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Comparing the structures of proteins is crucial to gaining
insight into protein evolution and function. Here, we
align the sequences of multiple protein structures by a
dynamic programming optimization of a scoring function
that is a sum of an affine gap penalty and terms depen-
dent on various sequence and structure features
(SALIGN). The features include amino acid residue type,
residue position, residue accessible surface area, residue
secondary structure state and the conformation of a short
segment centered on the residue. The multiple alignment
is built by following the ‘guide’ tree constructed from
the matrix of all pairwise protein alignment scores.
Importantly, the method does not depend on the exact
values of various parameters, such as feature weights and
gap penalties, because the optimal alignment across a
range of parameter values is found. Using multiple struc-
ture alignments in the HOMSTRAD database, SALIGN
was benchmarked against MUSTANG for multiple align-
ments as well as against TM-align and CE for pairwise
alignments. On the average, SALIGN produces a 15%
improvement in structural overlap over HOMSTRAD
and 14% over MUSTANG, and yields more equivalent
structural positions than TM-align and CE in 90% and
95% of cases, respectively. The utility of accurate mul-
tiple structure alignment is illustrated by its application
to comparative protein structure modeling.
Keywords: multiple structure alignment/dynamic
programming/guide tree/RMSD/structure overlap

Introduction

Alignment of the 3D structures of proteins is of significant
importance in structural biology, because it helps categorize
known structures to establish evolutionary and/or functional
relationships (Mizuguchi et al., 1998; Brenner et al., 2000;
Marti-Renom et al., 2001; Sujatha et al., 2001; Bhaduri
et al., 2004; Wilson et al., 2009). As for any comparison,

protein structure alignment can also be seen as an optimiz-
ation of a scoring function, which in this case depends on
the structures of the compared proteins. A frequently used
scoring function is the number of residues superposed within
a certain cutoff distance, although more complex functions
including multiple sequence and structure features have also
been described (Sali and Blundell, 1990; Taylor, 1999).
A number of different optimization techniques have been
used (Holm and Sander, 1995; Shindyalov and Bourne, 1998;
Taylor, 1999; Ortiz et al., 2002) to optimize the scoring func-
tions for structure comparison, most prominently dynamic
programming (Taylor, 1999).

Most known protein structures are related to a number of
other known structures (Murzin et al., 1995; Orengo et al.,
1997), highlighting the need for methods that can simul-
taneously compare multiple structures. Although most
methods can align only pairs of structures, methods such as
MNYFIT (Sutcliffe et al., 1987), COMPARER (Sali and
Blundell, 1990), MULTIPROT (Shatsky et al., 2004),
CE-MC (Guda et al., 2004), MUSTANG (Konagurthu et al.,
2006), MASS (Dror et al., 2003), MAMMOTH-mult
(Lupyan et al., 2005) and MATT (Menke et al., 2008) can
also align multiple structures. Multiple alignments are
usually superior to pairwise alignments because they more
accurately describe the variations within and between groups
of related protein structures. Multiple alignments can help
assess structural similarity and identify regions of confor-
mational flexibility. The conformations of the flexible
regions, usually loops, may provide insight into functional
aspects of proteins, e.g. the substrate specificity of different
serine proteases is governed by the conformation of the
binding loops (Hedstrom, 2002). Multiple structure align-
ments may also result in more accurate comparative
protein structure models than pairwise alignments
(Fernandez-Fuentes et al., 2007; Chakravarty et al., 2008;
Larsson et al., 2008). The utility of multiple templates for
comparative modeling hinges on the accuracy of their mul-
tiple structure alignment, which is constructed before align-
ing it with the target sequence (Chakravarty et al., 2008).

Here, we describe SALIGN, an automated dynamic pro-
gramming method for creating multiple structure alignments.
A major motivation was to create alignments of multiple
template structures for comparative modeling by satisfaction
of spatial restraints, as implemented in MODELLER (Sali
and Blundell, 1993). To obtain spatial restraints for model-
ing, both inter-residue distances and residue dihedral angles
are transferred from the template structures to the target
sequence aligned with the templates. Therefore, the more
conserved are these features in the multiple template align-
ment, the more accurate is the corresponding comparative
model. As a consequence, SALIGN was developed to con-
struct multiple structure alignments that take into consider-
ation both sequence and structure features.

We first describe the computation of pairwise and multiple
alignments of structures using SALIGN (Materials and7M.S.M. and B.M.W. contributed equally to this work.
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methods). Next, we compare its accuracy with those of
several other state-of-the-art methods and illustrate its use in
comparative modeling with an example of a model built
using multiple templates (Results). Finally, we discuss
potential limitations and improvements of the method
(Discussion).

Materials and methods

SALIGN is implemented in the program MODELLER
version 9v7 (http://salilab.org/modeller/) (Sali and Blundell,
1993). Although the SALIGN algorithms to align sequences
as well as sequences with structures have been described
elsewhere (Marti-Renom et al., 2004; Madhusudhan et al.,
2006), here we describe the alignment of multiple protein
structures. SALIGN is inspired by COMPARER (Sali and
Blundell, 1990); however, unlike COMPARER, SALIGN uti-
lizes an iterative procedure that renders it insensitive to par-
ameter values. It is benchmarked on a large multiple
structure alignment database, and is optimized for alignment
accuracy. SALIGN creates pairwise alignments by dynamic
programming using a scoring matrix that is a linear combi-
nation of sequence and structure feature distances. Multiple
alignments are then constructed by assembling individual
pairwise alignments. To maximize alignment accuracy, this
procedure is carried out in two stages: first, an initial align-
ment is created, followed by an iterative refinement in the
second stage (Fig. 1). The following sections describe the
procedure in more detail.

Measures of alignment accuracy
For a superposition of two structures, the structure overlap
(SO) is defined as the percentage of aligned residues that are
within a given cutoff distance; the normalization factor is the
length of the shorter of the two sequences. By default, SO at
a cutoff distance of 3.5 Å is used (SO3.5).

For multiple structure alignments, the SO is the average
SO for all pairwise alignments implied by the multiple align-
ment. We then quantify the accuracy of a multiple structural
alignment by the average structural overlap at cutoffs of 1, 2,
3 and 4 Å (the quality score), which is similar to the
GDT_TS score (Zemla et al., 2001).

Pairwise alignment of protein structures
SALIGN uses standard linear dynamic programming to align
pairs of structures or ‘sub-alignments’ (i.e. a fixed previously
obtained alignment of multiple structures). The scoring
matrix for dynamic programming is a linear combination of
six distance matrices, and the gap penalty is a linear function
of gap length, depending on the gap opening and extension
penalties (below). Each distance matrix contains distances
(dissimilarities) in a sequence or structure feature between
all inter-molecular pairs of residue positions in the two com-
pared structures or sub-alignments (below). The final scoring
matrix D is

Di;j ¼
Xk¼6

k¼1

WkFk
i;j

ð1Þ

where Wk is the weight associated with feature distance Fk
i,j

when aligning residue positions i and j.

Sequence and structure features
The features include amino acid residue type, residue pos-
ition, residue accessible surface area, residue secondary
structure state and the conformation of a short segment cen-
tered on the residue. In principle, any feature of protein
sequence and/or structure can be utilized to create the
dynamic programming matrix for subsequent generation of
the optimal pairwise alignment, as long as the feature is
attributable to individual amino acid residues and a measure

Fig. 1. SALIGN schema for multiple structure alignment. See Materials and
methods.
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of distance can be defined between different states of the
feature. Next, we briefly describe the six feature distances
used in this study.

Residue type Feature distance 1 is the dissimilarity version
of the BLOSUM62 matrix (Henikoff and Henikoff, 1992).

Residue spatial position Feature distance 2 is the Euclidean
distance between pairs of aligned residues. The distance is
computed between one selected atom (typically the Ca atom)
from each residue. Because the distance between the atoms
depends on the relative positions and orientations of the
compared structures, this feature is used in refining an exist-
ing alignment (Sali and Blundell, 1990). The dynamic pro-
gramming scoring matrix created by this feature distance is
used to generate a new structure alignment from which the
feature distances are recomputed. The refinement of an initial
alignment progresses iteratively until convergence (number
of structurally equivalent positions does not change between
iterations and the change in the relative orientation of the
fitted structures is small). The gap penalties used in this step
are different from those used in generating the initial and
final alignments (below).

Residue solvent accessibility Feature distance 3 is the differ-
ence in side-chain solvent accessibility. Residues are categor-
ized into three side-chain accessibility classes based on their
percentage side-chain solvent accessibility (s): buried (s ,
15%), semi-exposed (s is between 15% and 30%) and
exposed (s . 30%). The value of the distance is 0 between
identical classes and for residue pairs for which the absolute
difference in their s values is ,5%, 1 for neighboring
classes and 2 for a buried-exposed match.

Residue secondary structure state Feature distance 4 is the
residue secondary structure state, distinguishing between
a-helix, b-strand and other. The feature distance is 0 for
equal states, 1 for ‘helix’ or ‘strand’ matched to the ‘other’
state and 2 for ‘helix’ matched to ‘strand’.

Residue local conformation Feature distance 5 measures
local conformational difference by the distance
root-mean-square deviation (dRMSD) between the selected
atoms (by default, Ca atoms) from segments of five residues
centered on the two matched residues.

User specified feature Feature distance 6 is a user specified
distance for which an external matrix that describes the pos-
ition–position dissimilarity can be input. In the current
study, this feature distance is not used.

Averaging feature distances
When constructing a multiple alignment, each side of the
alignment can have more than one structure (i.e. a sub-
alignment). When two such blocks of structures are com-
pared with one another, individual feature distances are com-
puted either by calculating the distance between averaged
features or by averaging the feature distances over all poss-
ible individual comparisons between structures in each of the
two blocks. Specifically, the residue spatial position feature
is calculated by first averaging the coordinates of the selected
atoms in each block, followed by computing the Euclidean

distance between the averaged structures. The residue–
residue substitution score, the solvent accessibility distance,
the secondary structure state difference and the dRMSD are
all averaged over pairwise comparisons between structures in
one block and those in the other block.

Gap penalties
SALIGN uses two sets of affine gap penalties:

Gap 1D ¼ u1D þ v1D � l ð2Þ
Gap 3D ¼ u3D þ v3D � l ð3Þ

Gap_1D [Eq. (2)] penalizes the creation (u1D) and exten-
sion (v1D) of gaps of length l in the amino acid sequence,
and is used in the creation of initial alignments (below).
Gap_3D [Eq. (3)] is the equivalent gap penalty for the refine-
ment stage (below), penalizing the creation and extension of
gaps when using the residue spatial position feature. For
instance, when v3D ¼ 1.5, pairs of positions are identified as
equivalent when they have their selected atoms at most two
times this value (3 Å) apart in the current superposition.

Multiple alignment following a guide tree
SALIGN uses the ‘guide-tree’ algorithm for collating pair-
wise alignments into a multiple alignment (Feng and
Doolittle, 1987). Given a set of N proteins, N(N 2 1)/2
all-against-all pairwise alignments are first computed. From
the resulting matrix of alignment scores, a tree (dendrogram)
is constructed (Fitch and Margoliash, 1967). A multiple
alignment is then computed by progressively aligning pairs
of ‘sub-alignments’, following the tree, starting with the
closest pair of structures.

Alignment iterations
To achieve the best possible final alignment, the entire
process of constructing pairwise alignments (and, if necess-
ary, combining them into a multiple alignment) is iterated
(Fig. 1). A set of prospective initial alignments is first built
using a dynamic programming matrix consisting of only the
residue substitution and local conformation features (features
1 and 5), sampling over a range of gap penalties and
dynamic programming matrix offsets (Table I). Of the
sampled alignments, the one with the best SO3.5 is chosen
as the initial alignment. If no alignment yields an SO3.5 of
at least 70%, the pool of initial alignments is widened by
another search using only the residue local conformation
feature (feature 5) and sampling over a wider range of par-
ameters. The initial alignment is then refined using a scoring
matrix constructed using the spatial position feature (feature
2) alone to obtain the final alignment; this refinement hinges
crucially on the initial alignment.

Local and global alignments
SALIGN can use both the Needleman–Wunsch (Needleman
and Wunsch, 1970) global alignment algorithm and the
Smith–Waterman local alignment algorithm (Smith and
Waterman, 1981). In this study, the initial alignments are
local, whereas their refinement relies on global alignment.

Alignment of multiple protein structures
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Data sets
The accuracy of the multiple alignments was tested using the
402 HOMSTRAD alignments (Mizuguchi et al., 1998)
(February 2007 release) that consisted of three or more pro-
teins. For the pairwise alignment benchmark, the 9539 pair-
wise alignments implied by these HOMSTRAD family
alignments were culled to a smaller set of 1204 pairwise
alignments, by including only alignments with an RMSD
between 2.0 and 3.0 Å and an SO3.5 between 20% and 70%.
Multiple structure alignments of the HOMSTRAD families
produced by SALIGN are available at http://salilab.org/salign/.

Results

We first establish the accuracy of SALIGN to align pairs of
structures. The SALIGN algorithm was applied to pairs of
whole PDB chains for each of the 1204 pairwise alignments
in the benchmark set, using as the initial alignment an
ungapped ‘alignment’ of the two chains. For comparison
with other state-of-the-art protein structure alignment pro-
grams, the same PDB chain pairs were given to TM-align
(Zhang and Skolnick, 2005) and CE (Shindyalov and

Bourne, 1998), run with default parameters. The accuracies
of the resulting alignments were compared by calculating the
number of equivalent structural positions at 3.5 Å (Fig. 2).
Of the 1204 alignments, SALIGN is equal to or better than
TM-align and CE in 1086 (90%) and 1147 cases (95%),
respectively.

Next, we test SALIGN on multiple alignments. For each
of the 402 HOMSTRAD families with three or more
members, the multiple alignment was calculated with
SALIGN. The HOMSTRAD family alignment, with all gaps
removed, was used as the initial alignment. The resulting
alignments were compared against the original HOMSTRAD
alignments and those calculated using the MUSTANG
program. SALIGN is significantly better than both alignment
methods, improving the average structural overlap score by
15% compared with HOMSTRAD and 14% compared with
MUSTANG, when averaged over all 402 families (Fig. 3).

By design, the accuracy of SALIGN multiple structure
alignments depends on the accuracy of pairwise alignments.
Pairwise alignments implied by multiple alignments are on
average less accurate than those constructed directly, in
agreement with a previous study (Raghava et al., 2003). To
elaborate, we calculated the quality score for each pairwise
alignment implied by the 402 SALIGN multiple alignments
(without realignment). These scores were then compared
against alignments obtained from using SALIGN on the
pairs alone (Fig. 4). In 5992 cases (from 347 of the 402
families), the pairwise alignments implied by the SALIGN
multiple alignments are worse than the corresponding
SALIGN pairwise alignments. Interestingly, there are also
1353 cases (from 309 of the 402 families) where a pairwise
alignment implied by the SALIGN multiple alignment
improves upon the quality score of the direct pairwise align-
ment by SALIGN.

Finally, the utility of multiple structure alignments for
comparative modeling was investigated. For a given
HOMSTRAD family, a multiple alignment was constructed
using SALIGN as detailed above. The last sequence in the
alignment was arbitrarily designated as the target sequence
for comparative modeling, whereas the other structures were
the templates. Models of the target were then built with the
standard ‘automodel’ protocol in MODELLER using (i) all
templates simultaneously and (ii) each of the templates indi-
vidually. A model was also constructed using multiple tem-
plates with the HOMSTRAD alignment. The accuracy of

Table I. Gap penalty and dynamic programming matrix offset values

explored at each alignment stage

Feature weights Alignment
stage

Alignment
type

Parameter values explored

(1, 0, 0, 0, 1, 0) Initial Local 1D gap opening 2150,
2100, 250, 0
1D gap extension 250, 0
Matrix offset varied from
23 to 0 in steps of 0.3

(0, 0, 0, 0, 1, 0) Initial Local 1D gap opening varied
from 0 to 2.2 in steps of
0.3
1D gap extension varied
from 0.1 to 2.3 in steps of
0.3
Matrix offset varied from
23 to 0 in steps of 0.3

(0, 1, 0, 0, 0, 0) Final Global 3D gap opening 0, 1, 2, 3
3D gap extension 2, 3, 4,
5

The alignment procedure is iterative, exploring multiple values for both the
creation of initial alignments and their final refinement.

Fig. 2. Comparison of the accuracies of 1204 pairwise alignments obtained from SALIGN with those from TM-align and CE. Alignment accuracy is plotted
for all three methods as the number of structurally equivalent Ca positions at a cutoff of 3.5 Å.
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each model was assessed by SO3.5 with respect to the native
structure. For example, when applied to the ‘hormone_rec’
HOMSTRAD family, the model of 1a28A using all four of

the other structures (1lbdA, 2lbdA, 1prgA and 3ertA)
resulted in 223 equivalent positions with a Ca RMSD error
of 1.64 Å. In contrast, the model built using the
HOMSTRAD multiple alignment resulted in only 203 equiv-
alent positions with a Ca RMSD error of 1.50 Å. When
building models using the templates individually, 1lbdA,
2lbdA, 1prgA and 3ertA yielded 158 (Ca RMSD 1.67 Å),
182 (1.64 Å), 184 (1.77 Å) and 193 (1.44 Å) equivalent pos-
itions, respectively. In this example, no separate procedure
was used to align the target with template(s). The target–
template alignments were those implied by the SALIGN and
HOMSTRAD multiple structure alignments, to focus on the
impact of using multiple versus single templates without
considering sequence–structure alignment errors.

Discussion

We have described and tested a dynamic programming
method to construct multiple structure alignments (SALIGN).
The scoring function is a sum of an affine gap penalty and
distance terms dependent on various sequence and structure
features. These features include amino acid residue type,
residue position, residue accessible surface area, residue
secondary structure state and the conformation of a short
segment centered on the residue. SALIGN can in principle
include other residue features in constructing the dynamic
programming scoring matrix (Sali and Blundell, 1990).

SALIGN was compared against TM-align and CE for pair-
wise alignment accuracy, and against HOMSTRAD and
MUSTANG for multiple alignment accuracy. These
state-of-the-art methods have been carefully benchmarked by
their authors against many other methods not assessed against
SALIGN in the current study (Holm and Sander, 1995; Kihara
and Skolnick, 2003; Guda et al., 2004; Ochagavia and Wodak,
2004; Shatsky et al., 2004; Ye and Godzik, 2005).

We showed that SALIGN performs comparably or better
than TM-align and CE on pairs of structures (Fig. 2).
SALIGN was then tested for its accuracy of multiple struc-
ture alignments over a data set of 402 HOMSTRAD structure
families with three or more structures. SALIGN outper-
formed HOMSTRAD and MUSTANG (in terms of quality
score) in 376 and 375 families, respectively. Of these,
SALIGN had quality scores that were more than 5% points
better in 159 and 161 cases, respectively. By the same
measure, SALIGN underperformed HOMSTRAD and
MUSTANG in only 10 and 12 families, respectively. Of
these, SALIGN underperformed HOMSTRAD and
MUSTANG by more than 5 points in two and three cases,
respectively; in all other underperforming cases, the quality
score difference was ,2 points. In the three relative failures
of SALIGN (the DEAD, PH and tRNA-synt_2b families),
the reason for poor accuracy can be attributed to one particu-
lar structure being misaligned in the multiple alignment in
each of the families. This problem could in principle be
fixed by a more exhaustive search over the parameter space
for the globally optimal alignment.

The conservation of the features across protein structure
families varies. SALIGN hence samples different linear com-
binations of feature distances to construct alignments
(Table I) because a certain linear combination that yields
optimal results for one family may not do so when applied to
a different family. For instance, the best initial multiple

Fig. 3. Comparison of the accuracies of multiple alignments obtained from
SALIGN with those from MUSTANG and HOMSTRAD. For 402
HOMSTRAD families with three or more members, the SALIGN quality
score is compared with those of HOMSTRAD and MUSTANG. SALIGN is
significantly more accurate than both alignment methods, improving the
quality score by 15% on average compared with HOMSTRAD and 14%
compared with MUSTANG.

Fig. 4. Comparison of SALIGN pairwise alignments with pairwise
alignments implied by multiple alignments. The quality score of each
pairwise alignment from all of the SALIGN multiple alignments is
compared against that of each SALIGN direct pairwise alignment.
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alignment for the HOMSTRAD family ‘igcon’ was obtained
using a linear combination of the residue type and local con-
formation features, whereas for the HOMSTRAD family
‘ghf18’, the best initial alignment was obtained when only
the residue local conformation measure was considered. If
only a single optimized set of parameters were used in gener-
ating the alignments, the quality score for approximately one
half of the alignments would be worse than that in
HOMSTRAD (data not shown). Clearly, using the quality
score to discern between alignments produced by different
parameter sets significantly improves the multiple alignment
accuracy. One single initial alignment may sample as many
as 720 different parameter values (Table I). The correspond-
ing increase in multiple alignment accuracy comes at a price
of computational time, e.g. an alignment of five 280-residue
structures may take up to 12 min of CPU time.

We illustrated the efficacy of using SALIGN as a tool to
align multiple templates in a comparative modeling exercise.
The sequence of 1a28A was chosen as the target sequence
with 1ldbA, 2ldbA, 1prgA and 3ertA serving as templates.
The model built using multiple templates gave the best
sequence coverage (223 residues at 1.64 Å Ca RMSD). No
single template could cover as many residues and produce
models that were as close to the native structure in terms of
RMSD error. The model built using the HOMSTRAD mul-
tiple alignment had a marginally better RMSD value of
1.50 Å, but covered 20 residues fewer.

Individual pairwise alignments implied by the multiple
alignment can be different from direct pairwise alignments.
For SALIGN, 5992 and 1353 implied pairwise alignments (out
of 8909) are slightly less accurate and slightly more accurate,
respectively, than the direct pairwise alignments (Fig. 4). The
accuracy of the implied pairwise alignments can be compro-
mised as a result of averaging structure features and distances
during combination of sub-alignments to form a multiple
alignment. Different strategies to combine sub-alignments may
need to be explored to further improve the accuracy of the
SALIGN multiple alignments. When an implied pairwise
alignment is more accurate than the direct pairwise alignment,
it is mostly because the parameters used in generating the
direct pairwise alignment (Table I) were suboptimal. A wider
search in the parameter space should help offset this discre-
pancy, at the cost of a longer computational time.

SALIGN is already used for the construction of the DBAli
database (Marti-Renom et al., 2001, 2007) to produce mul-
tiple structure alignments of its 11 605 structure families
(http://salilab.org/DBAli/ and http://sgu.bioinfo.cipf.es/).
Although we have focused here on the accuracy of multiple
structure alignments, the method can in principle also be
used to detect structural similarity in the first place. Our
immediate focus, however, has been the use of SALIGN to
generate multiple structure alignments for comparative mod-
eling. SALIGN also completes the alignment suite in
MODELLER, which now consists of different methods to
perform multiple sequence–sequence, sequence–structure
and structure–structure alignments. The corresponding web
server will be available soon at http://salilab.org/salign/.
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