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Abstract

Background: Constructing and modeling the gene regulatory network is one of the central themes of systems biology. With
the growing understanding of the mechanism of microRNA biogenesis and its biological function, establishing a microRNA-
mediated gene regulatory network is not only desirable but also achievable.

Methodology: In this study, we propose a bioinformatics strategy to construct the microRNA-mediated regulatory network
using genome-wide binding patterns of transcription factor(s) and RNA polymerase II (RPol II), derived using chromatin
immunoprecipitation following next generation sequencing (ChIP-seq) technology. Our strategy includes three key steps,
identification of transcription start sites and promoter regions of primary microRNA transcripts using RPol II binding
patterns, selection of cooperating transcription factors that collaboratively function with the transcription factors targeted
by ChIP-seq assay, and construction of the network that contains regulatory cascades of both transcription factors and
microRNAs.

Principal Findings: Using CAMDA (Critical Assessment of Massive Data Analysis) 2009 data set that includes ChIP-seq data
on RPol II and STAT1 (signal transducers and activators of transcription 1) in HeLa S3 cells in control condition and with
interferon c stimulation, we first identified promoter regions of 83 microRNAs in HeLa cells. We then identified two potential
STAT1 collaborating factors, AP-1 and C/EBP (CCAAT enhancer-binding proteins), and further established eight feedback
network elements that may regulate cellular response during interferon c stimulation.

Conclusions: This study offers a bioinformatics strategy to provide testable hypotheses on the mechanisms of microRNA-
mediated transcriptional regulation, based upon genome-wide protein-DNA interaction data derived from ChIP-seq
experiments.
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Introduction

MicroRNAs are small non-coding RNAs known to regulate the

target transcripts by promoting mRNA degradation and suppressing

translation [1,2]. To date, several hundred precursor microRNAs

(pre-microRNAs) and mature microRNAs have been annotated in

several mammalian genomes [3]. Investigating the microRNA-

mediate regulatory network is important in understanding transcrip-

tional and post-transcriptional regulatory mechanisms through which

cells respond to certain biological stimulation. During the past

decades, it has been reported in several studies that transcription

factors and microRNAs form regulatory circuits, where transcription

factors regulate microRNA transcription, which in turn controls the

expression levels of transcription factors post-transcriptionally

[4,5,6,7]. Several studies also reported strategies in identifying core

promoters of microRNAs through sequence features [8,9] or

chromatin marks [10].

A combination of high throughput technologies and bioinfor-

matics analysis provides important means in generating a testable

hypothesis for mechanistic study. In recent years, chromatin

immunoprecipitation following next generation sequencing tech-

nology (or ChIP-seq) has been widely used to profile the binding

patterns of DNA binding proteins in a genome-wide scale,

including transcription factors [11,12,13], histone marks [14,15],

and RNA polymerase II [11,14,16]. These provide unprecedented

information in understanding complicated mechanisms of regu-

lating gene expression. In this study, we report a bioinformatics

strategy in identifying the microRNA-mediate regulatory network
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from ChIP-seq-dervied genome-wide binding data on RPol II and

transcription factor(s). We applied this strategy to the ChIP-seq

data provided in the CAMDA (Critical Assessment of Massive

Data Analysis) 2009 challenging data set [11], which includes

ChIP-seq data on RPol II in HeLa S3 cells, and ChIP-seq data on

a transcription factor STAT1 (signal transducers and activators of

transcription-1) in the same cell line with interferon c stimulation.

Interferon c is a cytokine that is critical for cellular immune

response against bacterial and viral infections [17]. Cellular

response to interferon c is known to activate the JAK (Janus family

kinase)-STAT signaling pathway to control transcription of target

genes via specific response elements [18]. Several recent studies

reported that microRNAs are involved in the interferon-induced

cellular response through targeting STAT1 and/or its co-factors

[19,20,21]. In this study, we design a bioinformatics strategy that

systematically predicts such relationship based on high throughput

functional genomics data. Using RPol II ChIP-seq data, we

identified active promoter regions of 83 microRNAs in HeLa cells,

of which, 41 were directly targeted by the STAT1 binding sites.

We have also identified 8 potential feedback relationships

involving STAT1-targeting microRNAs, interferon c gene,

STAT1, or/and AP-1 binding proteins, together with many

potential incoherent feed-forward loops. This strategy provides

important testable hypotheses for further mechanistic understand-

ing of cellular immune response to interferon c treatment.

Results

In order to understand the role of the microRNA-mediate

regulatory network in interferon c – stimulated HeLa cells, we

conducted bioinformatics analysis of the RPol II and STAT1

ChIP-seq data provided by the CAMDA 2009 challenging data set

[11]. Our analysis includes three major steps: (1) determining

promoter regulatory regions for intergenic microRNAs in HeLa

cells; (2) identifying transcriptional co-factor(s) that jointly work

with STAT1; and (3) constructing potential regulatory network

motifs that are involved in microRNA-mediated cell response.

Determining promoter regulatory regions for intergenic
microRNAs

In this study, we indentified promoter regions of intergenic

microRNAs in HeLa cells using the RPol II ChIP-seq data

provided by the CAMDA 2009 challenging data set [11]. By

assuming that RPol II binding distribution around the transcrip-

tion start sites (TSS) is similar for microRNAs and protein coding

genes, our workflow includes three components [22], 1) modeling

binding patterns of RPol II around TSS of highly expressed

protein-coding genes, 2) evaluating performance of the model, and

3) predicting promoter regions upstream of annotated microRNAs

using the inferred model. In the first step, highly expressed genes

were selected based upon microarray experiment using Affymetrix

platform (GEO number: GSE3051 [23]). Following a strategy

similar to what we did previously [22], we focused only on the

genes whose transcript lengths are greater than 10,000-bp and no

other genes are present within 10,000-bp of their TSS. This

analysis resulted in identification of 4,120 expressed genes and

2,682 unexpressed genes in HeLa cells, based on the absent and

present calls using the Affymetrix Microarray SuiteH, version 5.0

[24]. To evaluate the predictive power of our model to identify

active promoters in HeLa cells using provided RPol II ChIP-seq

data, we randomly selected 1/4 of expressed genes to train our

model. The remaining genes, both expressed and non-expressed,

were used as test sets. The area under the curve (AUC) in the

Receiver Operator Characteristic (ROC) reached 0.86 in

differentiating all the expressed genes and unexpressed genes

(Figure 1), suggesting the excellent predictive power of our

strategy. We further divided the expressed gene into three

categories based on their expression levels (low expression,

medium expression and high expression), of which each category

contains the same number of genes. The result of this analysis

(Figure 1) clearly demonstrates that the prediction accuracy of our

model is higher for the genes that are highly expressed.

We obtained annotations of 685 human mature or pre-

microRNAs from the miRBase microRNA sequence database

(version 11.0, [3]). Among them, 419 intergenic microRNAs

(located between protein-coding genes) were used for promoter

identification. Using the model parameters estimated based on

RPol II binding patterns around the transcription start sites of

protein coding genes, we indentified 83 active microRNA

promoters in HeLa cells (with false discovery rate #0.2,

Supplementary Table S1). The median length of regulatory

region was 1,476-bp, with longest and shortest widths of 4,989-bp

and 397-bp, respectively (Figure 2A). These regions are believed to

be around transcription start sites of pri-microRNA, which may be

hundreds or thousands of nucleotides in length and contain one or

more microRNA stem loops; pri-microRNAs are further processed

to pre- and then to mature microRNA forms [25,26]. The

distances between the identified TSS and their corresponding

mature or pre-microRNA also differ in a great deal, ranging from

200 to 10,000-bp, with median distance around 3,600-bp

(Figure 2B).

We further examined the sequence features of identified

promoter regions, including their conservation levels across

evolution and their relationship with annotated CpG islands.

We observed high GC content within or around the predicted

regulatory regions. Among the 83 predicted microRNA promot-

ers, 66 promoters (79.5%) were found to either contain or overlap

with annotated CpG islands [27]. This result is highly significant,

with P-value,10277 ; this p-value is calculated based on 10,000-

time permutation evaluating the possibility that 66 out of 83

randomly selected regions overlap or contain with CpG island. In

Figure 1. ROC curve for TSS prediction of protein coding
genes. The expressed genes were separated into three categories, high
(light blue), low (green), and medium expressed genes (yellow). The
three categories of expressed genes and non-expressed genes are
considered positive and negative sets, respectively. One fourth of the
genes are used as training data, while the remaining are used as the
test set. The ROC curve was generated using ROCR library in R project
(http://www.r-project.org).
doi:10.1371/journal.pone.0011794.g001
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addition, the identified promoter region and transcription start

site also demonstrated higher conservation (PhastCons scores

based on 17 species, including mammalian, amphibian, bird, and

fish [27]), compared to randomly selected regions (red dash line

in Figure 3).

Identifying collaborating transcription factor(s) that bind
to sites adjacent to the STAT1 binding region

Interferon stimulation may influence STAT1 binding by the

following three mechanisms, (1) interferon c treatment affects

STAT1 binding affinity in HeLa cells, which will potentially

change the genome-wide binding pattern of STAT1 protein; (2)

interferon treatment recruits other transcription factors interact-

ing with STAT1, which permits STAT1 association with DNA

through protein-protein interaction; and (3) interferon c changes

the DNA binding activity of collaborating transcription factors

that bind to sites adjacent to the STAT1 binding regions. To

explore the possibilities of these potential mechanisms, we

scanned ChIP-seq-derived STAT1 binding regions for enrich-

ment of 741 biologically-validated transcription factor binding

sites documented in the TRANSFAC database [28]. Position-

specific score matrices (PSSM) were used to calculate the

possibility of a specific transcription factor binding at one

genomic locus, as described previously [29]. This analysis selects

transcription factors whose binding sites are enriched in ChIP-

enriched regions compared to background promoters (see

Methods).

Twenty-six PSSMs representing binding sites of 12 transcription

factors are enriched in the STAT1 binding regions (Supplemen-

tary Table S2). Among these PSSMs, binding sites of 6

transcription factors can be found within the identified microRNA

regulatory regions (Supplementary Table S3). A binding instance

was defined if the matching score between its oligonucleotide

sequence and the PSSM of the transcription factor binding sites is

higher than a PSSM-specific cutoff, which was determined by the

lowest matching score where the density of positively identified

binding sites in the ChIP-enriched regions is 5 times more than the

one in the background sequences (or FDR of #20%). Figure 4A

demonstrates that for these 6 transcription factors, with the

matching score cutoff increases, the enrichment of the binding sites

in ChIP-selected regions also increases; the Y-axes in the figure

denotes the ratio of the density of specific binding sites in

randomly selected promoter regions to the ones in the ChIP-

enriched regions, or false discover rate (FDR); a smaller FDR

indicates higher enrichment.

Importantly, as expected, STAT1 binding sites are the

predominant elements enriched in STAT1 binding regions. This

serves as an important positive control that a combination of a

ChIP-seq experiment and our computational strategy is capable of

identifying the binding sites being targeted. In addition, the

sequence logos of the 6 transcription factors are shown in

Figure 4B. Clearly, the consensus motifs of BACH1, BACH2,

and NF-E2 are very similar to the core sites of AP-1 binding motif.

This may represent an artifact that the selection of these factors is

due to their sequence similarity with AP-1 binding sites. In order

to avoid this potential artifact, we focus our future analysis on

binding sites of three transcription factors, STAT1, AP-1, and C/

EBP (CCAAT-enhancer-binding proteins).

Figure 2. Statistics of predicted microRNA promoters. Pie
diagram shows the numbers of microRNAs with different ranges of
(A) promoter lengths and (B) distances between their predicted
transcription start sites and annotated mature and pre-microRNAs.
doi:10.1371/journal.pone.0011794.g002

Figure 3. Sequence features around predicted microRNA
promoters. CpG islands and conservation scores were retrieved from
the UCSC genome browser, where CpG islands were defined as
genomic regions with a length greater than 200 bp, with a minimal GC
content of 50%, and a ratio of observed/expected CpG greater than 0.6.
The conservation scores were calculated based on a phylogenetic
hidden Markov model that measures the evolutionary conservation in
17 vertebrates [27].
doi:10.1371/journal.pone.0011794.g003
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Role of STAT1 and its cofactor in regulating microRNA
transcription

We examined overlapping of ChIP-seq-derived STAT1 binding

regions, identified by Gerstein’s group [11], with 83 predicted

microRNA promoters. Among these, promoter regions of 41

microRNAs (49.4%, Supplement Table S1) contain or overlap

with ChIP-seq-derived STAT1 enriched regions; this finding is

statistically significant when we repeated permutation analysis

10,000 times, and calculated the possibility that 41 out of 83

randomly-selected regions overlap with STAT1 binding regions

(P-value ,10239). These represent the microRNAs that are

potentially regulated by STAT1 in HeLa cells in response to

Figure 4. Identification of collaborating transcription factors. (A) Enriched motifs in STAT1 binding regions. The y axes demonstrate the ratio
of the number of specific binding in randomly selected promoter sequences (1,000-bp upstream transcription start site of the genes that are not
STAT1 targets) and the sequences in ChIP-enriched regions; this number can also be considered as false discovery rate (FDR) at different matching
scores (represented by x axes). (B) Sequence logos of enriched motifs. The size of the letter indicates the information content of that nucleotide
position. (C) Number of microRNAs whose predicted promoter regions overlap with STAT1-enriched regions that contain putative binding sites of
STAT1, AP-1, and C/EBP.
doi:10.1371/journal.pone.0011794.g004
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interferon c stimulation, following one of the 3 potential

mechanisms (direct STAT1 binding, STAT1 collaborating with

other transcription factor, or STAT1 interacting with DNA

through protein-protein interaction). Most promoters contain one

binding site, while the promoters of hsa-mir-21 and hsa-mir-92b

have two STAT1 target sites, and a microRNA cluster, hsa-mir-

193b and hsa-mir-365-1, has three target sites.

Among the 41 microRNAs whose identified promoter regions

include or overlap with STAT1 enriched regions, 38 encompass

ChIP-seq regions that contain one or more binding sites of STAT1

and/or its identified cofactors, AP-1, or C/EBP. Among these

ChIP-seq regions, 37 such regions contain STAT1 binding sites

(Supplementary Table S3). This suggests that under interferon c
treatment, STAT1 regulates microRNA transcription mainly

through direct binding to their promoter regions. Interestingly,

19 out of 37 (or 51.4%) STAT1-containing regions also enclose

AP-1 binding sites (Figure 4C). This indicates that AP-1 can

potentially bind to the regions adjacent to the STAT1 binding

sites, and serves as a collaborating factor in regulating microRNA

transcription. To test the statistical significance of this finding, we

randomly selected 37 regions from gene promoters and counted

the number of regions that contain AP-1 binding sites. We

repeated this practice 10,000 times, and then calculated the P-

value for our finding is 0.0056, based upon binomial distribution.

In addition, 3 regions containing both STAT1 and AP-1 binding

sites also encompass C/EBP binding sites. This suggests that

multiple transcription factors may be involved in the transcrip-

tional machinery.

Construct potential regulatory network motifs that are
involved in microRNA-mediated cell response

Based upon the regulatory roles of STAT1 and its collaborating

factors on microRNA transcription, we can derive the potential

network elements that describe microRNA-mediated cell response.

In this study, we are interested in two types of network motifs, the

feedback and feed-forward loops, where the feedback relationship

describes the roles STAT1-targeting microRNAs playing in

regulating STAT1 and its collaborating transcription factors,

and feed-forward relationship denoting their roles in regulating

other STAT1-targeted genes.

Feed-back loops. The overall scheme of feedback regulation

is shown in Figure 5A. This scheme includes two major

components, one of which only involves STAT1 regulation, and

the other one includes both STAT1 and its collaborating factor

AP1. From ChIP-seq data, we have observed STAT1-enriched

binding sites around the transcription start sites of JUN and FOS

genes, two transcription factors that target AP-1 binding sites.

Therefore, upon interferon c stimulation, STAT1 may stimulate

JUN and/or FOS, and both STAT1 and JUN/FOS collabora-

tively regulate microRNA expression.

Promoter regions of 4 microRNAs, miR-607, miR-92a-1, miR-

92b, and miR-505, encompass or overlap with STAT1-enriched

regions; they also potentially target the 39-untranslated regions (39-

UTR) of interferon c gene (Figure 5Bi). This may represent a

feedback relationship that interferon effects are attenuated through

the STAT1-microRNA-mediated network. Similar relationships

also involve miR-1304, miR-24-2, miR-27a, and miR-220c. For

instance, the predicted promoter regions of miR-24-2, miR-220c,

miR-27a, and miR-1304 all overlap with a STAT1 ChIP-seq

region, which includes both STAT1 and AP-1 binding sites. This

suggests that these microRNAs are co-regulated by STAT1 and

AP-1 binding proteins. Importantly, miR-24-2 can in turn target

the 39-UTRs of Interferon c, JUN, and FOS genes (Figure 5Bii)

and therefore potentially inhibit the mRNA expression levels of

these genes. Similarly, miR-220c targets both STAT1 and

interferon c (Figure 5Biii); miR-27a targets STAT1 (Figure 5Biv),

and miR-1304 targets FOS gene (Figure 5Bv). The feedback

relationship may represent a microRNA-mediated molecular

mechanism by which HeLa cells maintain homeostasis during

interferon c treatment.

Feed-forward relationship. The feed-forward relationship

denotes the roles of STAT1-regulated microRNAs on the post-

transcriptional suppression of STAT1-targeting mRNAs. Since

Figure 5. Feedback network motifs. (A) Overall representation of
the feedback relationships. This network contains interferon c, STAT1,
two AP-1 binding proteins, JUN and FOS, and 37 microRNAs whose
predicted promoter regions overlap with STAT1 ChIP-seq regions that
contain putative STAT1 and/or AP-1 binding sites. (B) Five instances
where STAT1-targeting microRNAs potentially target interferon c,
STAT1, JUN or FOS proteins.
doi:10.1371/journal.pone.0011794.g005
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STAT1 can potentially exert both stimulatory and inhibitory roles

on the target gene, it may represent a mechanism that HeLa cells

fine tune the regulation of STAT1-induced activation. Such a

relationship, also called ‘‘incoherent feed-forward regulation’’

[30], is also observed in Marson et al. [10]. Among 6,264 genes

which STAT1-enriched ChIP-seq regions encompass or overlap

with their regulatory regions (21,000bp to +500bp from

transcription start sites), 1,265 genes (20.2%) are also predicted

targets of 37 STAT1-targeting microRNAs (Figure 6). A list of

putative feed-forward relationships can be found in Supplemen-

tary Table S4.

Discussion

We report a bioinformatics strategy to study the microRNA-

mediated regulatory network, based on ChIP-seq-derived genome-

wide binding patterns of transcription factors and RNA polymer-

ase II. Our strategy includes three components, predicting

microRNA promoter regions, identifying transcription cofactors,

and deriving key microRNA-mediated regulatory network ele-

ments. We applied this strategy to the 2009 CAMDA challenging

data set [11], in which genome-wide binding patterns of RPol II

and STAT1 were measured in HeLa S3 cells under control and

interferon c stimulated conditions, respectively. We identified

promoter regions of 83 microRNAs, 41 of which were directly

targeted by STAT1 upon interferon c stimulation. We have also

identified AP-1 and C/EBP as collaborating transcription factors,

whose binding sites are enriched in ChIP-seq-derived STAT1

binding regions. By integrating the results from microRNA target

prediction, we derived several putative feedback and feed-forward

network motifs by which HeLa cells may maintain molecular

homeostasis in transcriptional regulation.

The density of STAT1 binding sites in microRNA promoters is

similar to the ones in protein- coding genes. We compared the

density of STAT1 target sites related to the distance from

transcription start sites, for both microRNAs and protein coding

genes. For the 4,120 expressed coding genes and the 83

microRNAs predicted to be actively transcribed, we counted the

number of STAT1 binding sites in every 1,000-bp interval from

3,000-bp upstream to 3,000-bp downstream of their transcription

start sites. Among the genes that contain binding sites within these

regions (23,000bp to +3,000bp from TSS), the percentage of

genes containing STAT1 targets in each 1,000-bp interval was

calculated (Figure 7). We observed significant enrichment of

STAT1 binding sites within 21,000 bp to +1,000 bp of the

transcription start site, for both protein coding genes (34%) and

microRNAs (38%). This suggests that STAT1 is involved in

regulating primary microRNAs (pri-microRNAs) transcription, at

a level similar to protein coding genes.

We have identified AP-1 as one of the collaborating transcrip-

tion factors that preferably bind to the adjacent sites surrounding

STAT1 binding regions. Several previous studies reported that

JAK-STAT and AP-1 signaling pathways interact during inter-

feron c stimulation [31,32,33,34]. Our study suggests that such

interaction not only occurs in regulating individual genes; it is also

important in regulating microRNA transcription. We observed

that 51.4% of the STAT1-targeting microRNAs also contain AP-1

binding sites.

Eight STAT1-targeting microRNAs are potentially involved in

the post-transcriptional regulation of at least one of the factors

moderating interferon c stimulation (Figure 5B). Of these

microRNAs, miR-24-2 may target interferon-c, FOS, and JUN,

while miR-220c can potentially regulate interferon c and STAT1.

We checked the disease relevance of these two microRNAs using

the miR2Disease database [35], a manually curated database that

aims at documenting known relationships between microRNA

dysregulation and human disease. The dysregulation of both these

two microRNAs are reported to be related to multiple diseases,

especially cancer. Expression abnormalities of both microRNAs

are related to gliobalstoma [36], lung cancer [37], pancreatic

cancer [38,39,40], and papillary thyroid carcinoma [41]. In

addition, miR-220 is also reported to be deregulated in leukemia

[42]; miR-24-2 is deregulated in colon cancer [38], stomach

cancer [38], and liver cancer [43].

It is worth noting that the current motif analysis, including both

binding sites of STAT1 and its collaborating factors, relies on the

position specific scoring matrix (PSSM) in the TRANSFAC

database [28]. De novo motif finding tools such as MEME [44] and

MDScan [45] can be used for the transcription factors whose

binding site consensuses are less well documented. More recently,

a new computational algorithm, Hybrid Motif Sampler (HMS)

was specifically designed for identifying de novo binding motifs from

ChIP-seq-derived transcription factor binding data [46], which

provides a powerful tool in understanding the sequence features of

transcription factors from genome-wide binding data. Such

analysis can also be integrated into our strategy to further

decipher the microRNA-mediated regulatory network.

Similar to many other bioinformatics predictions, most

conclusions derived from this study are speculative. The purpose

of this study is to offer a bioinformatics strategy to provide testable

hypotheses on the mechanisms of microRNA-mediated transcrip-

tional regulation, based on genome-wide protein-DNA interaction

data derived from ChIP-seq experiments. To test these hypotheses,

Figure 6. Potential feed-forward regulatory relationships. The
feed-forward relationship is defined as the STAT1-targeting microRNAs
also potentially regulating STAT1-targeting genes. This represents a
potential incoherent relationship by which HeLa cells maintain fine-
tune transcriptional control.
doi:10.1371/journal.pone.0011794.g006

Figure 7. Percentage of genes containing STAT1 binding sites
within every 1KB region surrounding transcription start sites.
The calculation is based on 36,998 STAT1 binding sites identified in the
PeakSeq algorithm with FDR#0.05 [11] and their relative locations with
4,120 expressed coding genes and 83 predicted microRNAs. The genes
with their binding sites beyond +/23kb from TSS are not included in
the plot.
doi:10.1371/journal.pone.0011794.g007
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experimental validation is necessary to completely understand the

transcriptional and post-transcriptional mechanisms that regulate

the global gene expression pattern.

Materials and Methods

microRNA promoter identification
We previously developed a computational strategy to predict the

promoter regions of microRNAs based on the RPol II binding

patterns around their transcription start sites [22]. Our model

assumes that RPol II binding distribution around the TSS is

similar for microRNAs and protein coding genes. Using maximum

likelihood estimation, we identified the parameters that best

described RPol II binding patterns around the TSS of highly

expressed, well-annotated promoter regions of protein-coding

genes, and we then scanned the upstream regions of all the

intergenic microRNAs, searching for genomic regions statistically

similar to RPol II binding patterns around the TSS of the coding

genes. The features being used in the model include the intensity

of RPol II ChIP-seq signal around the transcription start site,

steady transcript region, steady background region, and the decay

rates of the RPol II signal in the promoter and transcription

regions, respectively [22].

Binding sites of collaborating factors enriched in STAT1
binding regions

Position-specific score matrices (PSSM) were used to calculate

the possibility of a specific transcription factor binding at one

genomic locus, as described previously [29].

The STAT1 ChIP-enriched regions were scanned for tran-

scription factor-binding motifs using 741 PSSM documented in

the TRANSFAC database [28]. The highest matching score

during this scanning was used to evaluate the binding potential of

the candidate transcription factor in the specific STAT1 ChIP-

enriched region. The background nucleotide sequences were

selected from all of the 1,000-bp promoter sequences upstream of

the transcription starting sites of known genes that are not

overlapped with STAT1 ChIP-enriched region. We did not use a

randomly selected intergenic region as background sequences to

avoid the sequence bias caused by the unique features in the

promoter regions, such as higher levels of GC content. For each

PSSM, a unique cutoff score was determined by the lowest

matching score, where the density of positively identified binding

sites in the ChIP-enriched regions was five times more than the

one in the background oligonucleotide sequences (or FDR of

#20%). This analysis enables selecting transcription factors whose

binding sites are enriched in ChIP-selected regions compared to

background promoters. Similar strategies were used previously

[47].

microRNA target prediction
Without losing generalizability, we used TargetScan (version

5.0) for microRNA target prediction [48,49]. TargetScan predicts

biological targets of microRNAs by searching for the presence of

conserved 8mer and 7mer sites that match the seed region of each

microRNA. In this study, we used all the predicted human targets,

which include all three types of seed sites conserved across

mammals: 8mer (exact match to positions 2–8 of the mature

microRNA followed by an ‘A’), 7mer-m8 (exact match to positions

2–8 of the mature microRNA), and 7mer-1A (exact match to

positions 2–7 of the mature microRNA followed by an ‘A’).

Supporting Information

Table S1 List of 83 microRNAs and their predicted transcrip-

tion start sites and promoter regions

Found at: doi:10.1371/journal.pone.0011794.s001 (0.04 MB

XLS)

Table S2 Enriched transcription factor binding sites in STAT1

enriched regions

Found at: doi:10.1371/journal.pone.0011794.s002 (0.03 MB

XLS)

Table S3 Six transcription factors that potentially regulate

STAT1-targeting microRNAs

Found at: doi:10.1371/journal.pone.0011794.s003 (0.04 MB

XLS)

Table S4 The List of STAT1-targeting genes that are also

predicted targets of 37 STAT1-targeting microRNAs

Found at: doi:10.1371/journal.pone.0011794.s004 (0.46 MB

XLS)
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