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Abstract

Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of
environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and
increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have
increased resistance to Gram negative bacteria. We show that germline-deficient strains display increased resistance across
a broad range of pathogens including Gram positive and Gram negative bacteria, and the fungal pathogen Cryptococcus
neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C.
elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies
indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different
mechanisms that involve the activation of DAF-16.
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Introduction

Studies in a variety of species ranging from insects to mammals

have demonstrated that reproduction extracts a cost in terms of

lifespan [1,2]. Additional studies have linked successful reproduc-

tion with reductions in immunocompetence [3,4,5,6]. The

connection between reproduction and longevity has perhaps been

most thoroughly studied in the nematode Caenorhabditis elegans [7].

Lack of germline proliferation in C. elegans, either by laser ablation

of the germ cell precursors or by mutation, causes an increase in

lifespan [8,9]. This lifespan extension is dependent on the FOXO

transcription factor DAF-16 [8,10,11]. The activity of DAF-16 is

tightly regulated by a wide variety of external stimuli and internal

control mechanisms. The insulin/PI3K/Akt pathway has been

shown to control longevity by regulating DAF-16 [12]. Interest-

ingly, lack of C. elegans germline results in an extended lifespan that

requires intestinal DAF-16 [10]. This lifespan extension observed

in germline-ablated nematodes appears to only involve DAF-16

and otherwise be largely independent of the insulin/PI3K/Akt

pathway [7].

In addition to its role in longevity, DAF-16 has also been shown

to play a role in regulating C. elegans immunity. Nematodes that

overexpress DAF-16 or have increased activation of DAF-16

through the mutation of daf-2 exhibit enhanced resistance to a

variety of pathogens [13,14,15,16,17]. In addition, several DAF-16

transcriptional targets appear to play key roles in antimicrobial

defense [18]. Recent studies suggest that the germline may play a

role in modulating DAF-16-mediated immune responses in the

nematode [19,20]. Epistasis analysis indicates that daf-16 muta-

tions completely or partially suppress the enhanced resistance to

Gram negative pathogens Pseudomonas aeruginosa and Serratia

marcescens of germline-deficient animals [19,20,21].

Here, we show that the germline-deficient mutant glp-1, which

has a mutation in a Notch family receptor critical for germline

development [22,23], exhibits enhanced resistance to a wide array

of microbes, including the Gram positive pathogen Enterococcus

faecalis, the Gram negative pathogen Salmonella enterica, and the

fungal pathogen Cryptococcus neoformans. Our studies show that glp-4

mutants are more resistant to E. faecalis, P. aeruginosa, and C.

neoformans, but unlike the germline-deficient mutant glp-1, glp-4

mutants are not more resistant to S. enterica and exhibit wild-type

lifespan when grown on live E. coli, the usual food of C. elegans in

the laboratory. When grown on killed E. coli, the lifespan of glp-4

mutants is significantly longer than that of wild-type animals,

suggesting that glp-4 animals may be hypersusceptible to certain

microorganisms. Our studies suggest that germline-deficient

mutants exhibit enhanced immune responses against microorgan-

isms using common and different mechanisms.

Results

glp-4 and glp-1 mutants exhibit different responses to
pathogen infections

We analyzed the survival of glp-4 and glp-1 mutant nematodes

when infected with a wide array of pathogens, including the Gram

negative bacteria P. aeruginosa and S. enterica, the Gram positive

bacterium E. faecalis, and the fungal pathogen C. neoformans. glp-1

mutants exhibit enhanced resistance to all these pathogens
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(Figure 1), which suggests that the loss of the germline leads to an

increase in the general immune function of the nematode. As the

increased longevity and pathogen resistance observed in glp-1

mutants has been attributed to the absence of the germline and not

a specific function of the glp-1 gene [8,20], one might expect other

germline-deficient mutants to show a similar lifespan extension

and pattern of broad-range resistance to pathogen infection.

However, glp-4 mutants failed to show enhanced resistance to S.

enterica (Figure 1C) while exhibiting enhanced resistance to P.

aeruginosa, E. faecalis, and C. neoformans (Figures 1B, 1D, and 1E). In

addition, the longevity of glp-4 mutants was comparable to that of

N2 wild-type animals when grown on E. coli (Figure 1A).

It is possible that the enhanced resistance to pathogens observed

in glp-1 and glp-4 mutants was simply due to lack of matricide.

Matricide is a process in which eggs hatch inside the still living

nematode, ultimately leading to the death of the adult animal.

Figure 1. Germline-deficient mutants exhibit different responses to pathogens. Wild-type, glp-4(bn2) mutant, and glp-1(e2141) mutant
nematodes were exposed to (A) E. coli, (B) P. aeruginosa, (C) S. enterica, (D) E. faecalis, and (E) C. neoformans. Significant differences were found when
wild-type nematodes were compared to glp-1(e2141) mutants on all five pathogens (P,0.0001). Significant differences were also found when wild-
type nematodes were compared to glp-4(bn2) mutants on P. aeruginosa (P,0.0001), E. faecalis (P,0.0001), and C. neoformans (P,0.0001) but not on
E. coli (P = 0.9433) nor S. enterica (P = 0.1485). 160–300 nematodes were used for each condition.
doi:10.1371/journal.pone.0011777.g001
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Often the rates of matricide are much higher in sicker nematodes,

and consequently matricide can be a factor in survival assays. As

glp-4 and glp-1 mutants lack a fully functional germline, they do

not suffer any matricide. To test whether the increased resistance

observed in glp-4 and glp-1 mutants was due to a lack of matricide,

we compared the survival of N2 wild-type, glp-4 mutant, and glp-1

mutant nematodes to that of fer-1 and fer-15 mutant nematodes.

Both fer-1 and fer-15 do not suffer from matricide due to the lack of

fertilization since their sperm production is affected [24,25]. As

shown on Figure 2A, fer-1 and fer-15 mutants are more resistant to

C. neoformans, a pathogen that induces very high rates of matricide.

The survival of fer-1 and fer-15 mutants is similar to that of N2

wild-type animals when grown on E. coli (Figure 2B), indicating

that their enhanced resistance to C. neoformans is a consequence of

lack of matricide rather than enhanced overall longevity.

However, since fer-1 and fer-15 mutants are not as resistant to C.

neoformans infection as glp-4 or glp-1 mutants (Figure 2A), lack of

matricide cannot account for the enhanced resistance of glp-4 or

glp-1 mutants.

glp-4 mutant nematodes are susceptible to live E. coli
Consistent with the idea that the enhanced resistance to

pathogen infection of germline-deficient mutants is not simply

due to a lack of matricide, the increase in resistance to P. aeruginosa

exhibited by glp-1 mutants has been found to be due to increased

intestinal DAF-16 activity [20]. Additionally, DAF-16 activation

has been shown to be critical in promoting longevity [8,9,26].

Typically, these longevity studies have been performed by growing

the nematodes on lawns of live E. coli [8,9,26]. By these standards,

it appears that glp-4 mutants do not exhibit an increase in longevity

as they do not live longer on E. coli (Figure 1A).

To further study the lifespan of germline-deficient mutants, we

performed survival assays using both glp-4 and glp-1 mutants

grown on heat-killed E. coli. Under these conditions, we found that

both glp-4 and glp-1 mutant nematodes live considerably longer

than N2 wild-type animals (Figure 2C). This suggests that both

glp-1 and glp-4 mutant strains have increased longevity and that

glp-4 mutants are susceptible to live E. coli, as they do not live

proportionally as long on live E. coli as they do on heat-killed E.

coli. This also provides additional support that the lifespan

extension observed in glp-1 and glp-4 mutants on C. neoformans is

not due merely to the lack of matricide as very little matricide

occurs on heat-killed E. coli.

DAF-16 activity is required for the enhanced longevity
and resistance to C. neoformans of glp-4 and glp-1
mutants

To determine the involvement DAF-16 may have in the

longevity of glp-4 and glp-1 mutants and their immune function

against C. neoformans, we used RNAi to decrease DAF-16.

Consistent with previous observations [15], daf-16 RNAi has no

effect on the resistance to C. neoformans of N2 wild-type animals

(Figure 3A). However, daf-16 RNAi inhibits the enhanced

resistance to C. neoformans of both glp-4 and glp-1 mutants

(Figure 3A). Inhibition of DAF-16 by RNAi also shortens the

lifespan of glp-4 and glp-1 grown on lawns of both live and killed E.

coli (Figures 3B and 3C), suggesting that DAF-16 function is

required for the increased longevity of both glp-1 and glp-4

mutants.

These results, together with the observation that DAF-16

RNAi does not seem to affect the immune function of the

nematode unless the animals exhibit increased levels of DAF-16

activation [14,15], suggest that glp-1 and glp-4 mutants may have

Figure 2. The increased resistance germline-deficient mutants
glp-1 and glp-4 is independent of effects on matricide. (A) Wild-
type, glp-4(bn2) mutant, glp-1(e2141) mutant, fer-1(hc1) mutant, and fer-
15(hc15) mutant nematodes were exposed to C. neoformans. When
compared to wild-type nematodes, all four mutants showed significant
differences (P,0.0001). Significant differences were also found when glp-
4(bn2) mutants or glp-1(e2141) mutants were compared to fer-1(hc1)
(P,0.0001; P,0.0001 respectively) or to fer-15(hc15) (P,0.0001;
P,0.0001 respectively) mutants. (B) Wild-type, glp-4(bn2) mutant, glp-
1(e2141) mutant, fer-1(hc1) mutant, and fer-15(hc15) mutant nematodes
were exposed to E. coli. When compared to wild-type nematodes, only
glp-1(e2141) mutants showed significant increases in resistance
(P,0.0001). (C) Wild-type, glp-4(bn2) mutant, and glp-1(e2141) mutant
nematodes were placed on lawns of heat-killed E. coli and survival was
measured. When compared to wild-type nematodes, both glp-4(bn2)
mutants (P,0.0001) and glp-1(e2141) mutants (P,0.0001) showed
significant differences. 120–300 nematodes were used in each condition.
doi:10.1371/journal.pone.0011777.g002

Germline and Immunocompetence

PLoS ONE | www.plosone.org 3 July 2010 | Volume 5 | Issue 7 | e11777



high levels of DAF-16 activity. To measure the level of DAF-16

activation, we crossed both glp-1 and glp-4 mutant nematodes to a

strain containing a transgene that creates a DAF-16::GFP fusion

protein under the regulation of the intestinal-specific promoter of

gly-19 [27]. We chose to utilize a DAF-16::GFP fusion protein

regulated by an intestinal promoter since DAF-16 is specifically

activated in the intestinal cells of glp-1 mutants and that activa-

tion is required for lifespan extension in glp-1 mutants [10,11,26].

We then scored nematodes as having predominately nuclear

localization of DAF-16 (Figure 4A) or as diffusely cytoplasmic

(Figure 4B). We found that although fewer glp-4 mutants showed

DAF-16 intestinal activation than glp-1 mutants, glp-4 mutant

animals were significantly more likely to exhibit DAF-16

activation in the intestinal cells than N2 wild-type animals

regardless of whether they were exposed to E. coli or C. neoformans

(Figure 4C). These results indicate that intestinal DAF-16 is

activated in both germline-deficient mutants regardless of

pathogen exposure.

Figure 3. Increased resistance and longevity in germline-deficient mutants requires DAF-16. Wild-type, glp-4(bn2) mutant, and glp-
1(e2141) mutant nematodes grown on E. coli carrying a vector control plasmid or expressing daf-16 dsRNA were exposed to (A) C. neoformans, (B) E.
coli, or (C) heat-killed E. coli. Significant differences were found when glp-4(bn2);daf-16(RNAi) worms were compared to vector control-treated glp-
4(bn2) nematodes on C. neoformans (P,0.0001), E. coli (P,0.0001), and heat killed E. coli (P,0.0001). Likewise, significant differences were found
when glp-1(e2141);daf-16(RNAi) nematodes were compared to vector control-treated glp-1(e2141) nematodes on C. neoformans (P,0.0001), E. coli
(P,0.0001), and heat-killed E. coli (P,0.0001). When wild-type nematodes were compared to daf-16(RNAi) animals, significant differences were seen
on E. coli (P,0.0237) and heat-killed E. coli (P = 0.0122) but not on C. neoformans (P = 0.7084). 60–300 nematodes were used for each condition.
doi:10.1371/journal.pone.0011777.g003
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glp-1 RNAi enhances longevity and pathogen resistance
in wild-type animals but not in glp-4 animals

Decreasing glp-1 gene expression via RNAi in N2 wild-type

nematodes enhances resistance to C. neoformans when compared to

N2 wild-type animals treated with vector control (Figure 5A).

However, glp-1 RNAi does not appear to have an effect on the

resistance to C. neoformans in a glp-4 mutant background

(Figure 5A). In addition, glp-1 RNAi significantly enhances

survival in N2 wild-type animals but not in glp-4 mutants

(Figure 5B). These assays were also performed by treating glp-1

nematodes with glp-1 RNAi to serve as a control for any

extraneous effects of the RNAi treatment; we observed no

difference in survival on either E. coli or C. neoformans between

glp-1 mutants treated with glp-1 RNAi or those treated with vector

control (data not shown). As shown in Figures 3A, 3B, and 3C,

glp-4 animals are sensitive to daf-16 RNAi. In addition, RNAi-

mediated inhibition of ELT-2, which is a key transcription factor

required for immunity against different microorganism including

Cryptococcus neoformans [15], suppresses the enhanced resistance to

C. neoformans of glp-4 animals (Figure S1).

Taken together, our results indicate that both glp-1 and glp-4

mutations exhibit higher DAF-16 activity due to the lack of

inhibition by the germline and that immunity against certain

microorganisms may be affected in glp-4 mutants by germline-

independent mechanisms (Figure 5C). Both, glp-1 and glp-4

mutants grown at the restrictive temperature are severely depleted

in germ cells as they do not contain more than approximately 15

germ nuclei, in contrast to the ,1000 present in the single arm of

the adult germline of wild-type animals. In glp-1 mutants, germ

cells that would normally remain in mitosis and continue to divide,

enter meiosis leaving the animals with 5 to 15 germ cells that

resemble sperm cells [22,28]. The glp-4 mutants have an average

of 12 germ cells, which appear to be arrested at prophase during

the mitotic cycle [29]. Thus, it seems unlikely that subtle variations

in the germline between the glp-1 and glp-4 mutants may account

for differences in resistance to certain microorganisms. Like glp-1

mutants, germline-deficient mes-1 mutants also exhibit an

increased lifespan when grown on live E. coli [8,19], indicating

that the absence of the germline increases longevity. The reduced

resistance to E. coli and S. enterica of glp-4 mutants suggests that the

mutation may affect a germline-independent mechanism involved

in the regulation of innate immunity.

Discussion

The development of the germline in C. elegans extracts a cost in

terms of the longevity and immune function; previous work had

demonstrated this cost in terms of increased resistance to P.

aeruginosa and S. marcescens for animals lacking a germline

[8,9,19,20]. Our results indicate that the increased immunity of

the germline-deficient mutants is indiscriminate as the animals

without germlines have an enhanced resistance to a wide range of

pathogens including Gram positive bacteria, Gram negative

bacteria, and fungi.

It remains unclear exactly how interplay between the repro-

ductive system and immune function occurs in wild-type

nematodes with a germline. A new study, though, has demon-

strated differing levels of expression of the gene gld-1 when exposed

to different species of bacteria expressed in grassland soil [30].

GLD-1 functions to limit proliferation of germ cells [31,32], and as

such, it is situated to help integrate signals from the nematode,

including immune responses, and control reproduction [30].

Additionally, since targets of DAF-16 have been shown to suppress

gld-1-induced tumors [33,34], it seems likely that immune

responses may help influence reproduction [30]. Further support

for the interaction of immunity and reproduction can be seen in

response to S. enterica infection, which induces the programmed

cell death pathway and germ cell apoptosis [35]. These results,

combined with results demonstrating that the nervous system plays

a key role in modulating C. elegans immunity [36,37,38,39], suggest

that C. elegans utilizes multiple organ systems to form an integrated

response to pathogens across the whole organism.

The enhanced longevity and pathogen-resistance of daf-2 or

germline-deficient mutants require DAF-16 [8,9,10,11,12,14,16].

However, DAF-16 inhibition by mutation or RNAi in a wild-type

background does not affect the susceptibility of the nematodes to

numerous pathogens, including P. aeruginosa [19,20], E. faecalis

[14], and C. neoformans [15]. A recent study indicates that DAF-16

plays a role in maintaining a basal level of immunity, but that it

does not appear to be induced by pathogens; instead other

immune signaling pathways appear to be induced by pathogen-

exposure [40]. Thus, a potential explanation for the shortened

lifespan of daf-16(RNAi) nematodes on both live and heat-killed E.

coli but not on other microorganisms is that the presence of certain

microorganisms activates other signaling pathways that help

extend the survival lifespan of the nematode.

Previous studies have suggested that increased activation of

DAF-16 was critical for the enhanced resistance to P. aeruginosa of

germline-deficient animals [20,21]. However, it has recently been

suggested that DAF-16 may not be entirely responsible for the

enhanced immunity observed in germline-deficient animals [19].

In this study, the resistance to P. aeruginosa-mediated killing of glp-1

mutants was comparable to that of glp-1;daf-16 double mutants,

when the bacterial lawns were grown at room temperature instead

of at 37uC [19]. It remains to be studied why daf-16 mutations

suppress the enhanced resistance to P. aeruginosa-mediated killing of

glp-1 only when bacterial lawns are grown under certain conditions

[19].

It appears that DAF-16 plays a key role in defense response

against C. neoformans in germline-deficient mutants. In wild-type

nematodes, about one third of the animals exhibited DAF-16

activation after 24 hour exposure to E. coli as adults. This figure

drops by approximately 10-fold if the animals are exposed to C.

neoformans for 24 hours instead of E. coli (Figure 4C). This drop in

DAF-16 activation is not observed in the two germline-deficient

nematodes we tested, the glp-1 and glp-4 mutants. It is unclear

how or why the drop in DAF-16 activation occurs in wild-type

nematodes. One possibility is that C. neoformans is able to

Figure 4. The germline-deficient mutants glp-1 and glp-4 have higher levels of DAF-16 activation than wild-type animals regardless
of pathogen exposure. (A) A glp-1(e2141) mutant nematode expressing a daf-16:gfp transgene under control of Pgly-19 after exposure to E. coli. (B)
A wild-type nematode expressing a daf-16:gfp transgene under control of Pgly-19 after exposure to E. coli. (C) Wild-type, glp-4(bn2) mutant, and glp-
1(e2141) nematodes expressing transgenic DAF-16:GFP under control of Pgly-19 were exposed to either E. coli or C. neoformans and categorized as
predominately nuclear or cytoplasmic as described in Section 3.4.8. Significant differences were found when glp-4(bn2) mutants were compared to
wild-type on both E. coli (P = 0.0003) and C.neoformans (P,0.0001). Likewise, significant differences were also found when glp-1(e2141) mutants were
compared to wild-type on both E. coli (P,0.0001) and C. neoformans (P,0.0001). No significant differences were found when comparing the two glp-
4(bn2) groups (P = 0.4363) nor with the two glp-1(e2141) groups (P = 0.7802), but there were significant differences in DAF-16 localization between the
wild-type nematodes on E. coli and C. neoformans (P = 0.0002).
doi:10.1371/journal.pone.0011777.g004
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down-regulate DAF-16 expression in wild-type nematodes, but

that this process is avoided in the germline-deficient nematodes.

Further studies will be required to understand the mechanisms by

which the glp-4 mutation may affect DAF-16-dependent and

–independent immune responses against pathogen infection.

Materials and Methods

Microbial and Nematode Strains
The following strains were used: Escherichia coli OP50 [41],

Salmonella enterica serovar typhimurium SL1344 [42], Enterococcus

faecalis OG1RF [43], Cryptococcus neoformans H99 [44], and

Pseudomonas aeruginosa PA14 [45]. C. elegans strains utilized were

wild-type N2, glp-1(e2141), glp-4(bn2), fer-1(hc1), fer-15(hc15). These

strains were originally obtained from the Caenorhabditis Genetics

Center and were maintained as hermaphrodites at 15uC, grown

on modified NG agar plates and fed with E. coli strain OP50 as

described [41].

Transgenic Animals
The Pgly-19:daf-16:gfp transgenic animal was obtained from the

Wolkow laboratory [27]. A gcy-7:gfp transgene, which is expressed

in one or two head neurons, was also present in this strain as a co-

Figure 5. glp-1 RNAi enhances longevity and pathogen resistance in wild-type animals but not in glp-4 animals. Wild-type and glp-
4(bn2) mutant nematodes were grown on E. coli carrying a vector control plasmid or expressing glp-1 dsRNA were exposed to (A) C. neoformans or
(B) E. coli. When compared to wild-type, glp-1(RNAi) showed significant differences on both C. neoformans (P,0.0001) and E. coli (P,0.0001). No
significant differences were observed when glp-4(bn2) mutants were compared to glp-4(bn2);glp-1(RNAi) animals on either C. neoformans (P = 0.2257)
or E. coli (P = 0.2525). 240–420 nematodes were used for each condition. (C) A proposed model indicating the role of glp-4 in regulating C. elegans
immunity. In this model, knocking out either glp-1 or glp-4 function leads to failure of the germline to develop. This in turn removes the inhibition of
intestinal DAF-16, leading to increased immunity and longevity. However, the glp-4 mutant has either a separate role in modulating immunity to
specific pathogens which is also lost when glp-4 is knocked out or is important in the activation of intestinal DAF-16 leading to less DAF-16 activation
and a reduction in immune function.
doi:10.1371/journal.pone.0011777.g005
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injection marker (Wolkow, CA personal communication). This

strain was then backcrossed to our laboratory’s strain of wild-type

N2 animals three times to standardize the genetic background.

The glp-1 and glp-4 strains were generated by crossing the

backcrossed transgenic animal Pgly19::daf-16::gfp to the glp-1 and

glp-4 strains in our laboratory. Results of individual experiments

can be found in Table S1.

C. elegans killing assays
Cultures for the killing assays were grown in Luria-Bertani (LB)

broth, except for C. neoformans H99 and E. faecalis OG1RF which

were grown in yeast peptone dextrose (YPD) and brain-heart

infusion (BHI) broth, respectively. All pathogens were grown at

37uC except C. neoformans, which was grown at 30uC. The

pathogen lawns for the C. elegans killing assays were prepared by

spreading 10–20 ml of an overnight culture of the bacterial strains

on modified NG agar medium (0.35% peptone) in 3.5 cm or 6 cm

diameter Petri plates. C. neoformans and E. faecalis were plated on

BHI with 50 mg/ml gentamycin. Plates were incubated overnight

before seeding them with young adult animals. These young adult

animals were generated by placing gravid adults on NGM plates

with lawns of E. coli OP50 and letting them lay eggs at 15uC for 6–

10 hours. The gravid adults were then removed, and the eggs on

the plate were allowed to develop at 25uC for 2.5 days to produce

the young adults. The killing assays were performed at 25uC and

animals were transferred once a day to fresh plates, until no more

progeny were evident. Additional transfers were done after that

point as needed to replenish food sources and to prevent the plates

from drying out. The germline-deficient mutants were transferred

at the same time as the N2 wild-type to maintain consistency.

Animals were scored at the times indicated and were considered

dead upon failure to respond to touch.

C. elegans aging assays
E. coli OP50 was cultured in 50 ml of LB broth overnight at

37uC. The bacteria were then spun down and resuspended in 5 ml

of LB broth. The E. coli were then heat-killed by placing the

resuspended culture at 70uC for 3 hours. Twenty ml of this culture

of heat-killed bacteria were then spread on modified NGM plates

containing 0.35% peptone, 100 mg/ml 5-fluorodeoxyuridine

(FUdR) [46], and 50 mg/ml gentamycin and allowed to incubate

at 37uC overnight. Young adult animals were seeded onto these

plates, and scored as indicated previously.

RNA interference
RNA interference was used to generate loss-of-function RNAi

phenotypes by feeding nematodes with E. coli strain HT115(DE3)

expressing dsRNA that is homologous to a target gene [47,48].

Briefly, E. coli with the appropriate vectors were grown in LB broth

containing ampicillin (100 mg/ml) at 37uC overnight. RNAi plates

were then generated by spreading these E. coli onto NGM plates

containing 100 mg/ml ampicillin and 10 mM Isopropyl b-D-

thiogalactoside (IPTG) to induce dsRNA expression, and the E.

coli were allowed to grow on these plates overnight at 37uC.

L4 animals were placed on RNAi plates generated as described

above and were allowed to develop into gravid adults at 15uC.

Once these animals were gravid, they were transferred to fresh

RNAi plates where they were allowed to lay eggs for 6–10 hours at

15uC. The gravid adults were then removed, and the eggs and

plates were transferred to 25uC. The eggs were allowed to develop

at 25uC for 2.5 days at which time they were seeded onto

experimental plates and used as described above. unc-22 RNAi was

used as a positive control for the creation of loss-of-function

phenotypes.

Statistical analyses
Animal survival was plotted as a staircase curve using the

PRISM (version 4.00) computer program. Survival curves are

considered significantly different than the control when P values

are less than 0.05. Prism uses the product limit or Kaplan-Meier

method to calculate survival fractions and the logrank test, which

is equivalent to the Mantel-Heanszel test, to compare survival

curves.

DAF-16 localization assays
Experimental plates featuring lawns of E. coli OP50 or C.

neoformans H99 were generated as described in the C. elegans killing

assays subsection. The transgenic animals expressing Pgly-19::daf-

16::gfp were generated as described earlier, and young adults were

generated as described in the C. elegans killing assays subsection.

These young adult transgenic animals were then transferred to the

experimental plates and left at 25uC for 24 hours. The animals

were then visualized using a Leica MZ FLIII fluorescence

stereomicroscope where they were categorized as predominately

nuclear if at least five distinct nuclei were observed (as seen in

Figure 4A) or predominately cytoplasmic (as seen in Figure 4B) as

described in Berman, et al. (2006). Eight to ten plates of nematodes

were scored over multiple, independent days, and the percentage

of nematodes that were predominately nuclear was determined for

each plate. Means and standard deviations were then calculated

for each condition. Different conditions were compared using a

two-tailed Mann-Whitney test (calculated by PRISM software)

with a p,0.05 being considered significant.

Supporting Information

Figure S1 glp-4 mutant nematodes respond to elt-2 RNAi. Wild-

type and glp-4(bn2) mutant nematodes grown on E. coli carrying a

vector control plasmid or expressing elt-2 dsRNA were exposed to

(A) C. neoformans or (B) E. coli. Significant differences were found

when glp-4(bn2);elt-2(RNAi) worms were compared to vector

control-treated glp-4(bn2) nematodes on C. neoformans (P,0.0001)

and E. coli (P = 0.0004). 20–120 nematodes were used for each

condition.

Found at: doi:10.1371/journal.pone.0011777.s001 (0.60 MB TIF)

Table S1 Individual trial data from killing assays.

Found at: doi:10.1371/journal.pone.0011777.s002 (0.03 MB

XLS)
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