inference on both vertical and nonver-
tical evolution (Edwards et al. 2007; Woolley et al. 2008).

One popular approach to examine nonvertical evo-
lution relies on gene-tree incongruence (Posada et al.
2002). This approach attempts to find discordance
between phylogenetic trees inferred from different
genes or loci because discordance is one possible sig-
nal of nonvertical evolution (Grassly and Holmes 1997).
In terms of formal models for this approach, Ané et al.
(2007) introduce a statistical methodology to estimate
concordance factors between trees (Baum 2007) using
importance sampling. In a recent work, Ȧkerborg et al.
(2009) adopt a species-tree framework for gene-tree rec-
onciliation. Minin et al. (2005), Suchard et al. (2005),
and Bloomquist et al. (2009) adopt a Markov chain
Monte Carlo (MCMC) approach to make inference
through a Bayesian multiple change-point model that
simultaneously models gene-tree variability and spatial
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evolutionary changes across genomic regions. Husmeier
and McGuire (2003) exploit a similar approach using
hidden Markov models.

These formal phylogenetic statistical models provide
information on gene-tree incongruence but at a poten-
tially high scientific cost. For example, gene-tree incon-
gruence does not provide information on the dates of
nonvertical events. Most troublesome about these meth-
ods is that rather than modeling nonvertical events in
a single unified structure, these methods look at collec-
tions of, at most, Markov-dependent, bifurcating trees,
where this dependence lies almost exclusively on the
topological shape. These tree collections provide some
information on nonvertical events, but only indirectly,
making findings difficult to interpret and generalize.
Moreover, reliance on tree collections oftentimes leads
to ad hoc or heuristic modeling frameworks that do not
lend themselves to further generalizations (Ané et al.
2007; Bloomquist et al. 2009). In addition to these mod-
eling considerations, weak dependence assumptions
in these methodologies forsake a hierarchical frame-
work, diminishing statistical power to detect significant
differences (Suchard, Kitchen, et al. 2003).

An alternative approach, relatively unexplored in the
phylogenetics literature, but highly popular in popula-
tion genetics, entertains ancestral recombination graphs
(ARGs). First proposed by Hudson (1983), an ARG G
is a directed graph that simultaneously describes both
vertical and nonvertical evolutionary events. Because of
this, an ARG addresses the issues plaguing the gene-tree
incongruence framework. Within the past decade, pop-
ulation genetics has enjoyed an explosion of research
about ARG inference and the associated coalescent with
recombination (CWR) of Hudson (1983). One major area
has been the estimation of population size Ne and re-
combination rate ρ using the CWR and likelihood-based
inference. Theoretically sound and more powerful than
previous attempts (Wall 2000), likelihood-based infer-
ence on the CWR requires extremely difficult calcula-
tions. To derive the likelihood of genetic data Y given
population size Ne and recombination rate ρ, p(Y|Ne, ρ),
researchers use basic probability to average over all
possible ARGs. More succinctly, researchers first pro-
pose a likelihood computed assuming an infinite-sites
model, p(Y|G), and then using the CWR, p(G|Ne, ρ),
researchers take advantage of

p(Y|Ne, ρ) =
∑

G

p(Y|G)p(G|Ne, ρ) (1)

to find the marginal likelihood (Felsenstein et al. 1999).
Regardless of the statistical framework used to make
inference on this distribution, calculation of this quan-
tity requires a summation over the astronomically large
space of ARGs. It simply cannot be done directly using
modern computing technology. To remedy this diffi-
culty, researchers have proposed numerous alternative
inference procedures (Stumpf and McVean 2003). Build-
ing from the earlier works of Griffiths and Marjoram
(1996) and Stephens and Donnelly (2000), Fearnhead

and Donnelly (2001) present a vastly improved impor-
tance sampler (Felsenstein et al. 1999) to make inference
on Ne and ρ. More recently, Griffiths et al. (2008) improve
upon Fearnhead and Donnelly (2001) using the diffu-
sion approximation techniques of De Iorio and Griffiths
(2004). Kuhner et al. (2000) and Nielsen (2000) embrace
MCMC so as to focus attention on ARGs with signif-
icant contribution to p(Y|Ne, ρ). Also using MCMC,
Wang and Rannala (2008) present a computationally
efficient methodology to infer the distribution ρ along
the genome, with implications for hot-spot mapping.
Using a similar limiting strategy but in a determinis-
tic framework, Lyngsø et al. (2008) limit the summa-
tion by enumerating ancestral configurations. A final
approach circumvents these calculations altogether by
approximating the likelihood using a product of ap-
proximate conditionals (Li and Stephens 2003; McVean
and Cardin 2005). Hudson (2001) and Fearnhead and
Donelly (2002) present alternative composite likelihood
approximations.

The adoption of ARGs in population genetics has
resulted in numerous scientific advances (McVean et al.
2004; Myers et al. 2005; Winckler et al. 2005). Little work
in population genetics, however, focuses on the ARG
as the primary parameter of interest. This occurs for
multiple reasons. First, ARGs remain in their infancy
and much research remains to be done. Second, popula-
tion genetics deals with the contributions of mutation,
natural selection, genetic drift, and population structure
on genetic variation, relegating the ARG to secondary
importance (Wakeley 2005). Finally, population genetics
usually concentrates on data with relatively low di-
vergence levels, making the recovery of the true ARG
nearly impossible (Kuhner et al. 2000). Instead most
work in population genetics treats the ARG as a nui-
sance parameter and attempts to integrate it out of the
model completely.

In addition to the 2 communities mentioned above, the
phylogenetic network community also deals extensively
with nonvertical evolution. Recognizing that ARGs
are graph-theoretic objects distinct from the coalescent
framework, this computational biology community has
abstracted the definition of an ARG into a phylogenetic
network. Using definitions suggested by Huson and
Bryant (2006), ARGs simply represent a special type of
“explicit” or “reticulate” network. Other network types
include “median networks” and “consensus networks”
that fall under the category of “splits networks”. Over
the past 10 years, the phylogenetic network community
has grown quite fast and numerous applied and the-
oretical advances have been made (Baroni et al. 2004;
Gusfield et al. 2004; Song and Hein 2005; Huson and
Bryant 2006; Bordewich and Semple 2007; Wu et al.
2008). Much work remains to be completed, but the
field shows much promise (Woolley et al. 2008).

Bearing closest relation to our work, the phyloge-
netic network community has taken 2 complimentary
approaches to infer nonvertical evolution using explicit
networks. The first adopts a parsimony approach and
attempts to find the minimum number of nonvertical
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events that explain a particular evolutionary history
(Hudson and Kaplan 1985; Hein 1993; Wang et al.
2001; Gusfield et al. 2004; Song and Hein 2005; Jin
et al. 2007). The second approach adopts a statistical
framework punctuated by a formal stochastic model.
Early work by Strimmer et al. (2001) adopts a Bayesian
framework for inference and later work by Jin et al.
(2006) provides a method to find the maximum like-
lihood network. In another recent work, Didelot and
Falush (2007) provide a joint model for vertical evolu-
tion and recombination but avoids modeling the origin
of the nonvertically transferred genetic information. All
3 methods provide a framework to jointly model ver-
tical and nonvertical evolution but leave unanswered
questions such as the statistical significance of specific
nonvertical events.

In our current work, we blend and unify ideas from
much of the above into the “stochastic model for reas-
sortment and transfer events” (SMARTIE). In particu-
lar, we start with the Bayesian approach of Strimmer
et al. (2001), mix in the hierarchical modeling approach
of Suchard, Weiss, et al. (2003), and finally adopt a
similar MCMC approach to Wang and Rannala (2008)
to make inference. Novel to SMARTIE is an explicit
Bayesian prior for inference on the number of nonver-
tical nodes, avoiding the use of the CWR commonly
used in population genetics (Didelot and Falush 2007;
Wang and Rannala 2008). Because of this, we provide
a formal way to test and infer nonvertical evolution.
For inference on our model, we implement an MCMC
sampler in the BEAST phylogenetic software package of
Drummond and Rambaut (2007) that uses the reversible
jump methodology of Green (1995) to move within
ARG space. In addition, we adopt a parallel processing
component to compute the likelihood, increasing ef-
ficiency on large genomic data sets. To demonstrate
our model, we analyze 2 empirical examples. The
first examines a Leptospira interrogans data set in or-
der to gain more information on the evolutionary
history (Stevenson et al. 2007), and the second explores a
Saccharomyces data set taken from Rokas et al. (2003). We
conclude with a discussion of SMARTIE and its place in
current molecular evolutionary research.

MODEL

Our data consist of M molecular sequence alignments,
Y1, . . . ,YM, that we group into the multilocus vector Y=
(Y1, . . . ,YM). Each alignment Ym, for m = 1, . . . ,M, con-
tains sequence information on the same N taxa and has
length Sm. We let Yms=(Yms1,Yms2, . . . ,YmsN)

′ denote ho-
mologous character columns of Ym =

(
Ym1, . . . ,Yms, . . . ,

YmSm

)
and use s = 1, . . . , Sm to index columns (sites).

Every element Ymsn for n=1, . . . ,N identifies a sequence
character or standard ambiguity code, which allows
for missing sequences for some taxa in the multilocus
data set. Each alignment Ym typically corresponds to
a distinct biologically meaningful genomic unit—for
example, a gene, a paralog, or an exon—suggested by Y
and the research hypothesis.

Likelihood

We take a statistical phylogenetic approach and
assume each column Yms to be independent and iden-
tically distributed by the column sampling density
f (Yms|ϑ) given unknown model parameters ϑ. In the
classic phylogenetic setting, ϑ contains a bifurcating
tree topology τ, a vector of branch length parameters T,
and the parameters connecting the sequence characters
to a stochastic substitution process, that is, a continuous-
time Markov chain (CTMC). In the case of SMARTIE,
however, we replace τ with an ARG G. An ARG is a
directed graph that begins with a bifurcating root node
at time t0 > 0 and ends with N external tip nodes sam-
pled at time 0. Between the first bifurcating root node at
t0 and our sampling time 0, G contains R ≥ 0 nonverti-
cal nodes representing nonvertical events and N + R− 2
bifurcation nodes representing vertical events. Nonver-
tical nodes receive complimentary genomic material
from their 2 parental nodes, whereas bifurcation nodes
pass their complete genomic material onto both of their
children. Figure 1 displays an example of an ARG with
N = 9 taxa and 1 nonvertical node (R= 1).

To develop the necessary notation, we define an “or-
dered” ARG G, or just an ARG, as the tuple (V, E ,T,φ),
where (V, E) are the node (vertex) and edge sets of a
directed graph, T is a vector of node times, and φ is a
nonvertical labeling parameter. The set V contains 2N +
2R − 1 nodes. The vector T induces an ordering on V ,
with the root node corresponding to v0. For each bifur-
cation node vb ∈ V , E contains the edges (vb, vc1(b)) and
(vb, vc2(b)) with c1(b) and c2(b) identifying as the chil-
dren of vb. Similarly, E contains the edges (vp1(r), vr) and
(vp2(r), vr) for each nonvertical node vr ∈ V , where p1(r)
and p2(r) identify the parents of vr. To incorporate mul-
tilocus data, we provide each node vr ∈ V with a par-
titioning parameter φr = (φr1, . . . ,φrM) ∈ Φ ⊂ {1, 2}M

that describes the inheritance of the 2M parental regions
at vr. A value of 1 forφrm says that partition m segregates
with the first parent p1(r) of vr, whereas a value of 2 sig-
nifies the second parent p2(r). ARGs can handle numer-
ous instances of nonvertical evolution, so Φ can have
multiple parameterizations depending upon the data at
hand; we return to this point in the Prior Distribution
section. We set the vector φ equal to (φ1, . . . ,φR). Our
ARG definition generalizes the definition provided by
Griffiths and Marjoram (1996). In their definition, they
specify Φ according to a recombination partition struc-
ture; we discuss this facet more in the Prior Distribu-
tion section. Our definition of an ARG also falls under
the category of an explicit network (Huson and Bryant
2006).

A multipartite ARG G naturally induces a marginal
bifurcating tree τ(m) on every partition m. Griffiths and
Marjoram (1996) provide an excellent description and
introduction to this induction. Each marginal tree τ(m)

contains N−1 bifurcation nodes, with consistent bifurca-
tion times across the data partitions, and the associated
vector of node times T(m) subsets T, that is, T(m) ⊂ T.
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Due to the structure of G, T(m) does not automatically
contain t0. The vector τ equals the collection of marginal
trees (τ(1), . . . , τ(m)).

Using the induced marginal trees τ and branch
lengths in T, we can directly compute the data likeli-
hood using the peeling algorithm of Felsenstein (1981).
To complete this computation, we specify a sequence
character substitution process acting within each parti-
tion; specifically, we utilize CTMCs with instantaneous
rate matrices Qm. In general, the nature and type of data
in each partition Ym, be it nucleotide, amino acid, or
codon, posit a parameterization for Qm. Furthermore,
due to alternative data types or other evolutionary phe-
nomenon, each data partition Ym may suggest its own
unique parameterization for Qm. In this paper, our data
examples concentrate exclusively on nucleotide data,
so we adopt the parameterization of Hasegawa et al.
(1985) on every Qm with discrete Γ -approximated rate
variation (Yang 1994). We specify κm as the transition–
transversion ratio, πm = {πAm,πGm,πCm,πTm} as the
stationary distribution, and αm as the rate variation
parameter. We fix πm equal to the estimated empirical
frequencies π̂m of each alignment because πm ≈ π̂m
under most data situations (Li et al. 2000). We nor-
malize Qm so that rate scalar μm measures the ex-
pected number of substitutions per unit length on
T(m). We let θm = (μm,κm,αm) and combine (κ1, . . . , κm)

into κ, (α1, . . . ,αm) into α, (μ1, . . . ,μm) into μ, with
θ = (θ1, . . . ,θm). Using this notation, the complete data
likelihood can be written out as

f (Y|G,θ) =
M∏

m=1

Sm∏

s=1

f (Yms|G,θm)

=

M∏

m=1

Sm∏

s=1

f (Yms|τ
(m),T(m),μm, κm,αm). (2)

We want to emphasize that every induced gene tree has
its own clock rate, which allows for different branch
lengths among the induced trees. To give an example of
this, assume that we have N = 3 taxa (A,B,C) and M= 4
loci with relative clock rates μ=(0.8, 0.9, 1.1, 1.2). Taxa B
is a hybrid between taxa A and C with lineages at Loci
1 and 2 descending from A and Loci 3 and 4 descending
from B. The induced trees for Locus 1 and Locus 2, τ(1)

and τ(2), are both ((A:1,B:1):1,C:2), and the induced trees
for Loci 3 and 4, τ(3) and τ(4), are both (A:2,(B:1,C:1):1)
in relative time units. We multiply these times by
the locus-specific entries in μ. Thus, the rate tree for
Locus 1 in expected number of substitutions per site
equals ((A:0.8,B:0.8):0.8,C:1.6), the rate tree for Locus
2 equals ((A:0.9,B:0.9):0.9,C:1.8), the rate tree for Locus
3 equals (A:2.2,(B:1.1,C:1.1):1.1), and the rate tree for
Locus 4 equals (A:2.4,(B:1.2,C:1.2):1.2).

In some sense, we can think about the relationship
between G and τ hierarchically. In particular, the ARG
G pools topological and branch length information from
the M trees in τ. We note that this pooling does en-

force a strict-like clock on each τ, and this may not be
appropriate for all data sets (Strimmer et al. 2001). We
discuss a possible extension to this idea in Discussion.

Prior Distribution

To complete model specification, we assume indepen-
dent priors on θ and G. We follow phylogenetic hierar-
chical (Suchard, Kitchen, et al. 2003) practice and model
each θm as

log(θm) ∼MVN(ν,Σ), (3)

with ν = (νμ,νκ,να) and Σ = diag(σ2
μ,σ

2
κ,σ

2
α). When

M < 4, little information exists in the data about the
variability across the partitions, so we fix ν and Σ; when
M ≥ 4, we assume that ν and Σ are random and place
the noninformative priors of Minin et al. (2005) over
them. In either case, we fix νμ=0 to ensure identifiability
between μ and T in the posterior.

We now move to specifying a prior over the
ARG G, beginning with the partitioning parameter Φ.
SMARTIE provides a general framework for nonvertical
inference through Φ. In particular, SMARTIE allows us
to tailor Φ according to the application at hand. Three
of the most popular parameterizations include reassort-
ment, recombination, and single-gene conversion. A re-
assortment parameterization assumes that the partitions
are unordered and independent. As such, reassortment
allows the nonvertical node vr corresponding to φr to
freely select each parental partition without regard to
the neighboring partitions. A recombination parameter-
ization, however, requires that at a specific point, the
partitions physically located to the left segregate from
one parent and the partitions to the right segregate from
the other. Lastly, a single-gene conversion parameteri-
zation allows for only a single locus to be transferred.
More formally, under reassortment, we define the space
of possible partitioning parameters as

Φ=

{

φr ∈ {1, 2}
M|φr1 = 1,M <

M∑

m=1

φrm

}

. (4)

The restriction φr1 = 1 preserves identifiability because
the labelings of the first and second parent are arbitrary
and the second restriction mandates that at least one
partition comes from each parent, a reassortment event
actually occurs. For the recombination parameteriza-
tion, we define

Φ= {(1, 2, . . . , 2), (1, 1, . . . , 2), . . . , (1, 1, . . . , 2)}. (5)

Finally, for the single-gene conversion parameterization,
we define

Φ= {(1, 2, 1, . . . , 1), (1, 1, 2, 1, . . . , 1), . . . ,
(1, 1, . . . , 1, 2), (1, 2, . . . , 2)}. (6)

With a parameterization for Φ, we continue our prior
specification by considering several densities over φ.
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The first is uniform over all possible partitions

p(φ|Φ) =
R∏

r=1

p(φr|Φ) =
1
|Φ|R

(7)

and is appropriate when have no prior information on
gene flow or nonvertical events. Unfortunately, when
we parameterize Φ as a reassortment space, |Φ|R grows
exponentially in M, making inference incredibly diffi-
cult. One approach to counter this growth proposes that
the number Wr of genes transferred in a single event
should be small (Beiko and Ragan 2008). To reflect this
prior belief, we consider

Wr =min

{
M∑

m=1

1{φrm = 1},
M∑

m=1

1{φrm = 2}

}

,

p(φr|Φ) = p(Wr|λ) ∼ Truncated-Poisson (λ),

(8)

where λ is the expected number of transferred genes.
The number of transferred genes Wr must always be
greater than 0 and less than bM

2 c, so we truncate the
Poisson distribution accordingly. In extremely data-rich
situations, more biologically intriguing hyperpriors on
φ may be appropriate; we explore these possibilities in
Discussion.

With a prior specification onφ, we move to the graph
components of G. Currently, the CWR prior stands
as the most popular prior choice. The CWR robustly
encompasses a wide variety of evolutionary models
in population genetics, including the Wright–Fisher
(Fisher 1930; Wright 1931) and Moran models (Moran
1958). Consequentially, population geneticists almost
exclusively rely on the CWR. This marriage between an
ARG and the CWR, however, comes with a high cost
because coalescent assumptions and approximations of-
ten fail (Donnelly and Tavaré 1995; Eldon and Wakeley
2006; Fu 2006). Springing from this observation, we
introduce a relatively noninformative prior over G for
use in SMARTIE. This approach builds upon common
Bayesian inference procedures in phylogenetics that as-
sume a uniform distribution over tree topologies and
exponential distribution over branch lengths. In partic-
ular, the prior breaks G down into R, T, and (V, E) and
then uses basic probability to write

p(G|γ, δ,η) = p(R|η)× p(T|γ, δ)× p(V, E|T,R). (9)

The first portion of equation (9) assumes R ∼ Poisson(η),

p(R|η) =
e−ηηR

R!
, (10)

where η represents our prior belief in the number of
nonvertical transmission events. If we have little or no
prior information, we typically set η = ln(2) so that be-
fore looking at the data, there is a 50-50 chance of at
least one nonvertical event occurring. Given this prior
for R, the second portion of equation (9) assumes that t0

follows a noninformative Gamma(γ, δ) distribution and
T−{t0} has the same distribution as a collection of K−1
ordered statistics from K−1 independent Uniform(0, t0)
random variables,

p(T|R) =
γδ

Γ(δ)
tδ−1
0 e−γt0 ×

(K − 2)!

tK−2
0

. (11)

The last portion of equation (9) assumes a uniform
distribution over the topological relationships of the
vertices,

p(V, E|T,R) =
1

|ΩR,N|
, (12)

where ΩR,N is the total number of ordered ARGs G
that have N external tips and R nonvertical events. In
Appendix 1, we describe a method to calculate this
quantity.

Inference

Regardless of prior choice, we let Ψ be the vector of
all hyperparameters and Θ = (G,θ,Ψ) be the vector of
all modeling parameters. Under a Bayesian framework,
inference on Θ relies on the full posterior distribution
p(Θ|Y) ∝ f (Y|θ,G) × p(Θ). Simple to write down, this
distribution remains intractable due to a large integra-
tion step when computing the proportionality constant.
To handle this, we implement an MCMC sampler to
draw random samples from the posterior distribution
p(Θ|Y) (Liu 2001). We implement this sampler in the
BEAST phylogenetic software package of Drummond
and Rambaut (2007). The sampler exploits a variety of
transition kernels to generate the Markov-dependent
samples. For continuous parameters in Θ, the sampler
uses standard adaptive transition kernels provided by
BEAST. To move within the space of G, however, we
develop 3 novel transition kernels. For fixed R, we con-
sider a random walk kernel that moves within G in a
manner similar to the narrow exchange and subtree
transfer operators of standard Bayesian phylogenetics
(Lakner et al. 2008). To explore the variable dimensional
space of G, the sampler employs a reversible jump
kernel (Green 1995) to add and remove nonvertical
events. The third kernel uses a random walk mecha-
nism to explore φ. These kernels, plus those already in
BEAST, guarantee that SMARTIE’s MCMC chain sat-
isfies irreducibility and reversibility. Further details of
these transition kernels find themselves in Appendix 2.

When generating random samples from the poste-
rior distribution, the sampler spends a majority of its
time recomputing the data likelihood f (Y|G,θ) given
new positions in ARG space, even when using the peel-
ing algorithm of Felsenstein (1981). To overcome this,
applied investigators undertaking large phylogenetic
analysis often resort to limiting the taxa size N or the
sequence length S. A third option is parallel comput-
ing. In the past decade, several groups have developed
algorithms and software interfaces for parallel phyloge-
netic reconstruction techniques. These include DRPml
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(Keane et al. 2005), pIQPNNI (Minh et al. 2005), RAxML-
III (Stamatakis et al. 2005), fastDNAml (Stewart et al.
2001), ASA (Zhou and Jermiin 2004), GRAPPA (Moret
et al. 2002), MrBayes (Altekar et al. 2004), PBPI (Feng
et al. 2003), TREE-PUZZLE (Schmidt et al. 2002), and
BEAGLE (Suchard and Rambaut 2009). These paral-
lel methods provide dramatic runtime improvements
for phylogenetic reconstruction, making large analyses
computationally possible (Stamatakis et al. 2004; Feng
et al. 2007; Suchard and Rambaut 2009).

Building from these earlier strategies, we implement a
parallel feature for the computation of the likelihood. As
discussed previously, Y consists of M distinct data par-
titions Ym. Noting this partitioning, the full likelihood
f (Y|G,θ) factors into the product of M independent like-
lihoods f (Ym|G,θ) that the sampler can distribute to M
separate microprocessors, improving runtime perfor-
mance on large data sets. To briefly demonstrate this
improvement, we apply the SMARTIE sampler to a sim-
ulated data set with 10 taxa and 20 partitions each of
length 5000, that is, N = 10, M = 20, and Sm = 5000. We
run the SMARTIE sampler for 100,000 iterations and
display the runtime results in Table 1. As shown, by
increasing our computational resources, time scales to
manageable levels. Extrapolating these runtime figures
to the more realistic situation of 5 million MCMC itera-
tions, 12 processors provide us with results in 1 d rather
than 1 week.

The parallel interface in SMARTIE performs quite
well. According to Amadal’s law (Amadal, 1967), if a
program spends 0 ≤ P ≤ 1 percent of its time com-
puting the likelihood, and if we can distribute this load
to M different processors, a parallel computing routine

can at most improve performance by
(
1 − P + P

M

)−1

times. Assuming that SMARTIE spends nearly all its
time computing the likelihood (P → 1), in our example
above the parallel interface using 12 processors achieves
60% of the theoretical limit, a similar figure to other
phylogenetic parallel interfaces (Minh et al. 2005).

In terms of scalability for the number of taxa and
the number of nonvertical events, the specific applica-
tion determines the usefulness of SMARTIE. In theory,
SMARTIE should be able to handle any size application,
but in practice, as the applications become more com-
plex, the inference does also. These same issues plague

TABLE 1. Runtime improvement when using parallel processing
in SMARTIE on a synthetic data set

Machines Time (min) Speedup Estimated time (d)

1 182.6 — 6.3
2 111.0 1.6× 3.8
4 61.4 3.0× 2.1
8 34.6 5.3× 1.2

12 25.2 7.2× 0.9

Note: We run SMARTIE for 100,000 iterations and linearly extrapolate
the runtime figures to 5,000,000 iterations in the final column. As the
table shows, using 12 processors allows us to finish large analyses in a
day, rather than a week.

much of population genetics research that focuses on
recombination rate estimation. In particular, in popu-
lation genetic applications the size of the model space
supported by the data makes inference extremely dif-
ficult (Kuhner et al. 2000). In contrast to this, the data
in our 2 empirical examples support a much smaller
model space, making inference easier. In light of these 2
situations, we avoid giving any precise prescription for
scalability, except to say that as the applications become
more complex, so does the inference with SMARTIE.

DATA EXAMPLES

We explore a slice of SMARTIE’s utility through 2
applications. The first application considers suspected
gene conversion among a family of membrane proteins
in pathogenic L. interrogans (Stevenson et al. 2007). The
data set highlights the feasibility of inference under
SMARTIE and demonstrates how phylogenetic data can
easily identify a most probable ARG. Our next applica-
tion illustrates the relationship between SMARTIE and
the species-tree concept on the Saccharomyces data set of
Rokas et al. (2003).

Leptospira interrogans

Leptospira interrogans are bacterial spirochetes that
cause Leptospirosis, an infection primarily of the kid-
neys and a major cause of human morbidity throughout
the developing and developed world. Characterized by
severe fever, muscle pain, meningitis, ocular infection,
and jaundice, Leptospirosis can progress to systemic
infection leading to death due to bleeding of the brain
or multiple organ failure (Bharti et al. 2003). Researchers
still know little about L. interrogans or its disease mech-
anism, although progress is underway. One important
area under study is the interaction between membrane-
bound L. interrogans proteins and human extracellu-
lar context. During infection, the L. interrogans protein
LenA interacts with several external cellular proteins
to avoid host immune response (Verma et al. 2006).
Recently, Stevenson et al. (2007) further show that 5
paralogs of the gene lenA, namely lenB, lenC, lenD, lenE,
and lenF, produce proteins that interact with the human
cellular context to facilitate infection.

In addition to demonstrating these molecular interac-
tions, Stevenson et al. (2007) suggest that the lenF gene
in several serovars (lineages) of L. interrogans is actu-
ally the product of a nonvertical transmission event and
fusion between an ancestral lenC lineage and lenF lin-
eage using the gene-tree methodology of Suchard et al.
(2005). Specifically, Stevenson et al. (2007) use a Bayes’s
factor test to determine whether the lenF lineage forms
a monophyletic clade. This test has validity, but an
exclusive focus on gene-tree incongruence cannot re-
cover the entire evolutionary history. Consequentially,
we reanalyze the molecular sequences from Stevenson
et al. (2007) in order to gain a more complete under-
standing of the history of the paralogs.
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FIGURE 1. Nonvertical evolution confirmation and event dating.
The figure shows most probable ARG that represents the evolution-
ary history of 9 members of the len family in Leptospira interrogans. For
each of the taxa, the first letter represents the gene, for example, CN
represents the lenC gene and DN represents the lenD gene. The second
letter in each taxa describes whether the taxa represents the C-terminal
or the N-terminal of the particular gene, for example, CN derives from
the N-terminal of the lenC gene. The lenA gene only has an N-terminal.
We abbreviate the L. interrogans lineages as Hardjo (har), Grippoty-
phosa (gri), Canicola (can), Bratislava (bra), Pomona (pom), Copen-
hageni (cop), and Lai (lai). The white circles on the ARG represent
bifurcation nodes, and the black circles represent nonvertical nodes.
The dashed lines represent edges involved in a nonvertical event; the
remaining solid lines represent edges not involved in a nonvertical
event. The figure displays 95% credible intervals for the height of each
node in parentheses in expected number of substitutions. We display
confidence intervals for the heights of nodes (1,2,3) near the root of
the ARG. SMARTIE provides a 90% posterior probability for this his-
tory. If we had used alternative gene-tree incongruence procedures,
significance statements like this would not be possible.

The paralogs lenC, lenD, lenE, and lenF each contain
2 distinct motifs, an N-terminal and a C-terminal that
arose from a gene duplication event. Because of this
duplicity, we break these 4 paralogs into 2 separate gene
regions. We also remove the lenB paralog from our data
set because strong interlineage variation exists, leaving
us with a total of 9 gene regions that we abbreviate as
A, CC, CN, DC, DN, EC, EN, FC, and FN. Because these
genes are paralogs, we let the operational taxonomic
units of our data set represent the N = 9 gene regions
and the M = 7 data partitions represent the distinct
lineages: Hardjo (har), Grippotyphosa (gri), Canicola
(can), Bratislava (bra), Pomona (pom), Copenhageni
(cop), and Lai (lai). An alternative representation of
these data labels the lineages as the taxa and the par-
alogs as the partitions. In general, the choice depends
upon the application at hand, but this flexibility further
identifies a strength of the ARG framework. Back to our

problem at hand, we cannot obtain sequence informa-
tion on the bra lineage for the paralogs DC and DN; this
may represent gene loss, so we represent the sequences
as standard ambiguity codes, allowing Felsenstein’s
peeling algorithm to integrate out these 2 sequences
when computing the likelihood. We set η= 0.693, imply-
ing a 50% prior probability of a nonvertical event before
looking at the data. We also consider η= 2, but the re-
sults do not notably change. We scale branch lengths in
terms of expected substitutions per site and utilize a rel-
atively noninformative gamma prior on the root height.
We parameterize Φ under a reassortment prior. To test
convergence of our chains, we run 10 independent
chains of 15 million iterations with a burn-in of 10%.
All 10 chains converge to near identical distributions.

We display the most probable ARG representation
of the len family history in Figure 1. Averaging across
the independent chains, SMARTIE provides a posterior
probability of 89.7% (standard deviation across the 10
chains is 0.3%) for the ARG in Figure 1. Moreover, if we
ignore the positioning of paralog DC and “loop-like”
nonvertical events (Kuhner et al. 2000) that have no ef-
fect on the likelihood, the posterior probability grows
well beyond 95%. These “loop-like” events occur when
2 lineages that result from a nonvertical event “coalesce”
immediately afterwards. Because of this, these events
are essentially hidden and can be safely ignored. Our
results with SMARTIE match up with the inferences
from Stevenson et al. (2007). Specifically, the lineages
gri, pom, bra, and lai derive from an ancestral CN par-
alog, whereas the other 3 arise from an ancestral F
paralog.

Although SMARTIE recovers a single nonvertical
event and essentially confirms the results of Stevenson
et al. (2007), SMARTIE provides numerous advantages
over the previous analysis. Importantly, we gain sub-
stantially more information on the evolutionary history.
The Bayes’s factor test of monophyly in Stevenson et al.
(2007) (log10 Bf = 8) and a Bayes’s factor test of R > 0
versus R = 0 in SMARTIE (log10 Bf > 4) recover over-
whelming evidence for at least one nonvertical event,
but SMARTIE allows us to test for a single event in the
history. In particular, testing R = 1 versus R /= 1, we re-
cover a Bayes’s factor of 20 that only a single isolated
event occurs in the evolutionary history rather series of
nonvertical events. Beyond testing for a single isolated
event, use of SMARTIE allows us to date the nonvertical
event with a posterior mean of 0.12 and 95% credible in-
terval of (0.06, 0.18), with units in expected substitutions
per site. If we had simply resorted to testing monophyly,
we have no ability to garner this information.

Saccharomyces

This example tackles issues relating ARGs to species-
tree inference. Over the past decade, theoretical and
applied phylogenetic researchers have recognized that
evolutionary histories reconstructed from different
genes or loci oftentimes differ from evolutionary
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histories reconstructed from other locations. Moreover,
these gene histories often differ from the presumed
organism or species history (Maddison 1997). Acknowl-
edging this phenomenon, researchers have begun to
develop methods to better understand this discordance
with particular emphasis on estimating species trees
(Rannala and Yang 2008).

Initial efforts to reexamine such discordance have
focused on the issue of finite data size and quality.
Accepting the fact that sequence data provide only a
noisy signal for the evolutionary history, many research-
ers advocate the concatenation of additional sequence
data to increase the signal-to-noise ratio, thus better
recovering the true species tree (Kluge 1989). Two ma-
jor successes in this area include Rokas et al. (2003)
for Saccharomyces and Chen and Li (2001) for hominid
evolution. Simulation work also shows that the concate-
nation of additional genes or loci allows researchers to
narrow in on a single evolutionary history (Rokas and
Carroll 2005).

Generally speaking, the addition of more genetic
data should allow researchers to narrow in on a single
species history, assuming that the underlying statisti-
cal model is correct. A vast body of research, however,
reveals severe deficiencies in this assumption that can
make the addition of more data inappropriate. In sta-
tistical terms, the addition of data does not necessarily
yield a consistent estimator of the species tree. The
most widely studied deficiency of this kind is incom-
plete lineage sorting (Maddison 1997). Assuming the
coalescent model of Kingman (1982), a series of papers
demonstrate that the distribution of gene trees result-
ing from a single species tree exhibits strong variance
(Pamilo and Nei 1988; Rosenberg 2002; Degnan and
Salter 2005; Kubatko and Degnan 2007) to the point
that the most likely gene tree resulting from the species
tree may not even coincide with the given species tree
(Degnan and Rosenberg 2006). This phenomenon has
become so widely recognized that Avise and Robinson
(2008) coin the word hemiplasy to describe the situation.
The literature contains numerous models to handle this
discordance. Liu and Pearl (2007) develop a method to
estimate species trees that allows for incomplete lineage
sorting in the gene trees and the species tree. Knowles
and Carstens (2007) introduce a similar methodology to
estimate species trees with a focus on species delimita-
tion. In terms of more general models of discordance,
Ané et al. (2007) develop a general approach that clus-
ters gene trees, but their method does not provide fur-
ther insight into the discordance. Suchard et al. (2005)
develop a similar gene-tree procedure that lacks insight
into the discordance.

Beyond lineage sorting, little research focuses on
other sources of gene-tree incongruence, specifically
nonvertical processes. Rokas et al. (2003), Edwards et al.
(2007), and Ané et al. (2007) all mention hybridization
as a possible explanation for the discordance between
gene trees, but the authors do not pursue the ideas to
a great degree. In a recent paper comparing methods
for species-tree estimation, Linnen and Farrell (2008)

further acknowledge that hybridization presents seri-
ous problems to the estimation of species trees and that
future methods cannot ignore this issue. Linder and
Rieseberg (2004) echo similar statements.

We believe that SMARTIE presents an excellent way
to incorporate hybridization into the species-tree frame-
work. To explore this idea, we reanalyze the 106 gene
Saccharomyces data set of Rokas et al. (2003). We focus
our attention on the species Saccharomyces cerevisiae
(Scer), Saccharomyces paradoxus (Spar), Saccharomyces
mikatae (Smik), Saccharomyces bayanus (Sbay), Saccha-
romyces kudriavzevii (Skud), and Saccharomyces castellii
(Scas). We ignore the 2 other species present in Rokas
et al. (2003) as they present a noisier signal. As previ-
ously discussed in Rokas et al. (2003) and Edwards et al.
(2007), the 106 genes tend to support 1 of 2 evolutionary
histories (Fig. 2), with the tree in Figure 2a acting as the
most likely species tree (Rokas et al. 2003; Edwards et al.
2007). We note that Rokas et al. (2003) and Edwards
et al. (2007) use different underlying evolutionary mod-
els, but both label their final estimate as a species
tree.

We now make inference under SMARTIE. We set
η = 0.693 and utilize our Poisson prior on the partition
structure with a prior mean of 10% of the number of
genes (in this case 10.6) per nonvertical event. We run
10 independent MCMC chains of 3 million iterations.
We note that the 10 MCMC chains have difficulty recov-
ering the marginal posterior distribution of the number
of nonvertical nodes. This occurs due to strong lineage-
specific rate variation in the Scas sequence as compared
with the rest of the lineages. SMARTIE attempts to
model this variation through nonvertical events that
have no effect on the induced tree topologies. Explicitly
modeling rate variation in SMARTIE should alleviate
such difficulties and remains an important area of active
research; we discuss a possible extension in Discussion.
Nevertheless, these spurious nonvertical events have no
discernable effect on the marginal posterior distribution
of the induced gene trees for the 106 loci. In particular,
the 10 chains all suggest that 31 genes on average sup-
port the tree in Figure 2a and 75 genes support the tree in
Figure 2b. Because neither bifurcating species history
garners overwhelming support, we believe that speci-
ation leading to Sbay and Skud exhibits a strong sig-
nal toward hybridization as depicted by the ARG in
Figure 2c. Because of this, a bifurcating species history
may not be appropriate for this data set (Liti et al. 2006).

We believe that our analysis using SMARTIE com-
plements and adds to other recent research in this area
that explores hybridization. In particular, Meng and
Kubatko (2009) allow for hybridization in a species-tree
framework, enabling them to tease apart incomplete lin-
eage sorting from hybridization. In their work, however,
one needs to specify where the possible hybridization
events occur a priori. In a similar work, Than et al. (2007)
outline a method to incorporate incomplete lineage sort-
ing but do not discuss how to test for the significance
of hybridization events. In both cases, we believe that
SMARTIE provides the framework to adequately model
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FIGURE 2. Hybridization in Saccharomyces. Figures (a) and (b) rep-
resent the 2 most common gene trees in the Saccharomyces data set
taken from Rokas et al. (2003). The taxa in all 3 figures, Saccharomyces
cervevisiae (Scer), Saccharomyces paradoxus (Spar), Saccharomyces mikatae
(Smik), Saccharomyces bayanus (Sbay), Saccharomyces kudriavzevii (Skud),
and Saccharomyces castellii (Scas), represent distinct species of Saccha-
romyces. Under SMARTIE, 31 genes on average support the gene tree
in (a) and 75 support the gene tree in (b). Because neither bifurcat-
ing species history garners overwhelming support, we believe that
speciation leading to Sbay and Skud exhibits a strong signal toward
hybridization as depicted by the ARG in (c).

and allow for uncertainty in these events. Moreover, the
usage of SMARTIE allows investigators the opportunity
to formally test the existence of hybridization events.

DISCUSSION

This paper introduces SMARTIE to jointly infer ver-
tical speciation and nonvertical transmission events.
Adopting a higher dimensional statistical framework
punctuated by an ARG, SMARTIE presents a reasonable
and appropriate framework to reconstruct evolutionary
histories subject to nonvertical evolution. Moreover,
ARGs have widespread use including nonvertical event
confirmation, nonvertical event dating, and species
delineation.

SMARTIE and its use of ARGs raise numerous statisti-
cal modeling issues. We focus here on hierarchical ones.
Hierarchical frameworks for phylogenetic data have
become quite popular in the past few years (Suchard,
Kitchen, et al. 2003; Ané et al. 2007). By pooling informa-
tion about evolutionary parameters across multilocus
data sets, hierarchical frameworks improve statistical
power (Gelman et al. 2003) and allow us to gain fur-
ther insight into evolutionary processes (Huelsenbeck
and Suchard 2007; Liang and Weiss 2007). Two specific
areas in SMARTIE suggest such a framework. The first
involves temporal and lineage-specific rate variation.
Over the past decade, investigators have realized the
shortcomings of a strict molecular clock (Zuckerkandl
and Pauling 1965; Bromham and Penny 2003) and have
introduced several models to relax this assumption
for bifurcating trees (Thorne et al. 1998; Aris-Brosou
and Yang 2002; Drummond et al. 2006). In general, the
models allow the infinitesimal rate of character sub-
stitution μ(t) to vary over time, with a parameteriza-
tion dependent upon the tree τ. One possible way to
relax the clock of the ARG model is to use the mul-
tilocus model of Thorne and Kishino (2002), but be-
cause this model does not account for the relationship
between G and τ, adaptations will be required. This
move to a relaxed clock will likely have a significant
impact on ARG reconstruction because lineage-specific
and temporal rate variation currently confound ARG
reconstruction.

The prior we place on the nonvertical partition pa-
rameterφ also suggests a hierarchical framework. Back
in the Model section of this paper, we introduce 2 pri-
ors forφ. Common to them, both the priors assume the
independence of each φr ∈ φ. In problems where the
data suggest low levels of nonvertical evolution, these
independent priors make statistical sense. But in prob-
lems with high rates of nonvertical evolution, the data
strongly suggest a multinomial hierarchical prior. Be-
sides adding statistical power, a hierarchical framework
allows for the investigation of the correlation of descent
among loci in nonvertical evolution, an idea with impli-
cations for selective pressure. For example, a hierarchi-
cal prior on an influenza data set allows for the possible
grouping of the 8 influenza genes into specific selective
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classes, an idea that has implications for drug-targeting
strategies (Nelson and Holmes 2007).

The above discussion highlights just a few research
avenues available through ARGs. In general, most, if
not all, research we have previously completed on
rooted bifurcating trees can be generalized and ex-
tended to ARGs. In fact, this process of abstraction
has already begun, for example, the extended Newick
format (Cardona et al. 2008) and supernetworks
(Holland et al. 2008) have natural analogs in the space
of bifurcating trees. To this end, we hope that SMARTIE
opens a pathway between the work done in Bayesian
phylogenetics and phylogenetic networks. The 2 com-
munities have much to offer each other.
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APPENDIX 1

In this section, we provide a method to count the
total number of ordered, topologically distinct ARGs
with R nonvertical nodes and N external tips. In gen-
eral, our method adopts a coalescent-like perspective
to count the number of ARGs. The recursion starts at
current time 0 with N nodes and proceeds backward in
time until only one node remains. To start, we define
C = (−1,−1, . . . ,−1, 1, 1, . . . , 1) as the vector of length
B=N + 2R− 1 in which the first N + R− 1 positions are
equal to −1 and the remaining R positions are equal to
1. We think of the vector C as the left-to-right ordering
of the events in an ARG starting at time 0 and moving
backward in time toward the root. A −1 represents a
bifurcation event, whereas a 1 represents a nonverti-
cal event. Because every ARG has associated with it 1
permutation of C, we simply consider the collection of
permutations of C that correspond to valid ARGs and
then count the number of ARGs that correspond to each
permutation.
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To do this, we first define σ(C) as the set of all unique
permutations of C. For each c ∈ σ(C) and for each
i= 1, . . . ,B, we recursively define the function F(c, i) by

F(c, 1)=N, and

F(c, i)=F(c, i− 1) + ci−1,
(13)

where ci represents the {−1, 1} value at the ith index
of the permutation c. Unfortunately, only specific or-
derings represent valid ARGs. In particular, only those
permutations c ∈ σ(C) that satisfy

cB=− 1,

F(c, i) > 1, for 1 ≤ i < B,

F(c,B)= 2

(14)

represent valid ARG orderings. The element cB equals
the bth element of c ∈ σ(C). This being the situation, we
define the set σV(C) ⊂ σ(C) to be those permutations of
C that satisfy the restrictions in equation (14).

Using this set σV(C), we simply need to count the
number of ARGs that correspond to each c ∈ σV(C) and
then sum over all permutations in σV(C). In particular,
we count the total number of ARGs as

ΩR,N =
∑

c∈σV(C)

B∏

i=1

[F(c, i)]I(ci=1)

[(
F(c, i)

2

)]I(ci=−1)

, (15)

where I(∙) is the indicator function. To unpack this
expression, when we encounter a 1 in c, we run into
a nonvertical event, of which F(c, i) are possible. When
we run into a −1 or bifurcation event,

(F(c,i)
2

)
are possi-

ble. Solving equation (15) is computationally expensive.
In practice, we use a numerical algorithm to obtainΩR,N
that adopts a branch-and-bound procedure to limit C to
σV(C).

APPENDIX 2

Here, we describe more fully the 3 MCMC transition
kernels we employ in BEAST to make inference through
SMARTIE. We only describe the transition kernels novel
to our implementation; for details regarding general
MCMC theory in phylogenetics, we refer the reader to
Larget (2005).

Partition Transition Kernel

This operator acts on the partitioning structure φ. In
general, the kernel randomly walks through the par-
tition space Φ in a path dependent on the partition
representation. For Φ under a reassortment specifica-
tion, the kernel goes through 3 steps. First, the kernel
uniformly selects a partition φr ∈ Φ, then uniformly
selects an integer index m in the set {2, 3, . . . ,M}, and

finally proposes a value φ?rm = 1 − φrm. In more simple
language, if φrm = 1, the kernel proposes a 0; if φrm = 0,
the kernel proposes a 1. In the case of a recombination
partition space Φ, the kernel uniformly selects a par-
tition φr ∈ Φ and then slides the breakpoint of φr to
left or right dependent upon the flip of a fair coin. Be-
cause the kernel acts symmetrically in the reassortment
parameterization and recombination parameterization,
the Metropolis–Hastings (HM) ratio is the ratio of the
posterior under the proposal Θ? to the posterior un-
der the current value Θ. When the kernel proposes
partitions outside of Φ, we give the proposal Θ? zero
posterior probability.

ARG Swap Kernel

This transition kernel acts on the graph structure G
using an idea similar to the subtree transfer of standard
phylogenetics (Lakner et al. 2008). In reality, this kernel
is actually 2 separate kernels, a bifurcation swap and
a nonvertical swap. We illustrate both kernels through
diagrams in Figure A1; a general mathematical descrip-
tion becomes extremely unwieldy. We start with the
bifurcation swap in Figure A1a. To start, the kernel uni-
formly selects an internal bifurcation node from G; in
the figure, 4 are possible and the kernel selects the one
marked with an arrow. After this, the kernel uniformly
selects 1 of the 2 children nodes of the selected bifur-
cation node; in the figure the kernel selects the right
child. Next, the kernel breaks the lineages that exist at
the time of the selected bifurcation node except the se-
lected child; in the figure, the kernel breaks the lineages
marked by the numbers 1, 2, 3, and 4. Finally, the ker-
nel uniformly selects a “swap” lineage. In the figure,
the kernel can select among 1, 3, and 4 to “swap” with
lineage 2; it chooses lineage 1. Finally, the kernel swaps
lineages 1 and 2 and reconnects the graph. Because this
kernel is symmetric and acts uniformly at all steps, the
HM ratio is the ratio of the posteriors.

A similar idea works for the nonvertical swap in
Figure A1b. First, the kernel uniformly selects 1 of the
2 nonvertical nodes present on the tree; in this case,
it selects the one marked with the arrow. Next, the
kernel breaks the child lineage of this selected nonver-
tical node, as well as all others that exist at the time of
the nonvertical node. In the figure, the kernel breaks
lineages 1, 2, 3, and 4. After this, the kernel uniformly
selects a “swap” lineage. In the figure, the kernel can
select among 1, 2, and 4; it selects lineage 4. Finally, the
kernel “swaps” lineage 3 with lineage 4 and reconnects
the graph as shown in Figure A1b. Once again, because
this kernel is symmetric and acts uniformly, so the HM
ratio equals the ratio of the posteriors.

Reversible Jump Kernel

This final transition kernel adds and removes nonver-
tical events using the reversible jump methodology of
Green (1995). This is the most difficult of the kernels to
describe.
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FIGURE A1. ARG swap transition kernel. This figure displays the operations that the ARG swap transition kernel makes. a) The bifurcation
swap. In this example, the kernel selects the bifurcation node marked with an arrow and the right lineage of this bifurcation node. Next, the
kernel breaks the 4 lineages marked with the numbers 1, 2, 3, and 4. Finally, the kernel swaps lineages 1 and 2 and reattaches the graph as
indicated by the dashed lines. The nonvertical swap displayed in (b) acts similarly.

To start, the kernel first uniformly selects whether to
add a nonvertical node or delete a nonvertical node.
If it chooses to add, the kernel then proposes 2 new
branch heights from 2 independent exponential distri-
butions with rate parameter α under the restriction that
t?1 < t?2 and t?1 < t0. The parameter t0 represents the
root height of G. The parameter α is a tuning param-
eter that we usually set so that p(t?1 < t0|α) = 0.9. In
general, if p0 equals the probability we choose below the
root

α=
− log(1−

√
p0)

t0
. (16)

In Figure A2, the kernel draws the heights marked by
arrows. After drawing the 2 heights, the kernel then
uniformly selects one of the possible lineages at each
of the 2 selected heights. At the lower height t?1
in Figure A2, the ARG can choose among 4 lineages
(marked with arrows in the upper right figure); at the
upper height t?2 in Figure A2, the ARG can select among
5 (not marked). In general, the kernel can select among
L(t) lineages at a particular height t. After selecting 2 lin-
eages, the kernel then breaks them, adds a nonvertical
node at the lower height t?1 , and adds a bifurcation node
at the upper height t?2 . After this, 2 steps remain. First,
the sampler needs to decide whether to attach the first
or second parent of the new nonvertical node to the
bifurcation node; in the figure, the sampler selects the
second or “right” parent. After this, the sampler finishes

up by reattaching the remaining lineages and drawing
a new partition φ? from p(φ|Φ) to associate with the
new nonvertical node.

If t?2 > t0, the new bifurcation event becomes the new
root. Also L(t?2) = 1 when t?2 > t0. One other small note,
if the sampler chooses the same lineage at both heights,
we do not include a factor of 2 in the HM ratio because
we attach both the first and the second parent of the
new nonvertical node to the new bifurcation node. For
notational purposes, we let H(L?1 , L

?
2) = 2.0 when the

2 chosen lineages L?1 and L?2 are the same; otherwise
H(L?1 , L

?
2) = 1.0.

The delete step of this kernel works as follows.
We first find all possible nonvertical nodes that can be
deleted. In particular, we find all vr ∈ V such that
vp1(r) and vp1(r) are not both nonvertical nodes. We let
D be the number of nonvertical nodes that satisfy this
condition, and we let G(r) = I(vp1(r) is bifurcation) +
I(vp2(r) is bifurcation) −I(vp1(r) = vp2(r)). The subtraction
in G(r) is necessary to account for the case when both
parents of v?r are the same. Using these definitions,
the kernel first selects a v?r where G(r) > 0. Next, if
G(r) = 2, the kernel selects 1 of the 2 parents of v?r ;
otherwise, the kernel simply selects the sole bifurca-
tion parent of v?r . Finally, for the parent not selected,
the kernel collapses vr onto this parent and collapses
the chosen parent for deletion onto its child. In the
process, G loses 1 bifurcation node and 1 nonvertical
node.



2010 BLOOMQUIST AND SUCHARD—UNIFYING VERTICAL AND NONVERTICAL EVOLUTION 41

FIGURE A2. Reversible jump transition kernel. This figure demonstrates the add step of the reversible jump kernel. First, the kernel draws 2
heights t?1 and t?2 on G. Next, the kernel uniformly chooses 1 of 4 lineages at t?1 (marked with arrows for illustrative purposes) and 1 of 5 lineages
at t?2 . After selecting the lineages, the kernel adds a bifurcation node onto lineage at t?1 and a nonvertical node onto the lineage at t?2 . Next, the
kernel decides whether to link up the right side or left side of the new nonvertical node to the new bifurcation node; in the figure, the kernel
links up the right side of the nonvertical node to the new bifurcation through the dashed line. As a last step, the kernel links up the remaining
pieces of the graph.

Using the definitions above, the HM ratio for the add
step is

p(Θ|Y?)
p(Θ|Y)

×
eα(t

?
1 +t?2 )(1− e−2αt0)

2α2
×

2L(t?1)L(t
?
2)

H(L?1 , L
?
2)

×
1

p(φ?|Φ)× G(r?)× (D + 1)
. (17)

The second term in this ratio accounts for the con-
dition that t?1 < t?2 and t?1 < t0. The G(r?) term rep-
resents the function G(∙) applied to the just added
nonvertical node. The HM ratio for the delete step
is the reciprocal of the HM above, with appropriate
modifications.


