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ABSTRACT

We have recently developed a novel method for the
affinity purification of the complete suite of
translating mRNA from genetically labeled cell pop-
ulations. This method permits comprehensive quan-
titative comparisons of the genes employed by each
specific cell type. We provide a detailed description
of tools for analysis of data generated with this and
related methodologies. An essential question that
arises from these data is how to identify those
genes that are enriched in each cell type relative
to all others. Genes relatively specifically employed
by a cell type may contribute to the unique functions
of that cell, and thus may become useful targets
for development of pharmacological tools for
cell-specific manipulations. We describe here a
novel statistic, the specificity index, which can be
used for comparative quantitative analysis to
identify genes enriched in specific cell populations
across a large number of profiles. This measure
correctly predicts in situ hybridization patterns for
many cell types. We apply this measure to a large
survey of CNS cell-specific microarray data to
identify those genes that are significantly enriched
in each population Data and algorithms are available
online (www.bactrap.org).

INTRODUCTION

The mammalian brain is the most complex organ of the
body, containing hundreds of intermingled cell popula-
tions. These cells can be classified into types according
to their morphology, projections, functions and gene
expression profiles. Currently, in vivo analysis of gene
expression and translation in particular cell types is
often performed with methodologies that are non-parallel
and difficult to quantify. Because of this, it remains a chal-
lenge to determine the complete set of proteins employed

by a given cell type, determine which genes are expressed
in or specific to a particular cell type relative to all others,
or establish the degree to which a given cell population is
unique in the nervous system.

Previously, we have described a method, translating
ribosome affinity purification (TRAP, Supplementary
Figure S1) for the isolation of translating mRNA from
individual, genetically defined, cell types (1,2). In this
method, transgenic mice are generated which express a
fusion of eGFP and a ribosomal protein under the
control of a bacterial artificial chromosome (BAC) (3)
for a cell-specific ‘driver’ gene. A complete translational
profile of all ribosome bound mRNAs is then generated
from these labeled cells via brain homogenization and
affinity purification with anti-eGFP antibodies. Relative
quantities of the purified mRNAs are assessed via
microarray or related technologies. Thus, for any cell
type for which a driver gene can be identified, the meth-
odology permits a comprehensive translational profile to
be prepared for all genes. The TRAP protocol is rapid,
simple, and requires no specialized equipment. This
method permits the deconstruction of the complexity of
the nervous system, allowing researchers to access individ-
ual cell types within the context of the whole brain, with
sensitivity sufficient to study whole animal manipulations
such as drug treatments, experimental injuries, or genetic
manipulations (2).

The fundamental impetus for the development of the
TRAP methodology was to allow the rapid and reproduc-
ible cell-specific assessment of RNA translation.
Microarray analysis, as traditionally applied to the
nervous system, results in data representing the aggregate
RNA from all of the cell types present in the tissue (4),
proportional to the percentage of those cells present and
the relative amount of RNA they produce. This has
several implications regarding the interpretation of these
data (5). As the observed signal on the array represents an
averaging of the levels of the transcript in each of these cell
types, RNAs present in all cell types, even at moderate
levels, will have fairly high observed values compared to
RNAs present at high levels, but in rare cell types. In fact,
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such mRNAs may even be undetectable because they
represent a small fraction of the total tissue RNA (1).
Furthermore, as the RNAs from all the cell types are
measured in aggregate, any changes in RNA levels
measured in the whole tissue are not easily attributed to
any particular cell type. Detected perturbations in RNA
levels could be due to the death of one cell type, the arrival
of another, and/or changes within some or all of the cell
types present. Likewise, changes in one cell type could be
masked by changes of opposite direction in another cell
type. All of these factors clearly complicate the application
of microarrays to assess changes in RNA due to experi-
mental manipulations, especially those that may have their
primary influence on rare cells. TRAP provides not only
the ability to detect changes in rare cell types, but also
enhanced ability to interpret the results, as it is known
a priori which cells contain the tagged ribosomes. In
addition, TRAP has the advantage over other approaches
to cell-specific RNA profiling as it assesses translation,
rather than expression, providing a better correlate of
actual protein levels (6).

There are distinctions between microarray experiments
from TRAP RNA compared to whole-tissue RNA, and
these distinctions can have important impact on the
assumptions regarding experimental design, normaliza-
tion, analysis and interpretation. To aid researchers imple-
menting cell-specific RNA-analysis technologies (1,7–10),
we present here a preferred analytical method for TRAP
translational profiling data. Importantly, the TRAP meth-
odology provides in vivo quantitative comparative analysis
of multiple cell types. Here, we have developed a robust
analytical method for identifying and quantifying
cell-specific and enriched mRNA’s across multiple cell
populations, referred to as the specificity index (SI). We
apply this to a large survey of CNS cell types and provide
a simple perusable archive of plots of this measure across
all cell types, for each gene.

MATERIALS AND METHODS

Dataset

TRAP data were generated as described (1,2), and are
available for download from GEO: GSE13379. Etv1
data were not plotted because of known contamination
with endothelial or lymphoblast cells (1). Other cell
types and drivers are listed in Table 1. This dataset
contains samples representing a variety of pure and
mixed cell types from different structures of the mouse
brain, as well as samples from the corresponding whole
tissue. The purified samples are referred to as immunopre-
cipitates (IP). In parallel, RNA which did not bind to the
antibody was also harvested to provide an assessment of
the gene expression of the tissue as a whole. These samples
are referred to as unbound RNA. Microarray analysis, as
traditionally applied to the nervous system, results in
samples that are most similar to unbound samples. As
the immunoprecipitation does not lead to significant
depletion of cell-specific RNAs, here we use the
unbound samples as a measure for the total tissue
homogenate RNA (referred to as Total).

Translating ribosome affinity purification

Additional TRAP experiments on wild-type mouse brains
were conducted as described (2). RNA was quantified
using the Ribogreen assay, according to manufacturer’s
instructions (Invitrogen, Carlsbad, CA, USA), and a
Modulus single tube fluorometer from Turner Biosystems
(Sunnyvale, CA, USA) with the blue optical kit.

R code

The scripts used for calculation of SI, are available from
the bacTRAP website (www.bactrap.org).
SI for a given gene (n), in a given cell type (#1),

compared to cell types, k=2. . .m, is given by the formula:

SIn;1 ¼

Pm
k¼2

rank IP1;n

IPk;n

� �� �

m� 1
ð1Þ

where IP1,n is the expression value for gene n in cell type
one, and rank(IP1,n / IP1,k) is the position, of gene n, in a
descending-ordered list of ‘fold-change’ (IP1/IPk) values
for all genes.
Note that SI is only calculated for those genes in cell

type k with an absolute expression above 50 in IPk, and
with log2(IPk/Totalk) values above a threshold

uðp¼1...jÞ ¼

Pj
p¼1

log2
IPk;p

Totalk;p

� �� �

j
ð2Þ

Table 1. List of the cell populations, relevant drivers and

abbreviations

Cell populations Driver Abbreviations
used*

Drd1+ medium spiney neurons of
neostriatum

Drd1 CS.Drd1

Drd2+ medium spiney neurons of
neostriatum

Drd2 CS.Drd2

Cholinergic Interneurons of corpus striatum Chat CS.Chat
Motor neurons of brain stem Chat BS.Chat
Cholinergic neurons of basal forebrain Chat BF.Chat
Mature oligodendrocytes of cerebellum Cmtm5 Cb.Cmtm5
Astroglia of cerebellum Aldh1l1 Cb.Aldh1L1
Golgi neurons of cerebellum Grm2 Cb.Grm2
Unipolar brush cells and Bergman glia of
cerebellum

Grp Cb.Grp

Stellate and basket cells of cerebellum Lypd6 Cb.Lypd6
Granule cells of cerebellum Neurod1 Cb.Neurod1
Oligodendroglia of cerebellum Olig2 Cb.Olig2
Purkinje cells of cerebellum Pcp2 Cb.Pcp2
Bergman glia and mature oligos. of
cerebellum

Sept4 Cb.Sept4

Cck+ neurons of cortex Cck Ctx.Cck
Mature oligodendrocytes of cortex Cmtm5 Ctx.Cmtm5
Cort+ interneurons of cortex Cort Ctx.Cort
Astrocytes of cortex Aldh1l1 Ctx.AldhL1
Corticospinal, corticopontine neurons Glt25d2 Ctx.Glt25d2
Corticothalamic neurons Ntsr1 Ctx.Ntsr1
Oligodendroglia of cortex Olig2 Ctx.Olig2
Pnoc+ neurons of cortex Pnoc Ctx.Pnoc
Motor neurons of the spinal cord Chat SC.Chat

*Abbreviations used for Figures 4, 5, 7 and Supplementary Figures 7
and 8
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where 1. . .j is a set of negative control genes known not to
be expressed in this cell type, IPk,p is the expression value
for gene p in the IP from cell type k. Totalk,p is the expres-
sion value for gene p in the total tissue RNA from the
tissue cell type k was isolated from. Any gene for which
log2(IPk/Totalk)<Thresholdk is excluded, with the caveat
that Thresholdk was not allowed to exceed zero
(Supplementary Data and Supplementary Figure S5).

Scoring allen brain atlas in situ hybridizations

For comparative analysis of TRAP data, we developed a
blinded, unbiased scoring method (the SENU method).
For the first application, for each of four cell types, 50
probesets were selected at random from the top 500
most enriched genes (IP/Total). For each cell-type, an
additional 50 probesets were selected from the array at
random, irrespective of IP/Total value. For each cell
type, the 50 random and the 50 cell-enriched probesets
were scrambled together and presented to three blinded
judges, previously trained in the heuristics below until
inter-rater reliability was above 60% on training sets.
Judges searched for each probeset in the Allen Brain

Atlas (ABA) using the gene symbol and name. If no
gene symbol or synonym could be found, the probeset
was scored as absent. For probesets present in the ABA,
judges first assessed overall quality of the in situ hybrid-
ization (ISH). If the ISH had no detectable signal or was
of low quality for the given gene, the gene was scored as a
‘U’ (unscorable).
For probesets not scored U, judges evaluated potential

expression in the four cell types. For each cell type the
judges could assign one of three scores, ‘S’ (specific for
cell-type within region), ‘E’ (expressed in cell type), and
‘N’ (clearly not expressed). Detailed heuristics for each
are:

S: In situ must be of very good quality and show clear
signal in cell type of interest that is at least three color
levels with the Allen ‘expression viewer’ above any
other cells in the same region.

E: In situ shows expression in cell type of interest but
overall signal is weak or there is clear signal in sur-
rounding cells as well. In situ may be moderate or
good quality.

N: In situ must be of very good quality and clearly have
(i) no signal in cell-type of interest and (ii) very good
signal somewhere else in tissue.

As cell type is difficult to assign from colometric ISH
alone, for each cell type, the pattern assayed was:

Purkinje cells: ISH pattern in cerebellum with evenly
spaced large cells in the PCL.

Motor neurons: ISH pattern in brain stem in large cells at
the approximate locations of the third, fifth and
seventh motor nuclei.

Layer V cortical neurons: A laminar ISH pattern in
cortex at approximately the position of layer 5, with,
at most, labeling in one other layer.

Oligodendrocytes: Strong specific ISH pattern in the
corpus callosum. Scattered labeling in cortex also per-
mitted. Note: color criteria for ‘S’ had to be relaxed as
oligodendrocytes are often too small to be recognized
as cells by ABA expression viewer.

For the second round of SENU analysis, two additional
cell types were added: granule cells and cortical
interneurons. For each of the six cell types, 150 ISH
were scored, 50 each from the top 250 of IP/Total, SI
and random lists. If multiple ISH sets were available for
the same gene, only the most recent sagital ISH set was
used. Heuristics for an ISH pattern consistent with expres-
sion in granule cells or interneurons are:

Granule cells: clear expression exclusively in granule cell
layer of cerebellum, in at least 50% of the cells.

Cortical interneurons: scattered, non-laminar expression
in the cortex, with a cell number in the range
between two reference ISH patterns, Cort and the
GABA transporter Slc32a1.

For the third round of SENU analysis, all remaining
cell types were evaluated (glial cells were only scored in
cerebellum). For each cell type, all genes with SI P< 10e-5
were scrambled with an equal number of randomly
selected genes and up to 40 genes per cell line were
scored blindly as above, using the driver gene ISH as a
reference pattern. It is worth noting, however, that several
cell types had difficult to interpret ISH patterns (Cck),
lacked appropriate signal even for the driver (Grp), repre-
sented small and scattered cells (Olig2, ALdh1L1), or were
found in very cell dense regions (Neurod1). For many of
these cell types, inter-rater reliability was correspondingly
lower.

Immunofluorescence

Adult mice were perfused transcardially with PBS
followed by 4% paraformaldehyde in PBS, cryoprotected
in 30% sucrose PBS, frozen and sliced to 40 microns on a
cryostat. Floating sections were blocked with 5% normal
donkey serum in 0.25% Triton X-100 PBS and incubated
overnight with chicken anti-GFP antibody (Abcam,
Cambridge, MA, USA), and/or Grm1 (AB1551,
Chemicon, Temecula, CA, USA) and Calb2 (6b3 Swant,
Bellinzona, Switzerland) incubated 90min with appropri-
ately Alexa-conjugated secondary antibodies (Invitrogen,
Carlsbad, CA, USA), and counterstained with DAPI.
Images were acquired with a Zeiss LSM 510 inverted
confocal microscope.

RESULTS

IPvTotal plots

The microarray data employed for these studies are from a
published survey of CNS cell types generated with the
TRAP methodology (1). The purified cell-specific RNA
samples are referred to as IP. In parallel, RNA was also
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harvested to provide an assessment of the gene expression
of the tissue as a whole (Total). As an initial assessment of
TRAP data, described in detail below, we generated
scatterplots with the log signal intensity for the IP on
the x-axis and the Total on the y-axis (IPvTotal plot)
for each cell population. Systematic examination of
these plots revealed they could be used for quick visual
assessment of the quality of the TRAP experiment, par-
ticularly for the level of non-specific background
(Figure 1, Supplementary Figure S2). We first applied
these plots for assessment of different metrics of normal-
ization (Supplementary Figure S3, and ‘Supplementary
Materials and Methods’ section). It also became
apparent these plots may also indicate the rarity and/or
uniqueness of the cell type within its tissue
(Supplementary Figure S4, and ‘Supplementary
Materials and Methods’ section). Finally, we assessed
IP/Total as a measure to identify those RNAs that may
be specific or enriched in a given cell type.

Figure 1a shows an example of this plot for Purkinje
cells. A list of genes known from the literature to be glial
specific (and thus not in Purkinje neurons) has been
marked in red, and a variety of genes determined from
ISH database (11,12) to be highly expressed in Purkinje
cell layer, including the driver for this mouse line, Pcp2,
have been marked in blue (Supplementary Table S1).
From this plot, it is clear that RNAs known to be
enriched in Purkinje cells have high ratios of IP/Total.
Genes that are known not to be expressed in Purkinje
cells, such as those that are specific to glia, are highly
enriched in the Total RNA. They have low IP/Total
ratios. Based on the locations of these positive and
negative controls, we have developed a heuristic for the
interpretation of IPvTotal plots, illustrated in Figure 1b.
Essentially, from the top left corner of the plot to the
bottom right, one has increasing confidence, first that
the RNA derives from the targeted cell type, and then
that it is highly enriched in that type. Note that probesets

with low signal (bottom left corner) should be considered
with caution, as they tend to have higher variability (13).

IP/Total for identification of enriched genes

As previously shown, if a RNA is specifically translated in
the targeted cell type within a tissue, it should have a very
high IP/Total ratio (1). As an independent, qualitative
measure of the expression of specific mRNAs within a
cell of interest, we compared our data to ISH data from
the ABA (11). Since it is often difficult to establish cell
identity by ISH data alone, we chose for this first compar-
ative study four cell types that are relatively simple to
identify by size and localization in colormetric ISH
(brainstem motor neurons, cerebellar Purkinje cells,
layer 5 cortical pyramidal cells, oligodendrocytes). For
each cell type, a list of 50 ‘high IP/Total’ probesets was
selected at random from the top 500 probesets, as ranked
by IP/Total. Many of these mRNAs are only moderately
enriched: minimum IP/Total ratios range from around
two (motor neurons, layer V cortical neurons) to around
four (Purkinje cells). For comparison, an additional 50
probesets were selected at random from the array, and
scrambled with the list above. These lists were then pre-
sented to three blinded judges and the ISH for all genes
were scored as specific (S), expressed (E), clearly not
expressed (N) or unscorable (U) in the cell type of
interest. Figure 2a shows examples of S, E, N and U
scores for brain stem motor neurons. After excluding the
ISH scored U, probesets for genes with high IP/Total were
highly enriched by ISH in the cell type of interest (S), and
less likely to appear not expressed (N) than the random
list of 50 genes (chi-square, P< 0.0005 for each cell type).
Typically, probesets with high IP/Total ratios were three
to four times more likely to be scored S than random
genes (Figure 2b). Although this analysis demonstrated
that TRAP analysis results are concordant with the
easily scored ISH data, the level of enrichment varied sub-
stantially between the cell types assessed. Given this fact,

Figure 1. Assessment of IPvTotal plots. (a) Scatterplot of immunoprecipitated (Purkinje cells, IP) versus unbound RNA (from whole cerebellum,
Total) provides a basic measure of experiment quality. RNA for non-Purkinje cell genes (glial genes, red) are highly enriched in Total RNA, while
RNAs determined to be in Purkinje cells (blue, Supplementary Table S1) are enriched in IP RNA. (b) Illustration of the interpretation of IPvTotal
plots based on the locations of positive and negative control genes.
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and the many factors that limit the utility of ISH data for
detection of cell-specific changes in gene expression in
complex tissues, we sought to develop an independent
method for the quantitative measurement of the specificity
of expression of any gene in a given cell type or condition
relative to a large number of other cell types using com-
parative analysis of TRAP data from a variety of specific
CNS cell types.

The SI to identify cell-specific and enriched genes

As described above, the IP/Total metric can be used as a
simple method to suggest cell-specific and enriched genes.
However, there are three drawbacks to the method. First,
there are cell types where logically it would be ineffective,
such as granule cells of cerebellum or medium spiny
neurons of striatum. Over 90% of the cells in the cerebel-
lum are granule cells (14). As such, a comparison of a
granule cell IP to total cerebellum will yield little enrich-
ment of granule cell genes, as shown in Supplementary
Figure S4b. In contrast, comparison of the granule cell

IP data to the IP data obtained from Purkinje cells
clearly reveals a high enrichment of the granule cell
driver gene, Neurod1 (Supplementary Figure S4c). This
demonstrates that the granule cell IP was robust, and illus-
trates the value of comparative analysis of TRAP derived
from specific cell types. Likewise, comparison of the
Drd1a+ or Drd2+ medium spiny neurons to total
striatum, which is made primarily of medium spiny
neurons, will identify very few striatally enriched genes
(2). The second drawback is that a comparison of IP to
Total will only yield information about enrichment
relative to one particular dissected structure, and not the
rest of the brain. To accurately determine the suite of
cell-specific genes, one needs to make multiple compari-
sons across all available cell types and structures. Finally,
IP/Total alone does not give a sense of how likely a par-
ticular ratio is to appear by chance, and at what threshold
a gene should be considered enriched. Indeed, from the
four cell types scored above, there were clear differences in
fraction of specific genes found in the top 500 IP/Total
(Figure 2b).
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Figure 2. High IP/Total can identify cell-specific genes. (a) Examples of in situ patterns from the ABA scored as specific, expressed, not expressed, or
unscorable for brainstem motor neurons (Allen Mouse Brain Atlas [Internet]. Seattle (WA): Allen Institute for Brain Science. �2008. Available from:
http://mouse.brain-map.org). (b) For each of four cell types, 50 from the top 500 highest IP/Total ratio genes, and 50 random genes, were scrambled
together and scored blindly by three judges trained in the rubric illustrated in a. Genes with high ratio for each cell type (grey bars) were more likely
to be categorized as specific (center panel) and less likely to be categorized as Not Expressed (right panel) P< 0.0005, chi-squared test, all cell types.
Genes with absent or unscorable ISH patterns (b, left panel) were not included in analysis.
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To overcome these problems, we developed a generic
algorithm, the SI, to assess the specificity of a given
RNA in one sample relative to all other samples
analyzed. For each cell type, the SI is calculated in three
steps, as illustrated in Figure 3a–e. First, following
GCRMA normalization within replicates and global nor-
malization across samples, the IP was compared to the
total to filter out the non-specific background by setting
a simple threshold based on negative controls
(Supplementary Figure S5, and ‘Supplementary
Materials and Methods’ section). For those cell types
known to have significant background contamination,
this threshold was left at one, so as to not filter too
many probesets and create false negatives. Probesets
with low signal were also removed, following standard
practice with microarray data. Second, for the remaining
probesets, this filtered IP was iteratively compared to each
other (unfiltered) sample in the dataset and a ratio was
calculated for each probeset. To prevent extreme outliers
from skewing the subsequent analysis, and to make the
analysis more robust for difficult to normalize datasets,
the probesets were ranked from highest to lowest ratio
within each comparison. Third, for each probeset, its
ranks across all comparisons are averaged to give the SI.

Thus, the SI is a measure of the specificity of expression
for each probeset in a given cell type relative to all other
cell types included in the analysis: how highly ranked on a
gene list is this probeset, on average, in this cell type
compared to all others. Note that the term ‘specificity’
has also been used in literature mining field for metrics
assessing the precision of search algorithms in returning
relevant literature (15). However, the use of term here,
while related philosophically, is quite distinct from those
metrics in both its mathematics and its applications.

Validation of SI and comparison to IP/Total

To determine if the SI succeeds in selecting cell-specific
genes in those cases where IP/Total comparisons fail, we
first examined the expression of genes predicted by each
method to be translated in granule cells. Figure 4a shows a
comparison of eGFP immunohistochemistry for
GENSAT BAC transgenics (16) for two genes selected
by IP/Total and two selected for a high SI. The genes
selected by SI clearly have an expression pattern that is
more consistent with highly enriched expression in
cerebellar granule cells: labeling of many cell bodies in
the cerebellar granule cell layer, with fibers filing the
molecular layer, where granule cell axons project.

Figure 3. Illustration of algorithm for calculation of SI to identify cell-specific and enriched genes for a single cell type (Purkinje Cells, pink). (a) SI
is a comparative analysis, thus multiple bacTRAP experiments are conducted for several classical cell types shown in this illustration from Cajal.
(b) Data from each cell type are normalized and filtered to remove background, as illustrated in Supplementary Figure S5, prior to IP/IP calculation.
(c) Normalized and filtered Purkinje cell data are compared to each other cell type (IP/IP). For each comparison (2. . .M), probesets are ranked from
highest to lowest ‘fold change’. SI for each probeset is calculated as the average rank across all comparisons. (d) A P-value is assigned to a given SI
value via a permutation testing, as illustrated in Supplementary Figure S6a. (e) A list of genes significantly enriched in Purkinje cells can be selected
based on P-value.
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To determine how effectively the SI index performs in
general compared to IP/Total in selecting cell-specific and
enriched genes, we repeated our SENU analysis of ABA
ISH patterns for 150 probesets for each of six cell types
(Figure 4b). Fifty probesets were chosen randomly each
from the top 250 probesets of SI and IP/Total, as well as
50 random probesets from the array. These were scrambled
and scored by three blinded judges, as above. As before,
chi-squared tests revealed that TRAP data performed
significantly better than chance at predicting specific gene
expression (P< 0.01 to 10�99, across either metric in each
cell type). As expected, SI outperforms IP/Total for those
cases where the TRAPed cell type makes up a significant
fraction of the total, such asNeurod1 positive granule cells.

Quite surprisingly SI also out-performed IP/Total with
Purkinje cells (Cb.Pcp2), cortical oligodendrocytes
(Ctx.Cmtm5) and cortical interneurons (Ctx.cort). In
the worst case, that of layer V cortical projection neurons
(Ctx.Glt25d2), IP/Total or SI both yielded �50% more
than the amount of specific patterns expected by chance.
There were no cell types where IP/Total clearly performed
significantly better than SI. Thus, we determined that the
SI is a useful and robust metric for identifying cell-specific
and enriched genes.

The SI as a statistical measure

The SI is influenced by both the variations in the number
of transcripts that are enriched in each cell type being
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analyzed, and the purity and recovery of TRAP mRNA
collected for each cell type. The range of the rankings is
dependent on the number of probesets in the comparison,
and that number depends on the number of genes
expressed and the level of filtering in each particular cell
type. Consequently, raw SI values are not directly compa-
rable across cell types. In addition, the SI alone does not
provide a sense of how likely a given rank is to occur by
chance. Therefore, for each SI we calculate a P-value via
permutation testing as illustrated in Supplementary Figure
S6a: for each IP, the filtered expression values are
randomly shuffled many times and SIs are calculated for
all probesets, to determine the frequency of a particular SI
value appearing. This creates a simulated probability dis-
tribution. The probability of any given SI from the true
distribution can be assigned from the simulated distribu-
tion. Thus one can derive a list of genes that are
significantly specific to, or enriched in, any particular
cell type, with a known probability (Supplementary
Figure S6b). We note that for each cell type, the number
of genes that reach a given statistical threshold is different.
However, since these probabilities are comparable across
cell types, they can be plotted to permit assessment of the
specificity for a given probeset across all cell types
analyzed, as illustrated for the granule cell driver
Neurod1 in Figure 4c.

To determine whether the SI is an accurate relative
measure of the specificity of expression of each gene
relative to all others for the cell types analyzed, we next
performed a post hoc analysis of our judges’ ratings in the
SENU analysis pooled across all six cell types from
Figure 4b. For P< 0.00001, over 75% of scorable ISH
were scored ‘specific,’ compared to �15% of those
P> 0.1 (Figure 4d). Even with extensive training in
detailed heuristics and blind scoring there is substantial
subjectivity in the interpretation of ISH, and only 55%
of the 900 ISH had identical scores from all three judges
(for 95% however, at least two judges agreed on the
score). Of these ISH on which all three judges agreed,
100% of the genes with P< 0.00001 were scored as
specific (not shown). This analysis provides a potential
heuristic for the interpretation of various SI P-values for
a gene across cells types: while any P< 0.1 suggests some
enrichment, as P-values continue to decrease, enrichment
increases until the majority, if not all genes at extremely
low P-values are highly specific (Figure 4d).

Finally, to generalize this finding to all remaining cell
types, we examined the ISH pattern for all cell types for
those genes with P< 0.00001. This represented a challenge
as most of these cell types cannot be unambiguously
identified by position information alone. For each cell
type, the P< 0.00001 genes were scrambled with an
equal number of randomly selected genes and up to 40
genes per cell type were scored blindly by three judges.
For this analysis, genes were scored as specific if their
ISH pattern matched that of the driver for the TRAP
line. Across nearly all cell types most of these
P< 0.00001 genes had patterns consistent with specific
expression in the correct cell types (Figure 5a), represent-
ing in all cases a highly significant enrichment relative to
randomly selected genes (chi-squared P< 0.0005 to 10�24).

However, for three cell types, SI did not perform well at
predicting ISH patterns, and we will discuss these briefly
because they are each illustrative of an important point
regarding this analysis (Figure 5b). First, for the ISH
patterns for genes from the line Etv1, which expresses
the eGFP-L10a transgene in layer 5b projection neurons,
over 70% of the P< 0.00001 were specific to blood vessels.
This strongly suggests that the bacTRAP construct is also
expressed in endothelial cells or some component of the
blood in this line. This illustrates the point that careful
anatomical characterization of TRAP lines is essential.
Minor contamination by rare cell types will be very
apparent following SI analysis, and confirmation with
ISH databases.
Second, for the Cck TRAP line, which is expressed

broadly in multiple layers of cortex and in both pyramidal
cells and interneurons, we observed no significant enrich-
ment for specific ISH patterns (chi-square, P=0.3). We
believe this reflects the fact that this line includes so many
neuron types that nearly any gene expressed in neurons
will be present in the IP. This illustrates the difficulty in
assessing ISH results for a TRAP driver that is broadly
expressed.
Third, in the Cb.Grp data, representing a mix of

unipolar brush cells (UBC) and Bergman glia, SI identified
genes did not show enrichment for specific ISH patterns
(chi-squared P=0.14). As Bergman glia are represented
in both the Cb.Aldh1L1 and Cb.Sept4 datasets, the most
specific genes for this data should come from the UBCs, a
small excitatory interneuron found primarily in the
granule cell layer of the posterior lobules of the cerebellum
(17). However, since even the driver, Grp, did not have a
specific ISH pattern, we were suspicious that ISH may
have reduced sensitivity for detecting messages in this scat-
tered population of small neurons in the cell dense
cerebellar granule layer. Some SI identified genes, such
as Nmb, did show a scattered precipitate in lobule X of
the cerebellum, but the particles were too small to be
clearly identifiable as cells by our judges. To provide an
independent dataset, we examined the GENSAT database
(16) for the SI identified genes in the five lines for which
adult data were available online (Grp, Nmb, Ntf3, Otx2
and Eomes). Three of these five lines clearly expressed
GFP in cells with the distinct morphology and position
of UBCs in the online database. We further confirmed, in
the NMB line, that these were indeed UBC’s by confocal
triple immunofluorescence for GFP and the UBC markers
Calb2 and Grm1 (Figure 5c) (18).
In general, we note that, despite the concordance

between the TRAP data and ISH results for genes
whose expression is easily detected by ISH, a significant
fraction of the genes determined to be enriched in a
specific cell type by TRAP analysis could not be scored
from the ISH data (Figure 2b). RT–PCR on genes without
detectable signal (U) by ISH reveals that in these cases the
RNA is indeed present in the brain, and enriched in the
TRAP samples from the cell types of interest (1). This is
not surprising, since successful ISH is dependant on many
factors, including expression level of the gene, hybridiza-
tion kinetics of the probe and availability of unique
sequence for probe design. We conclude that negative
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results on ISH should be interpreted with caution. Of
course, for any specific case, differences in ISH patterns
and TRAP measurements could also indicate there is a
difference between transcription and translation of a
given gene.

Finally, the mixed oligodendrocyte data (Olig2 line)
only showed 43% specific ISH patterns. While this is
still significantly better (chi-square, P< 10�5) than the
12% identified by chance, we were curious if this reflected
the fact that of the 26 cell types included in the SI calcu-
lation, at least four contained information primarily
from oligodendrocytes (ctx.olig2, cb.olig2, ctx.cmtm5,
cb.cmtm5). Thus, we repeated the SI analysis on our
data set, but excluded three of these four samples collected
from oligodendrocytes so only one, unique oligo-
dendrocyte sample remained. As shown in Figure 6,
this resulted in two major effects: first, as the
oligodendrocyte data became more unique in the
analysis, there were now twice as many genes with
P< 0.00001 by SI; second, when the ISH for these genes
were scored blindly as above, 70% of them showed specific
ISH patterns. This demonstrates the fact SI is a relative
measure that is influenced by the composition of the
entire dataset, and that one should carefully consider
which datasets to include for the specific experimental
question being addressed.

An archive of SI for all genes

To provide a resource to permit researchers to examine the
specificity of the translation of any gene across all cell
types included in this analysis, we have created SI plots
for all genes on the array using updated chip definition
files (19) that provide one measure per ENTREZ gene ID
(20) (Supplementary Figure S7). Figure 7 illustrates SI
P-values, as well as IP/Total values for six representative
genes, across the 24 cell populations from the original
studies. This includes examples for genes known to be
enriched in a few cell types (Slc18a3, the vesicular
acetylcholine transporter, in cholinergic cells, Dlx1 in
interneurons); metabolic genes expressed ubiquitously,
though not equally, across the brain (Actb, Rpl8); and

two genes implicated in autism, Nrxn2 and Nrxn1,
which show broad but variable expression, or enrichment
in a limited set of cortical neurons and granule cells,
respectively. SI plots for all genes are available as a
downloadable archive from www.bactrap.org. Simply
browsing through images can highlight remarkable
biology. For example, the GalNAc transferase family is
a group of golgi apparatus enzymes that catalyze the
addition of oligosaccharides to protein receptors
destined for the cell surface. Supplementary Figure S8
shows plots for six members of this family,
Galnt2,3,4,6,14,L2, five of which show remarkable
cellular specificity to either oligodendrocyte progenitors,
astroglia, mature oligodendrocytes, layer 5 cortical projec-
tion neurons or granule cells. As many of these enzymes
have affinities for distinct donors and acceptors (21),
cell-specific expression of these proteins may result in
distinct cell surface moieties.

DISCUSSION

We present here a set of analytical procedures that have
been developed for analysis of TRAP translational
profiling data. These approaches are specifically designed
to accommodate features of TRAP translational profiling
data that arise from the cell-specific nature of the TRAP
data, and to provide a robust framework for comparative
analysis of data obtained from large numbers of cell types.
In particular, we report the development of a SI to provide
a relative and quantitative measure for the specificity of
expression of all genes across the cell types being studied.
In general, results of this analysis are concordant with
easily evaluated ISH data from the ABA (11). However,
our data also indicate that TRAP translational profiling
can reveal cell enriched expression for a large number of
genes and cell types that are not easily assessed by ISH.

The SI

The impetus for the development of the SI was to accom-
modate the facts that there are dramatic differences in
mRNA profiles between different cell types, and that it
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Figure 7. SI P-values and IP/Totals for a selection of representative mRNAs. (a–f) Combined SI P-values (blue bars, �log10 scale) and IP/Total
values (red bars, log2) across all cell populations. (a) The acetylcholine transporter, Slc18a3 is significantly specific to all four cholinergic cell
populations assessed. (b) The interneuronal marker Dlx1 is translated specifically in the Cort and Pnoc bacTRAP lines. (c and d) Ubiquitously
expressed genes B-actin(Actb) and ribosomal protein L8(Rpl8) are not specific to any cell type, though translation does vary across cell types.
(e and f) The Neurexin autism candidate genes Nrxn1, and Nrxn2, have differential patterns of translation. Nrxn2 is more broadly translated,
while Nrxn1 has low to moderate enrichment in cerebellar granule cells and some cortical neuron types.
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was evident that a new method for comparative and quan-
titative analysis of TRAP data was needed. Although
analysis with standard tools for identifying statistically
significant differences between samples also can apply to
TRAP data (22–26) comparisons of widely divergent cell
types, such as astrocytes and Purkinje neurons, results in
>60% of probesets reaching statistical significance
(P< 0.05) using the empirical Limma (25) module of
Bioconductor (26) with FDR multiple testing correction.
This number of statistically significant changes demon-
strates the limited utility of such methods for selecting
small numbers of targets for biological follow-up studies
from such dramatically different cell types. The SI we have
described here is robust, and uses a permutation-based
statistical approach to compensate for any irregularities
in the distributions of the data, allowing direct compari-
son of P-values across samples with quite varied distribu-
tions. As shown above, this measure provides results
consistent with published data, and independent assays
of gene expression provided in the ABA. However, the
SI is clearly dependent on the number and nature of the
samples included in the analysis (Figure 6). Consequently,
the design of the SI analysis should be tailored to the
biological question at hand. However, as we anticipate
that many researchers will be interested primarily in the
output of this analysis, rather than its implementation, we
provide an archive of SI histograms for all genes across all
cell types included in this study to permit in silico interro-
gation of cell-specific and enriched mRNA translation.

TRAP compared to ISH, immunohistochemistry and BAC
transgenesis for assessment of gene expression

The TRAP methodology is complementary to other
methods of examining gene expression and protein trans-
lation in the CNS, though it has several distinct advan-
tages. ISH and immunohistochemistry both require the
laborious development and optimization of gene specific
reagents, and depending on the size, location, expression
level and subcellular localization of the target, may not
provide sufficient information to unambiguously identify
the cell type labeled. BAC transgenesis with an eGFP
transgene provides comprehensive information about
morphology and projections of the labeled cells, as well
as a living reagent for further study (3), but requires a
substantial time investment. Of the four methods, only
TRAP can provide, in a single experiment, interrogation
of the entire translated genome. TRAP data is quantita-
tive, with the highest potential sensitivity and dynamic
range. However, for the examination of a single gene
across the entire CNS, ISH, immunohistochemistry, or
BAC transgenesis will remain the methods of choice.

CONCLUSIONS

A variety of different tools have been generated for the
analysis of microarray data (13,22–24). For those inter-
ested in developing or applying other array analysis
methods to TRAP data, it is advisable to first test those
methods on our most robust datasets, such as the Purkinje
cell data, where a variety of positive and negative control

genes can be used as standards (Supplementary Table S1),
and the cells can be more easily identified by ISH.
Furthermore, for most experiments, there are two impor-
tant considerations for data analysis: first, quantile nor-
malization should only be applied to that which would be
expected to have similar mRNA distributions (from the
same cell type or region, see Supplementary Figure S3,
and ‘Supplementary Materials and Methods’ section);
second, comparisons of IPvTotal data can be used to
remove non-specific background prior to IPvIP compari-
sons, regardless of the source of this background
(Supplementary Figures S2, 5, 9 and ‘Supplementary
Materials and Methods’ section). Ongoing improvements
in the molecular methodology are likely to remove most of
the non-specific background deriving from interaction of
purification reagents with untagged ribosomes seen in this
first survey, making in many cases the filtering steps for
calculating SI unnecessary in the future, though this filter-
ing approach may still be applicable for dealing with low
level expression of the transgene in cell types of secondary
interest to the study. To aide in this normalization, lists of
recommended negative control probesets are included in
Supplementary Table S2 (although any genes known not
to be expressed in the cell type of interest may be used).
Standard statistical methods (22–26) remain essential for
detecting more subtle differences, such as the changes
within a single cell type following exposure of the
animal to a drug (2).
Given the improved sensitivity and anatomic specificity

obtained using TRAP and related methodologies, we
anticipate wide application of these methodologies for
gene expression studies in the mouse nervous system.
The methods outlined here provide analytical tools for
those researchers employing these methodologies, as a
well as those interested in mining published TRAP
datasets for cell-specific and enriched mRNAs.
Continued experimental and analytical developments will
enhance the value of the methods and data provided here.
Nonetheless this methodology provides a systematic
approach to the expressed genes that determine the
unique properties of specific neural cell types, and to
identify candidate genes to serve as markers and pharma-
cological targets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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