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ABSTRACT

Accurate DNA segregation is essential for genome
transmission. Segregation of the prototypical
F plasmid requires the centromere-binding protein
SopB, the NTPase SopA and the sopC centromere.
SopB displays an intriguing range of DNA-binding
properties essential for partition; it binds sopC to
form a partition complex, which recruits SopA, and
it also coats DNA to prevent non-specific SopA-DNA
interactions, which inhibits SopA polymerization. To
understand the myriad functions of SopB, we
determined a series of SopB-DNA crystal structures.
SopB does not distort its DNA site and our data
suggest that SopB-sopC forms an extended rather
than wrapped partition complex with the SopA-
interacting domains aligned on one face. SopB is a
multidomain protein, which like P1 ParB contains an
all-helical DNA-binding domain that is flexibly
attached to a compact (fs-), dimer-domain. Unlike
P1 ParB, the SopB dimer-domain does not bind DNA.
Moreover, SopB contains a unique secondary dimer-
ization motif that bridges between DNA duplexes.
Both specific and non-specific SopB-DNA bridging
structures were observed. This DNA-linking function
suggests a novel mechanism for in trans DNA
spreading by SopB, explaining how it might mask
DNA to prevent DNA-mediated inhibition of SopA
polymerization.

INTRODUCTION

Partition or segregation, is an essential process that ensures
the maintenance of genomic DNA during cell division. The
partition machinery of low copy number plasmids repre-
sent excellent model systems to study DNA segregation at a
detailed atomic level because they are composed of just
three components: a centromere DNA site, a partition
NTPase and a centromere-binding protein (CBP) (1-3).
These partition (par) systems, which are encoded on a

cassette on the respective plasmid, are of two main types:
types I and II (4). This useful categorization is based pri-
marily on the kind of NTPase present. Type I systems are
the most abundant and contain NTPase proteins that
harbor deviant Walker A type ATPase folds, while the
type II systems utilize actin-like NTPases (1-5). The type
I par systems can be further subdivided into types Ia and b
based on size and limited sequence homologies of the Par
proteins. The type Ia NTPase and CBPs are ~30-45kDa
while the type Ib homologs are smaller, containing 192-308
and 46-131 residues, respectively. More recently, type III
par systems employing tubulin-like GTPases and type
IV systems that use a single protein with a predicted
coiled-coil domain for partition, have been described (6-9).

Unlike the NTPases, the CBPs show little sequence
homology even within a given family. Despite this, a
crucial and shared function of these proteins is the forma-
tion of a so-called partition complex by binding to their
centromere DNA, which typically consists of multiple
tandem repeats. Structures have shown that despite a
lack of sequence homology, both the small type II and
Ib CBPs contain ribbon—helix—helix (RHH)
DNA-binding folds (10-13). Less is known about the
more complex and larger type Ia CBPs. Indeed, structural
information is only available for two type Ia plasmid
CBPs, P1 ParB and RP4 KorB, and their complexes
with DNA (14-17). These data combined with biochem-
ical studies indicate that these proteins have several
domains, including a flexible N-terminal NTPase-binding
domain, a central HTH-domain, which is the only
conserved domain among these proteins and a
C-terminal dimer-domain (3). Structures were determined
separately for the KorB HTH-containing DNA-binding
domain and the C-terminal dimer-domain, which has an
SH3-like fold (15,16). The P1 centromere is arguably the
most complicated centromere as in addition to two differ-
ent repeat elements, called A- and B-boxes, it also contains
a central THF binding site (14,17). Structures of Pl
ParB(142-333) bound to the minimal centromere, consist-
ing of two A-boxes and one B-box, revealed that ParB
recognizes the two repeat elements using two
DNA-binding motifs. Its HTH-domain binds the A-box,
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while its C-terminal dimer-domain, which is connected to
the HTH-domain by a short flexible linker, interacts with
the B-box (5,14,17). Notably, the P1 ParB dimer-domain
has a completely different structure than the KorB
SH3-like C-terminal dimer-domain. Despite the insight
revealed by these structures, the higher order structures
that are formed by type I partition complexes are not
known.

After formation of the partition complex, the next step
is recruitment of the NTPase, which mediates the actual
separation of replicated plasmids. Recent data indicates
that both the ParM and Walker NTPases form polymers
to drive partition (18-23). These polymers are metastable
structures that are stabilized by their interactions with
their partner CBPs when found in the context of the par-
tition complex. Thus, the CBPs themselves are not alone
sufficient to regulate and promote NTPase polymer
dynamics and some aspect of the partition complex struc-
ture appears critical for this function. Recent insight into
the role of the partition complex in type II partition comes
from the pSK41 ParR-centromere structure. This struc-
ture revealed that the ParR-centromere partition
complex adopts a specific superhelical conformation that
is optimal for engulfing and stabilizing the ParM NTPase
filaments (13). Whether the more complicated type Ia
CBPs also form superhelices or other superstructures to
stabilize their metastable NTPase polymers is not known.
One of the goals of this study was to gain insight into this
question by examining DNA binding by the type la CBP
SopB, of the F plasmid par system. The sopABC system
was one of the first partition cassettes identified and
represents perhaps the most studied par system from a
genetic, cellular and biochemical standpoint. However,
to date no structures have been available for the Sop
proteins.

The F par system consists of the CBP SopB, the NTPase
SopA and the centromere sopC. Compared to Pl parS,
sopC is a much simpler centromere as it consists of 12
43-bp repeat elements and one repeat can support
F plasmid segregation (24,25). Within each DNA
element is a short 16-bp inverted repeat, which is bound
by a single SopB dimer. Recent studies, which have
provided important insight into F plasmid partition,
have shown that SopB displays an intriguing range of
DNA-binding properties that are essential for the parti-
tion process (19,26-28). Specifically, SopB not only forms
a SopB-sopC partition complex that recruits SopA but
SopB also stabilizes SopA filaments in an unusual
manner; by coating DNA and preventing non-specific
SopA-DNA interactions that inhibit polymer formation
(19). Indeed, SopA is localized to the nucleoid of the cell
and its non-specific interactions with the nucleoid DNA
prevent unwanted polymer formation until partition is
desired (19,29,30). Remarkably, SopB is able to reverse
this inhibition by spreading in trans or between different
DNA molecules, creating a DNA-depleted zone near the
partition complex allowing SopA polymers to stably form.
To gain insight into the striking DNA binding properties
exhibited by SopB and thus its myriad functions in parti-
tion, we biochemically and structurally characterized the
interactions between SopB and DNA.
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MATERIALS AND METHODS

Crystallization of 123 crystal forms of full-length SopB,
SopB(155-323) and SopB(155-272) bound to the 18mer
sopC repeat

An artificial sopB gene, encoding the full-length (FL)
SopB protein, was codon optimized for Escherichia coli
expression and purchased from Genscript Corporation,
Piscatway, NJ, USA (www.genscript.com). The gene con-
tained Ndel and Xhol sites. Following digestion with
these enzymes, the gene was ligated into the pET15b
vector predigested with Ndel and Xhol. BL21(DE3)
cells were transformed with the expression vector. The
expressed protein contains an N-terminal hexa-histidine
tag (his-tag) and the protein was purified in one step
using Ni-NTA chromatography. Purified FL SopB was
mixed at a molar ratio of 1:1 with 18mer duplex DNA
containing the SopB consensus binding  site
(CTGGGACCATGGTCCCAG) and crystallized by
hanging drop vapor diffusion using 20% PEG 3000,
0.1 M phosphate/citrate pH 4.2, 0.2M lithium sulfate.
The crystals grew within 4-8h and continued to grow
for 2-3 days. When data were collected on crystals at
room temperature or cryo-preserved with  the
cryo-solution, which consisted of the crystallization
solution mixed with 30% glycerol, the best diffraction
that was observed was 5.0 A. However, the diffraction
was dramatically improved to 3.35 A by an annealing pro-
cedure involving successive re-immersion of a frozen
crystal in the cryo-solution. The crystals take the cubic
space group 123.

The coding regions for sopB(155-323) and sopB(155—
272) were ligated into pET15b (using Ndel and Xhol
sites) and the expressed protein purified in one step via
Ni-NTA chromatography. Proteins were mixed at a
molar ration of 1:1 protein dimer: DNA duplex, and
multiple crystallization screens were carried out because
the condition used to obtain crystals of the FL
SopB-18mer complex did not result in crystals using the
smaller SopB fragments. SopB(155-323)-18mer crystals
were grown using 1.3M ammonium sulfate, 0.1 M Tris
pH 8.5, 25% glycerol. SopB(155-272)-18mer crystals
were obtained with a crystallizaton solution consisting of
25.5% PEG 4000, 0.17M lithium sulfate, 0.1 M Tris
pH 8.0, 15% glycerol. SopB(155-323)-18mer crystals
were cryo-preserved directly from the drop while
SopB(155-272)-18mer crystals were cryo-preserved by
dipping the crystals in solutions consisting of the crystal-
lization reagent plus 20% additional glycerol. Both
SopB(155-323)-18mer and SopB(155-272)-18mer crystals
were cubic with space group 123 (Table 1).

Structure determination of FL. SopB-18mer,
SopB(155-323)-18mer and SopB(155-272)-18mer
123 crystal forms

The structure of the FLSopB-18mer complex was
solved to 3.5A by multiple wavelength anomalous
diffraction (MAD) phasing using a crystal in which
thymines  were  substituted with  5-bromouracil
(CXGGGACCAXGGTCCCAG, where X corresponds
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Table 1. Selected crystallographic data for SopB-DNA structures

Complex FL sopB-18 SopB(155-323)-18 SopB(155-272)-18 SopB(155-272)-18 SopB(155-272)-18
Space group i 123 123 123 P3;21 P2,
Cell dimensions (A) a=b=c=2037 a=b=c=200.38 a=b=c=2005 a=b=119.8; c=181.5 a=1114; b =471
i c=118.2; p=115.9°
Resolution (A) 142.9-3.36 141.0-2.86 100.0-2.99 103.7-3.99 99.0-2.98
Overall Ry (%)* 7.3 (55.6)° 4.4 (37.1) 5.1 (44.8) 12.4 (48.0) 6.7 (39.9)
Overall I/o(1) 6.8 (1.8) 12.7 (2.2) 10.6 (2.0) 6.1 (1.9) 7.3 (2.1)
No. of total reflections 76369 88722 110540 65544 44792
No. of unique reflections 19203 30569 26809 20020 22277
Refinement statistics
Resolution (A) 142.9-3.35 141.0-2.86 100.0-2.99 N/A 99.0-2.98
Ryorik/ Riree(%0)© 29.9/33.3 24.5/26.9 24.2/26.6 N/A 21.2/26.4
RMSD
Bond angles (°), 1.52 1.18 1.10 N/A 1.43
Bond lengths (A) 0.010 0.006 0.006 N/A 0.010
Ramachandran analysis
Most favored (%/n) 86.3/182 87.7/185 89.2/189 N/A 82.8/338
Add. allowed (%/n) 12.8/27 11.8/25 9.9/21 N/A 15.0/61
Gen. allowed (%/n) 0.5/1 0.5/1 0.9/2 N/A 2.0/8
Disallowed (%/n) 0.5/1 0.0/0 0.0/0 N/A 0.2/1

N/A, not applicable as due to the low resolution, the structure was not refined after the molecular replacement solution was obtained.
*Ryym = S X|Ihkl — Ihki(j)|/S1hkl, where Ihki(j) is observed intensity and ikl is the final average value of intensity.

'Values in parentheses are for the highest resolution shell.

Ruork = 2| Fopsl — [Featel |/ 2 Fops) and Rpvee = S| Fopsl — [Fealel|/ 2| Fopsl; where all reflections belong to a test set of 5% randomly selected data.

to the locations of the 5-bromouracil substitutions). MAD
data were collected at beamline 8.2.1 and processed with
MOSFLM. The bromine sites were located using SOLVE
(31). Model building was carried out using O and the struc-
ture was minimally refined using CNS (32,33). The
SopB-18mer structure contains two SopB subunits
(residues 157-271 of one subunit and 157— 270 of the
second subunit) and all the nucleotides in the 18mer
DNA duplex and has Ryoi/Riree Values of 29.9%/33.3%
to 3.35 A resolution.

MAD data were also collected for a SopB(155-323)-
18mer crystal containing the same 5-bromouracil substi-
tutions as for the FL SopB-18mer crystal. The data were
collected to 3.3 A resolution and the sites were again
located using SOLVE (31). The constructed model was
minimally refined using CNS and used as a starting
model for refinement with the high resolution 2.86 A
data. The final refined SopB(155-323)-18mer structure
contains two SopB subunits (residues 157-271 of one
subunit and 157-270 of the second subunit), all the nu-
cleotides in the 18mer DNA duplex and 10 sulfate ions
and has Ry o/ Riree Values of 24.5%/26.9% to 2.86 A reso-
lution. The refined SopB(155-323)-18mer structure was
solved by molecular replacement (MR) and the structure
was refined to 2.99 A resolution using CNS (32). The
model includes two SopB subunits (residues 157-271 of
one subunit and 157-270 of the second subunit), all the
nucleotides in the 18mer DNA duplex and nine sulfate
ions. The Ryoi/Riee Values are 24.2%/26.6%.

Crystallization and structure determination of P3,21
SopB(155-272)-18mer and P2; SopB(155-272)-18mer
complexes

A second crystal form of SopB(155-272)-18mer grew in
the same drops as the 123 form, took the trigonal space
group P3;21 and diffracted to 3.9A. A data set was

collected and used to solve the structure by MR using
the SopB(155-272) dimer as a search model. The structure
contained a complicated asymmetric unit (ASU) consist-
ing of three SopB dimers and four 18mer DNA complexes.
Due to low resolution, the structure was not refined. A
third crystal form was obtained using SopB(155-272) in
which the his-tag was removed. The his-tag free protein in
complex with the 18mer produced a monoclinic P2,
crystal form using 30% PEG 400, 0.1 M HEPES pH 7.5,
0.2 CaCl,. The structure was solved by MR using the
refined SopB(155-272)-18mer complex as a search
model. The ASU consists of two DNA duplexes, one
SopB dimer and two SopB monomers. The final model
includes residues 157-268, 157-267, 157-267 and
157-266 of the four subunits in the ASU and all the
nucleotides of each of the 18-bp duplexes as well as
16 solvent molecules. The final model has Ryork/Rpree
values of 21.2%/26.4% to 2.98 A resolution.

Crystallization and structure determination of
SopB(275-323)

The region encoding sopB(275-323) was ligated into
pET15b as for the gene expressing the FL protein, such
that the N-terminal his-tag was expressed for ease of puri-
fication. After purification, the his-tag was cleaved from
the protein with thrombin. After cleavage the protein was
further purified via size exclusion chromatography and the
protein was then concentrated to 30 mg/ml for crystalliza-
tion. Crystals were grown using 30% PEG 4000, 0.2M
sodium acetate, 0.1 M Tris pH 8.5 as a crystallization
solution. Native data and derivative data were collected
in house using a Rigaku FR-E SuperBright microfocus
rotating anode (Rigaku USA) equipped with an R-Axis
HTC and processed with CrystalClear. An initial native
data set and two derivatives (mercuric chloride and potas-
sium hexachloroplatinate) were collected at room



temperature. Heavy atom sites were located using SOLVE
(31). The structure was traced using O and refined in CNS
(32-33). A high-resolution data set was collected at
beamline 8.2.1 and used for final refinement (Table 2).

Fluorescence polarization assays

Fluorescence polarization (FP) assays were performed
using a Panvera Beacon Fluorescence Polarization
system (34). The 43mer (top strand:GGTCTGATTATT
AGTCTGGGACCACGGTCCCACTCGTATCGTC)

and 18mer (CTGGGACCATGGTCCCAG) used in the
assays were 5-fluorescein labeled. For each assay,
increasing concentrations of SopB were titrated into
the binding mixture containing 2nM DNA in 20mM
Tris pH 7.5, 100mM NaCl. The excitation and emission
wavelengths were 490 and 530 nm, respectively. All data
were processed in Kaleidagraph and fit with the equation
P = {(Ppound— Prrec)[Protein]/(Ky+[Protein]) }+ Py, Where
P is the polarization magnitude at a given protein concen-
tration, Ppee 1S the initial polarization of the free oligo-
nucleotide and Ppoung 18 the maximum polarization when
the oligonucleotide is saturated by SopB. Non-linear least
squares analysis was applied to determine Ppoung and Kjy.

Table 2. Selected crystallographic data for SopB(275-323)

Crystal Native HgCl, KAuCly
Space group . C2 C2 C2
Cell dimensions (A) a=89.7, a=89.3, a=89.1
b =46.2, b =46.1, b =462
c=36.4 c=364 ¢=36.5
B =100.8° B =100.3° B =100.4
Resolution (A) 30.73-1.99  28.11-2.40  35.89-2.40
Overall Ry (%)* 4.1 (14.3)° 9.1 (29.7) 5.2 (11.2)
Overall I/o(]) 12.1 (4.8) 9.7 (2.1) 8.9 (3.0)
No. of total reflections 19383 9852 7018
No. of unique reflections 9905 5425 4968
Refinement statistics
Space group | C2
Cell constants (A) a=89.1,
b =457,
¢=36.5
B = 100.8°
Resolution (A) 43.85-1.58
Overall Ry, (%) 5.4 (30.2)°
Overall I/o(1) 10.1 (2.1)
No. of total reflections 29836
No. of unique reflections 18124
Ryori/ Rivee (%0)° 19.8/23.1
RMSD
Bond angles (°), 1.61
Bond lengths (A) 0.012
Ramachandran analysis
Most favored (%/n) 91.9/113
Add. allowed (%/n) 8.1/10
Gen. allowed (%/n) 0/0
Disallowed (%/n) 0/0

*Ryym = EX|Ihkl — Ihkl(j)|/ EIhkl, where Ihki(j) is observed intensity
and 7hkl is the final average value of intensity.

Values in parentheses are for the highest resolution shell.
Fcach/E‘Fobs‘ and Rfree =X Fnhs‘ - ‘Fcach/E‘Fobs‘;

cRwork = EHFobs‘ -

where all reflections belong to a test set of 5% randomly selected data.
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Circular dichroism (CD) spectroscopy experiments

CD experiments were carried out on FL. SopB in 50 mM
HEPES pH 7.5, 100mM NaCl at a concentration of
1.2mg/ml and SopB(155-272) in the same buffer at
0.4mg/ml on a JASCO 700 CD Spectrophotomer. The
CD spectra were deconvoluted for secondary-structure
content using the K2D2 program (35).

RESULTS AND DISCUSSION
Structure determination of SopB-centromere complexes

Crystals of the 323 residue FL SopB were obtained in
complex with an 18 bp sopC centromere repeat, CTGGG
ACCATGGTCCCAG. The crystals, which harbor one
SopB dimer and one DNA duplex in the crystallographic
ASU, contained a high solvent _content of ~73%. The
structure was solved to 3.35A resolution by MAD
(Materials and Methods). Despite the relatively weak dif-
fraction, solvent leveling produced a map of excellent
quality permitting the structure to be traced (Figure 1A
and B). All nucleotides of the 18-bp DNA duplex could be
built. However, density was only observed for SopB
residues 157-271 from one subunit and 157-270 of the
second subunit. These residues contain all the determin-
ants required for sequence specific binding to the sopC
consensus site (36). The absence of density for the SopB
N- and C-terminal regions suggested that either these
regions were highly flexible or were proteolysed during
crystallization. Consistent with the former possibility,
the first and last residues observed, 157 and 271, each
face into large solvent channels, which could easily accom-
modate the disordered or flexibly attached domains
(Figure 1A). This was supported by SDS-PAGE
analysis of washed crystals, which revealed that the FL
protein  was indeed present in the crystals
(Supplementary Figure S1).

The structure indicates that SopB consists of three main
regions: 1-155, 155-272 and 272-323 that are flexibly
linked. Support for this supposition comes from studies
showing that the N-terminal region of SopB, which
contains the SopA interacting region, is highly flexible
and that SopB residues 272-280 can be cleaved by
multiple proteases (36,37). It appears that the reason
only the SopB DNA-binding domain is visible in the
crystal is because it is bound to the DNA, which is
central in the formation of the crystal lattice via its
pseudocontinuous packing. Indeed, examination of the
crystal packing shows that the pseudocontinuously
packed DNA constructs one direction of the lattice
while the SopB DNA-binding domain assembles another
direction via its contacts between DNA. These protein and
DNA arrays are separated by enormous solvent channels
(Figure 1A). The presence of a significant disordered, and
thus invisible, portion of a protein within a crystal is not
unprecedented. For instance, when the structure of the 780
residue FL zebra fish B-catenin was solved, 125 residues
from its N-terminus and 98 residues from its C-terminus
were not observed in electron density maps (38). The
authors found that the N- and C-terminal domains of
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Figure 1. Crystal structures of SopB-18mer complexes. (A) A section of the experimental MAD electron density map (shown as a blue mesh) for the
FL SopB-18mer complex, contoured at 1.5¢ and calculated to 3.5 A resolution. Labeled are the location of the pseudocontinuous DNA and one of
the SopB intermolecular dimers, which bridge between DNA duplexes to form the crystal lattice. Also labeled is one of the large solvent channels. (B)
Ribbon diagram of the 123 SopB-18mer complex. The crystallographic asymmetric unit (ASU) consists of two subunits (cyan and magenta) and one
18-mer DNA duplex. Shown also are subunits involved in secondary dimer/bridging interactions, generated in the crystals. For the cyan subunit, the
secondary structural elements are labeled and the first and last residues observed in the structure are labeled N and C, respectively. This figure (C and
D) and Figures 2A-D, 3, 4, SA and C, and 6A and B were made with PyMOL (55). (C) Ribbon diagram of the P3;21 SopB(155-272)-18mer
complex. The molecules in the ASU are all shown consisting of three SopB secondary dimers and four 18mer duplexes, which all pack pseudocon-
tinuously in the crystal. The specific HTH-major groove interacting subunits are labeled canonical major groove and the one subunit that interacts
non-specifically with two minor grooves (colored blue) is also shown and its minor groove contacts labeled. (D) Ribbon diagram of the P2,
SopB(155-272)-18mer complex. The ASU consists of one secondary dimer and two SopB subunits and two 18-mer DNA duplexes.

B-catenin are flexibly attached to and do not interact with might result in better diffracting crystals. Thus,

the armadillo repeat domain, which was the only visible
part of the structure. Similarly, when the structure of the
150 residue intact Max transcription factor was solved
bound to DNA, its C-terminal region, accounting for
45% of the total protein, was disordered (39). Thus, a
protein with a large number of disordered residues or
flexibly attached domains can still form crystals if there
are adequate solvent channels to accommodate them.
However, only the regions involved in the formation of
stable lattice contacts will be visible.

The fact that the FL SopB-18mer crystals contained a
large percentage of disordered macromolecule led us to
postulate that the utilization of shorter SopB fragments

SopB(155-323) and SopB(155-272) were produced and
used in crystallization screens with the 18-mer sopC palin-
drome. Cubic crystals, similar to the FL SopB-18mer
crystals, were obtained with both fragments.
Interestingly, however, different conditions were required
to produce each of the crystals and the crystals obtained
with the truncated proteins diffracted better than those
grown with FL SopB (‘Materials and Methods’ section).
The SopB(155-323)-18mer structure was solved by MAD
and like the FL SopB-18mer complex, only SopB residues
157-270 were visible. SDS-PAGE analyses, however, con-
firmed that the entire SopB(157-323) fragment was
present in the crystals (Supplementary Figure S1). The



SopB(155-272)-18mer structure was subsequently solved
by molecular replacement (MR). The final structures of
the FL SopB-18mer, SopB(155-323)-18mer and
SopB(155-272)-18mer complexes have Ryork/Reree Values
0f 29.9%/33.3%, 24.5%/26.9% and 24.2%/26.6% to 3.35,
2.86 and 2.99 A resolution, respectively (Material and
Methods).

P3,21 SopB(155-272)-18mer and P2; SopB(155-272)-
18mer structures

Two additional SopB-DNA crystal forms were obtained
of the SopB(155-272)-18mer complex. One grew in the
same drops as the cubic crystals and were trigonal, space
group P3,21 and diffracted to 3.9 A resolution. The other
crystal form, grown under different conditions, was mono-
clinic, P2y, and required removal of the N-terminal his-tag
from SopB(155-272). The structures were both solved by
MR and both provide multiple views of the SopB-DNA
complex; the P3,21 crystals contain three SopB(155-272)
dimers and four 18-mer DNA duplexes in the ASU while
the P2; crystals have one SopB(155-272) dimer, two
SopB(155-272) monomers and two 18-mer DNA
duplexes in the ASU (Figure 1C and D).

Opverall structure of SopB-18mer complexes

The region of SopB that is visible in all the SopB-18mer
structures (residues 155-270) is essentially identical
between the structures [root mean squared deviations
(RMSDs) for comparisons of corresponding Co atoms
range from 0.3 to 0.8 A]l. The region is comprised of
seven helices (al; residues 159-172, a2; 179-186, o3;
190201, od; 204-209, oS5; 218-227, ab6; 232-248, o7,
254-265) and can be divided into two functional regions;
an N-terminal HTH-containing DNA-binding element
(residues 155-227) and a C-terminal motif consisting of
a6 and o7, which, dimerize with o6’ and o7 (where ' in-
dicates other subunit of a ‘dimer’) from a SopB subunit
bound on a different DNA duplex. Thus, strikingly these
‘dimer’ contacts link together or bridge SopB molecules
bound to different DNA molecules (Figure 1B). Database
searches revealed that SopB residues 155-272 show struc-
tural similarity to the DNA-binding domains of P1 ParB
and KorB (14,16-17). SopB(155-272) can be
superimposed on the DNA-binding domains of KorB
and P1 ParB with RMSDs of 3.0 and 3.1 A for 93 and
98 corresponding Ca atoms, respectively (Supplementary
Figure S2). Notably, this structural homology includes a6
and o7 of SopB. However, unlike SopB, the corresponding
regions in KorB and ParB do not participate in oligomer-
ization (Supplementary Figure S2). Helix 6 in KorB is too
short to be involved in dimer formation while helix 6 in
ParB is bent and not properly oriented to make the type of
dimer contacts observed in the SopB structures.

The fact that the N- and C-terminal regions are not
visible in the FL SopB-18mer structure indicates that
these three principal regions of SopB are flexibly
attached. To further test this theory, we carried out CD
studies on SopB(155-272) and FL SopB. The SopB(155—
272) fragment was found to contain 41% helix by CD,
which compares favorably to the 43%, determined from
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the structure (35). If the DNA-binding domain is the only
folded region of SopB then the FL protein should contain
17% helix and no B-strands. However, our CD analysis
showed that it contained 30% helix and 13% p-strand,
indicating that the N- and/or C-terminal regions contain
folded structures or domains and therefore, must be
flexibly attached to the central DNA-binding domain.

Structure determination of the C-terminal SopB(275-323)
dimerization domain

Previous studies suggest that SopB residues 275-323 are
involved in dimer formation and therefore must form a
folded domain, consistent with our CD studies (36). Thus,
we next produced and crystallized SopB(275-323). The
structure was solved by multiple isomorphous replacement
(MIR) methods (Figure 2A). The structure contains three
subunits in the ASU (one dimer and one subunit from
which the crystal symmetry generates the dimer) and has
been refined to an Ry /Riee Of 19.8%/23.1% to 1.58 A
resolution and includes residues 271-319, 272-319 and
275-319 of the three subunits and 156 water molecules.
The structure revealed that, indeed, residues 275-323 form
a highly intertwined dimer composed of 3 B-strands and
1 o-helix with topology (B1; 276-281, B2; 284-289, B3;
292-298 «al; 306-318) (Figure 2A-D). The dimer is
stabilized almost entirely by backbone, [-strand
hydrogen bonds The interface of the dimer buries an ex-
tensive 5990 A2 of proteln surface from solvent, consistent
with it forming the primary dimerization domain of SopB,
which anchors the SopB subunits on a palindromic DNA
site (see Figure 3). That the C-domain is a physiologically
relevant oligomer is also supported by the finding that the
identical dimer is observed twice in the crystal (the dimers
overlay with an RMSD of 0. 6A) and size exclusion chro-
matography data providing a MW of 13kDa for
SopB(275-323) [compared to a calculated MW of
11.2kDa for a SopB(275-323) dimer].

In the SopB(275-323) dimer, the B3 from each subunit
combine to form a continuous six stranded B-sheet and the
helices interact to form an antiparallel coiled-coil.
Although this structure shows no homology to the
SH3-like dimer-domain from the KorB protein, it is
similar in overall topology to the dimer-domain of Pl
ParB, despite the lack of sequence homology between
the two domains (Figure 2B-D). Specifically, both
proteins have the same (B3a), topology, which has not
been observed in other proteins. This was surprising
because the dimer-domain of P1 ParB functions as a
DNA-binding motif that specifically recognizes B-box
DNA, while the SopB C-terminal dimer-domain displays
no DNA-binding capacity (14,17). Interestingly, the P1
ParB and SopB C-domains are not only topologically
similar but they share analogous electrostatic properties
whereby one face of each domain is electronegative and
the other, strongly electropositive (Figure 2C and D).
Although the electropositive face of P1 ParB is involved
in DNA-binding, all the specificity determining contacts
from the ParB dimer-domain to the B-box are provided by
residues on its extended loop between B1-B2 and, to a
lesser extent, the loop between B2 and B3 (14,17). These
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No DNA-binding
wings

P1 ParB C-domain-B box

SopB C-domain

P1 ParB C-domain-B box F SopB C-domain

Figure 2. Structure of SopB(275-323) dimer-domain. (A) Left, a section of the experimental MIR electron density map for the SopB(275-323)
structure (blue mesh) contoured at lo. Right, ribbon diagram of the SopB(275-323) structure with one subunit colored red and labeled, and the
other subunit colored green. (B) Comparison of the P1 ParB dimer-domain—-DNA complex (right) with the corresponding SopB dimer-domain (left).
Note that although the overall structure and topology are similar, P1 ParB has extended loops between its B1-f2 and P2—B3 units that are
responsible for DNA binding that are not present in SopB. (C) Comparison of the electrostatic surfaces of the P1 ParB and SopB. Shown is the
helical containing face of each dimer-domain, which is strongly electronegative (red) in both structures. (D) Electrostatic surface of the face opposite
to that shown in (C). This face, which is involved in DNA-binding in the P1 ParB protein, is electropositive (blue) in each structure.

loops are absent in the SopB dimer-domain, explaining
why it does not participate in DNA binding (Figure 2B).
The correlation between the structures, topology and elec-
trostatics of the P1 ParB and SopB dimer-domains suggest
that they may be evolutionarily related and that either P1
ParB gained DNA binding potential by acquiring the
critical DNA-binding wings or SopB lost this potential
by deletion of these loops.

SopB a6/a7 dimerization and possible functions in
partition

Our structures reveal that the SopB C-domain composed
of residues 275-323 is the primary dimerization motif of
SopB. However, previous homologue specificity scanning
(HSS) studies, which used the high degree of sequence
similarity between the F and N15 Sop proteins (49 and
78% sequence identities between the SopB and SopA
proteins, respectively), to localize functional regions of
the Sop proteins mapped the self-association domain of
SopB to the C-terminal 79 residues, 245-323 (36,37,40).
Interestingly, this region includes most of a6 and all of o7,
which our SopB-DNA structures show forms a ‘second-
ary’ dimer interaction (Figure 3). Thus, the data suggest
that both oligomer interactions might be important in
SopB function. That the secondary dimer is functionally
relevant is_supported by the significant buried surface
area, 1400 Az, in this interface, which is on par with inter-
faces in oligomeric proteins (41,42). In addition, our gel
filtration studies demonstrated that the SopB(155-272)
fragment is almost entirely (~80%) dimeric. Thus, the

data indicate that SopB contains multiple folded
domains including a central DNA binding domain,
which also functions in secondary dimerization (residues
155-272) and a C-terminal, primary dimer-domain from
residues 273 to 323. Whether residues 1-154 fold into one
or several domains remains to be determined
(Supplementary Figure S3A-C).

SopB secondary dimer contacts

The a6/a7 interface requires the asymmetric arrangement
of a6/a7 with a6'/a7’, unlike typical dimers in which
contacts from each subunit to the other are identical
(Figure 4A and B). This is revealed by superimposition
of each subunit of all the secondary dimers observed in
our three different SopB-DNA crystal forms (see
Figures 1B-D and 4B). These overlays show that sets of
contacts made by one subunit are different from those
made by the other subunit. However, this specific asym-
metric dimer arrangement is strikingly conserved in all
dimers (as revealed by these overlays) suggesting that the
two specific types of interactions permit optimal interface
formation. While the contacts involved in the formation of
the SopB secondary dimer interface are similar to those in
other oligomer interfaces in that both polar and non-polar
contacts are utilized for its formation, a distinctive feature
of the SopB interface is the abundance of Gln and Asn
residues. These residues play key roles in dimer stabiliza-
tion by forming hydrogen bonds with the protein
backbone atoms as well as polar side chains (Figure
4A). Residues involved in these interactions include
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Figure 3. SopB primary and secondary (bridging) dimers. Relationship of the SopB primary and secondary dimers. The structure of the SopB
primary dimer bound to the palindromic DNA site was produced by combining the DNA-binding and dimer-domains (the flexible linkage is
indicated by dashed lines). Above is shown the secondary dimer contacts that permit SopB to bridge or spread between multiple, adjacent DNA

sites (generated by a 90° rotation).

QIn237, QIn238, Asn241 and QIn245. Hydrophobic
contacts are also important and those between Leu234,
Leu234’, Val264 and Val264’ serve to tie together one
end of the dimer. Additional polar contacts include
hydrogen bonds between the side chains of Glu244 and
Thr267, the side chains of Ser269 and Ser269’, and a salt
bridge between Glu244 and Lys231’ (Figure 4A). Gln, Asn
and Glu residues, which are abundant in the SopB second-
ary interface, are all known to interact with and coordin-
ate calcium (43). Gel filtration studies carried out on
SopB(155-272) in the presence of 50 mM CaCl, resulted
in a reduction of the dimer fraction from 80 to 40%,
further supporting the secondary dimer formation
observed in all the crystal forms. Moreover, these
findings also explain why two out of the four subunits in
the SopB(155-272)-18mer P2, crystal structure, which was
obtained using 200mM CaCl,, were monomeric. By
contrast, all eight subunits in the 123 and P3,21 crystals
formed an «6/a7-06'/a7 secondary dimer with an
adjacent DNA-bound SopB subunit (Figure 1B).

The a6/a7 dimer interaction is particularly intriguing as
it provides a molecular mechanism to explain the myriad
partition functions carried out by SopB including plasmid
pairing, plasmid multimerization and, importantly,
in trans spreading between DNA elements (19,44.45).

Indeed, pairing could be mediated by a secondary dimer
involving SopB molecules bound on adjacent plasmids.
Studies in the Lane laboratory have shown that the
SopB spreading function is essential for partition
because it counteracts the inhibition of SopA polymeriza-
tion. In particular, SopA localizes to the nucleoid and in
the presence of ATP, binds to DNA in a non-sequence
specific manner. When this occurs SopA polymerization
is thwarted. SopB spreading onto nucleoid DNA,
however, creates a DNA depleted or masked zone,
which permits stable SopA polymer growth. The second-
ary dimerization allows SopB to interact with several
DNA sites, in trans, both specifically and non-specifically
(see below), thus suggesting an explanation for this
unusual spreading phenomenon.

Specific and non-specific SopB—-DNA complexes

Both specific and non-specific DNA binding by SopB is
important for its partition functions. Its specific
DNA-binding function is necessary for it to interact
with each of its 12 centromere repeats to form a partition
complex, which recruits SopA. Its non-sequence specific
DNA-binding activity is needed to allow it to spread onto
and around its centromere site to mask DNA and prevent
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Figure 4. The SopB a6-a7 secondary dimer interactions. (A) Ribbon diagram showing the residues that are involved in the formation of the
secondary dimer interaction. Two views are included that are related by a ~90° rotation. Residues that contribute to the interface are shown as
sticks and labeled. Also labeled are a6 and a7. (B) Superimposition of subunits of all the secondary dimers reveals that the dimerization is not
symmetric but mediated by one subunit making one set of contacts and the other making a different set of contacts. This asymmetric arrangement is

observed in all dimers.

SopA  depolymerization. The multiple views of
SopB-18mer complexes present in the combined crystal
structures reveal how it can accomplish both forms of
DNA binding (Figure 5A—C). The structures show that
SopB achieves high specificity in binding its GC-rich con-
sensus site primarily through the utilization of multiple
arginine residues that contact guanine nucleobases. The
majority of these base interactions are provided by
residues from the recognition helix, o3, of the HTH. At
the 5" most end of each half site, Argl90 reads guanine 3
and makes weak interactions with guanine 4. Guanine 5 is
contacted by Lysl191, which also makes hydrophobic
contacts to thymine 6 (Figure 5A). In addition to
Lys191, the side chain of Ile192 and the CP of Serl89
also contact thymine 6 and Argl95 reads guanine
7" (Figure 5A). One base specific contact, provided
by Arg219 to guanine 8§, is made by a residue outside
the HTH. The two central nucleotides, adenine
9 and thymine 9', are not contacted by SopB explaining
their lack of conservation in sopC centromere elements.
Thus, these interactions effectively read every nucleotide
of the SopB consensus sequence, G3G4Gs5AC;Cgagty
GgG7TgCsCyCy (the consensus nucleobases are shown
in capital letters). In addition to the large number of base
specific contacts, there are a slew of interactions from
SopB residues to phosphate groups at the 5'-end of each
half site (Figure 5A). Importantly, these contacts show
that while SopB specifies or reads only 14 of the 18 nt in
its consensus site, it requires 18-bp for high affinity
binding as the extra up- and down-stream nucleotides at
the 5-end of each half site provide phosphate contacts
that are crucial for proper docking of the HTH element
on to the DNA (Figure 5A and B). At one 5-end, the
contacts include hydrogen bonds and electrostatic inter-
actions from ol residue Argl63, o3 residues Serl89,
Ser217, Arg219 and Ser220. At the other 5-end of the
half site, phosphate contacts are provided from o2
residues Asnl78, Ile(NH)179 and Ser180, and o3 residue
Thr194.

The position of the F SopB HTH within the protein, i.e.
residues 179-202, is consistent with HSS studies, which
demonstrated that residues 177-198 and 179-200 of F
SopB and N15 SopB, respectively, contain all the deter-
minants required for sequence specific DNA binding (36).
Indeed, swapping these residues from F SopB to NI15

SopB and vice versa resulted in switching the DNA
binding specificities of the proteins despite the fact that
N15 SopB and F SopB recognize centromeres that differ
in only one nucleotide (at position 4 and 4, per half site)
(Supplementary Figure S3C). The F SopB-DNA structure
shows that the guanines at these positions, guanine 4, are
weakly contacted by Argl90 (~4.2 A). This arginine is
conserved in the N15 SopB HTH. However, residues
adjacent to Argl90 on o3 are not conserved between F
and N15 SopB and modeling indicates that these different
residues could make distinct contacts to nucleotide 4 in the
N15 SopB-DNA complex (Supplementary Figure S3C).
However, the precise contacts cannot be predicted
without structural information. The remainder of the
N15 SopB-DNA contacts can be determined from the F
SopB-DNA structure as residues Argl90, Argl95 and
Arg219, which contact guanine 3, guanine 7 and
guanine 8, are conserved in both SopB proteins.

SopB interacts directly with 18-bp of its centromere
repeat. However, the FL centromere repeat consists of
43-bp, suggesting that the extra nucleotides between the
18-bp elements might play some role in DNA binding.
However, FP studies, which revealed Kys of 223 + 44
and 324 +43nM for FL SopB binding the 18 and
43mer, respectively, demonstrated that the intervening nu-
cleotides do not contribute to the high affinity binding of
SopB to its centromere DNA sites [notably, higher con-
centrations of SopB are required to observe non-specific
binding (27)] (Figure 5B). However, it is possible that the
intervening sequences not bound by SopB might be intrin-
sically bent. However, these DNA sequences are not
conserved and do not contain nucleotide stretches that
have strong propensities for deformation or bending.
Therefore, the role of these intervening sequences
remains to be determined.

SopB-minor groove complex: a mechanism for
non-specific DNA spreading

The abundance of basic residues in the SopB
DNA-binding unit suggests that it might mediate
non-specific interactions with DNA through the forma-
tion of phosphate contacts (Figure 6A and B). In fact,
one secondary SopB dimer in the P3;21 SopB(155-272)-
18mer  structure was captured binding both
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Figure 5. SopB-DNA interactions. (A) Left, schematic representation of SopB-DNA interactions. Only one half site of the 18-mer duplex is shown
as the identical contacts are made to each half site. The strands are labeled 1-9 and 1'-9" (where " indicates other strand of the duplex). Bases are
represented as rectangles and labeled according to sequence. The ribose groups are shown as pentagons. Hydrophobic contacts are indicated by lines
and hydrogen bonds, by arrows. Right, close up of the SopB-DNA specific major groove interactions that are made to each half site and indicated
schematically. Interacting residues are shown as blue sticks and the secondary-structural elements are labeled. (B) Fluorescence polarization
DNA-binding isotherms comparing SopB binding to the 43- and 18-mer centromere sites. Each data set was normalized, and normalized polariza-
tions were plotted along the y-axis against the protein concentrations, which are plotted along the x-axis. (C) Close up of the triple bridging
interaction that is comprised of specific and non-specific SopB-DNA found in the P3;21 crystal form. Specifically, this dimer is the one that is also
colored blue and magenta in Figure 1C. The blue subunit makes non-specific minor groove contacts to two DNA duplexes while the magenta subunit
makes the canonical major groove contacts indicated in Figure 5A and found in all the subunits of the crystals except the P3;21 blue subunit.

non-specifically and specifically to DNA (Figures 5C and
6B). Remarkably, this interaction links or bridges together
three different DNA duplexes; one SopB subunit bridges
between two DNA duplexes non-specifically while the
HTH of its ‘dimer’ partner makes sequence specific
contacts with the major groove of the third DNA duplex
(Figures 5C and 6B). In the SopB-non-specific complexes,
one SopB subunit engages residues from ol to bind the
minor groove of one DNA duplex and residues from a1,
a3 and a6 to bind the minor groove of a second, adjacent
DNA duplex. Several basic residues are involved in these
interactions. In the SopB-minor groove 1 interaction these
residues are Argl63, Argl66 and Argl70. Contacts to
minor groove 2 are much more extensive and involve
residues Serl69, GInl65, GInl72, o3 amide nitrogens,
Lys201, Lys204, Lys231 and Lys236. Thus, the structure
shows that SopB utilizes multiple basic and polar residues

and its electropositive surface to bind DNA non-sequence
specifically. Importantly, this structure suggests that the
secondary dimerization motif plays a vital role in the for-
mation of non-specific SopB-DNA complexes and
non-specific DNA spreading as it allows the SopB to
link or connect, via minor and major grooves contacts,
multiple DNA duplexes.

The conformation of the SopB bound DNA

The DNA sites bound by SopB are essentially B-DNA in
conformation with an average twist of 33.7A and rise of
34A compared to 34.3 and 3.4 A, respectively, for
B-DNA. Moreover, contrary to previous suggestions
that SopB may distort DNA, the measured bend angle
in the various SopB bound DNA sites range from only
6-8° (Figure 5A) (46). The issue of higher order
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Figure 6. Electrostatic surface representations of SopB-18mer specific and non-specific complexes. (A) SopB dimers are shown as surface represen-
tations with electropositive regions colored blue and electronegative regions red. The DNA is shown as sticks. Shown is the specific complex in which
the DNA major grooves are contacted by the basic HTH motifs. (B) Electrostatic surface representation of the non-specific SopB-DNA complex. In
this complex, the SopB secondary dimer bridges three different DNA duplexes by making non-specific contacts to the minor grooves of two DNA
duplexes (from one subunit) and specific contacts to the major groove by the HTH of the second subunit.

superstructure formation by SopB-sopC complexes has
been controversial. Studies carried out >10 year ago sug-
gested that SopB—sopC complexes form wrapped struc-
tures. This conclusion was based largely on the
supercoiling deficit caused by SopB—sopC complex forma-
tion (47-49). However, more recent experiments from the
Lane laboratory indicated that SopB does not cause DNA
distortion and explained the supercoiling deficit by SopB
DNA coating (27). Our finding that SopB does not bend
or unwind DNA is consistent with the more recent data
and suggests the possibility that the partition complex
formed when multiple SopB proteins bind the sopC
centromere may be an extended, not highly wrapped,
complex. Moreover, our data revealing the mechanism
of non-specific DNA binding by SopB as well as its
ability to form a secondary dimer that bridges between
DNA, unveils a mechanism by which SopB is able to
coat DNA, thus supporting DNA coating as an explan-
ation for the previously observed supercoiling deficit.

Model for F plasmid partition

Our combined data provide key insight into the multiple
and complex roles played by SopB in the F plasmid seg-
regation process. With the assertion that SopB does not
distort its centromere DNA, we modeled the F plasmid
partition  complex as an  extended complex
(Supplementary Figure S4). Although the in vivo DNA
centromere site would clearly exhibit some degree of flexi-
bility, the model indicates that a more extended and
unwrapped partition complex model would align the
N-terminal SopA interacting regions of the SopB mol-
ecules primarily on one face, which is 90° away from the
a6/a7 dimerization regions. This would therefore position
the secondary dimer interaction motifs favorably to
interact with SopB bound on adjacent DNA. The
primary role of the partition complex is to recruit the
SopA NTPase. SopA polymers have been visualized by
electron microscopy and found to form bundles of large
polymers up to 40 nm wide (19). The capture of these large

SopA polymers would be best executed by an extended
partition complex structure that casts out a large
number of SopB N-terminal region ‘nets’ such as sug-
gested by our structural data. Indeed, because the role
of partition complexes is to recruit their partner NTPase
polymers, it seems logical that the nature, structure and
size of partition complexes are designed to provide
optimal interaction with the NTPase polymer.
Consistent with this idea, data from type Ib partition
systems hint that they might similarly employ large
NTPase polymers to interact with extended partition
complexes. Specifically, the ParF NTPase from the
E. coli TP228 type Ib partition system forms very large
polymers (>70nm) and while the nature of the TP228
partition complex is not known, studies on the type Ib
Streptococcus pyogenes pSM19035 partition complex,
formed by ®-DNA interactions, indicate that it is
extended in nature (11,18). By contrast, type II partition
systems have been shown to form highly wrapped
ParR-centromere superhelical partition complexes with
central pore regions 18nm in diameter. The formation
of these wrapped complexes lead to the creation, within
the pore, of a high concentration of NTPase-interacting
domains of ParR (13). The small pore of the ParR—parC
superhelix is an optimal size to engulf and stabilize the
ends of the smaller 6 nm actin-like ParM NTPase fila-
ments (13,50-54).

Thus, we propose a model for F plasmid partition in
which SopB first binds to the sopC centromere to form a
more extended partition complex, which casts out many
SopA-interacting nets primarily on one face, allowing it to
effectively capture large SopA polymers. However, SopA
polymers must be stably formed to drive plasmid separ-
ation and this is not possible due to the inhibitory nature
of SopA-DNA contacts. SopB reverses this inhibition,
stabilizing SopA polymer formation, by coating DNA
near its centromere site, both in cis and in trans. Our struc-
tures suggest a novel mechanism for this coating whereby
SopB a6/a7 dimerization bridges between two or more



DNA sites. We show that SopB can bind non-specifically
to the DNA minor groove revealing how non-specific
spreading is mediated. Once the DNA is adequately
coated or masked in this manner by SopB, nucleated
SopA polymers are stabilized and can grow, thus driving
plasmid segregation.
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