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ABSTRACT

Next-generation sequencing has proven an ex-
tremely effective technology for molecular
counting applications where the number of
sequence reads provides a digital readout for
RNA-seq, ChIP-seq, Tn-seq and other applications.
The extremely large number of sequence reads that
can be obtained per run permits the analysis of
increasingly complex samples. For lower complexity
samples, however, a point of diminishing returns is
reached when the number of counts per sequence
results in oversampling with no increase in data
quality. A solution to making next-generation
sequencing as efficient and affordable as possible
involves assaying multiple samples in a single run.
Here, we report the successful 96-plexing of
complex pools of DNA barcoded yeast mutants
and show that such ‘Bar-seq’ assessment of these
samples is comparable with data provided by
barcode microarrays, the current benchmark for
this application. The cost reduction and increased
throughput permitted by highly multiplexed
sequencing will greatly expand the scope of
chemogenomics assays and, equally importantly,
the approach is suitable for other sequence
counting applications that could benefit from
massive parallelization.

INTRODUCTION

Next-generation sequencing (NGS) technologies can
generate up to several hundred million reads of DNA
sequence per lane or slide, and this capacity continues to
increase at a rapid pace. This massive capacity has allowed
exploration of diverse biological questions (1–4).
Although pooled chemogenomic screens of compound–
gene interactions in yeast (5–16) and mammalian cells
(17,18) are typically assessed using barcode microarrays,
counting of individual strains could also be assessed by
barcode sequencing. We recently developed such an
assay (Bar-seq) to monitor thousands of gene–chemical
interactions (19). We now expand upon this proof-
of-principle to interrogate 96 samples in parallel, develop-
ing the methodology and analytical tools to use NGS
to simultaneously monitor several hundred thousand
gene–environment interactions using a method
that should be readily adaptable to an automated
workflow.
Here, we demonstrate successful multiplexing of

samples obtained from 96 distinct pooled yeast growth
assays, with each sample comprising 6200 uniquely
barcoded yeast mutants. This 96-plex experiment repre-
sents a 150-fold increase in unique observations over our
proof-of-principle assessment, and provides substantial
cost reduction/experiment over microarrays.
Furthermore, while many aspects of microarray assay
costs are fixed, the cost of multiplex barcode sequencing
continues to decline as the number of reads per experiment

*To whom correspondence should be addressed. Tel: +1 416 946 8351; Fax: +1 416 978 8287; Email: corey.nislow@gmail.com
Correspondence may also be addressed to Nader Pourmand. Tel: +1 831 502 7315; Fax: +1 831 459 2891; Email: pourmand@soe.ucsc.edu

Published online 11 May 2010 Nucleic Acids Research, 2010, Vol. 38, No. 13 e142
doi:10.1093/nar/gkq368

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



increases. Indeed, this increase in sequencing rate has
recently been shown to outpace the rate of Moore’s law
(20). To assess the data quality at this level of multiplex-
ing, all 96 samples were also assessed by microarray and
we then compared the ability of both platforms to detect
specific compound–gene interactions. It is expected that
the principle of this 96-fold multiplexing application,
with its ability to discriminate many sample types/slide
or flow cell can be applied, with modification, to other
molecular counting methods such as RNA-seq (21),
ChIP-seq (22), promoter assays (23), histone occupancy
(24) and Tn-seq (25). To systematically test highly multi-
plexed Bar-seq, we required a large pool of distinct
sequences whose relative abundances could be varied
and whose quantities could also be assessed by an orthog-
onal method. The Yeast Knock Out collection of
6200 Saccharomyces cerevisiae mutants, although
designed for testing gene function, provides a suitable
test bed for new sequencing methods (19). Each yeast
deletion mutant contains three salient features: a
dominant drug resistance marker replacing the deleted
gene; two unique 20 base molecular barcodes; and univer-
sal primers that flank each barcode to allow amplification
of all barcodes in a pooled manner using a single set
of primers. Pooled competitive growth assays are typically
carried out on 6200 mutants, and their relative
abundances inferred from the signal from a barcode
microarray (5–16). The rapid pace of advance in
sequencing depth have led us and others to exploring
diverse strategies for multiplexing of samples for NGS
samples (19,25–34).
One essential element for multiplexing prior to

sequencing is the incorporation (in this instance using
modified primers during PCR) of a unique experimental
indexing tag (See Supplementary Figure S1 for structure
of PCR amplicon). Following PCR, the amplified DNA is
purified and quantified, then pooled with amplicons
derived from other samples with different indexing tags.
The pooled PCR products are then purified from a single
lane of a polyacrylamide gel, reducing costs and sample
preparation time. Further, combining samples prior to
purification reduces potential liquid transfer errors,
providing for greater uniformity, and also reducing the
number of emulsion PCRs reactions required prior to
di-nucleotide sequencing on the SOLiD V3 instrument.
In our 20- and 96-plex sequencing runs, two independent
reads were obtained for each feature (Supplementary
Figure S1): the first sequence read was primed from the
P1 adapter sequence, capturing the sequence of the first
common primer (U1) and the yeast barcode. The second
sequencing read, primed from the IA internal adaptor
captures the SOLiD indexing tag used to assign barcode
reads to 96 individual sample bins. Data from a real-world
96-plex assay show performance equal to or exceeding
both microarray data and published lower complexity
multiplexing Bar-seq data. The potential for higher
order multiplexing of thousands of samples offers the
prospect of greatly reduced cost and such ‘extreme-
multiplexing’ will benefit from robust automation to
ensure sample uniformity.

METHODS AND MATERIALS

Yeast deletion collection

The yeast deletion collection was obtained from Angela
Chu at the Stanford Genome Technology Centre, and
stored in YPD-7% dimethyl sulfoxide (DMSO) in �80�C
as individual strains in 96-well plates. The plates were
thawed and robotically pinned onto YPD agar plates.
Cells are grown in 30�C for 2–3 days until colonies form.
Slow growing strains were grown separately for 2–3 add-
itional days. All plates were then flooded with 5–7ml of
media, scraped and pooled in YPD-7% DMSO to a final
concentration of OD600=50, and frozen at �80�C until
use, as described by Pierce et al. (11).

Construction of pools with fixed numbers of barcoded
strains

A pool of 953 different heterozygous mutants was selected
to contain two well-known drug targets as heterozygous
deletions. ‘Pool-constant’ was constructed by growing
each strain in 100ml of YPD to saturation in 96-well
plates then pooling 20 ml from each well, so that all 953
strains in this pool are at approximately the same abun-
dance. ‘Pool-variable’ consisted of the same 953 strains
but in this pool, the number of cells of each strain was
varied systematically with one-quarter of the 953 strains
added at one of the following ratios (2 : 1 : 0.5 : 0.25) with
respect to Pool-constant.

Pooled growth assays

Two deletion pools, a homozygous deletion pool of 5054
strains representing non-essential genes and a heterozy-
gous pool of 1194 strains representing genes essential for
viability, were thawed and diluted in YPD to an OD600 of
0.0625. Seven hundred microliters of cultures were grown
at 30�C with a chemical inhibitor applied at a dose that
produced 10–20% growth inhibition of wild-type. An
automated liquid handler was used to maintain logarith-
mic growth of pools (by dilution), and to collect 0.7
OD600s of heterozygous pool following 20 generations of
growth, and 1.4 OD600s of homozygous pool following
five generations of growth.

Assessing fitness of barcoded yeast strains by barcode
microarray

Except where indicated, pooled assays were performed as
described by Pierce et al. (11). Genomic DNA was isolated
from cells and barcodes amplified and hybridized to
barcode microarrays, where each barcode deletion
mutant is represented by 10 hybridization signals (an
uptag and downtag for each strain, each present on the
array five times). Array signals were quantile normalized
such that all tags hybridized with the sample pool had
similar distributions. Following normalization, a correc-
tion factor was applied to the array data to correct for
feature saturation (11) and the fitness of each barcoded
deletion strain determined using the uptag barcodes only
(to compare to the sequencing samples which contained
only uptags as well). Positive fitness defect scores signify a
decrease in strain abundance during drug treatment and
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suggest that the wild-type version of the gene deleted in
that strain is required for resistance to that drug or
inhibitor.

Assessing fitness of barcoded yeast strains by SOLiD
sequencing

DNA was isolated from the deletion pools as described
(11). Each 20-mer uptag barcode was amplified with com-
posite primers comprised of the sequences of the common
barcode primers and the sequences required for attach-
ment to the SOLiD slide. For the Uptags the following
primers were used:

50-CTGCCCCGGGTTCCTCATTCTCTNNNNNNNN
NNCTGCTGTACGGCCAAGGCGGTCGACCTGCAG
CGTACG-30 (Forward) and

50-CCTCTCTATGGGCAGTCGGTGATGATGTCCA
CGAGGTCTCT-30 (Reverse). The 50 portion (in bold) are
the P2 and P1 sequences incorporated into the F and R
primer, respectively. The variable sequence (italics) repre-
sents the 10-mer indexing tag used for multiplexing. The
internal adaptor (IA) sequence (bold italics) is required to
sequence the SOLiD multiplexing tags. The 30 portion
(underlined) represents the common primer flanking the
uptag barcode and is required to amplify the yeast
barcodes. PCR amplification was conducted in 100ml
volumes, using Invitrogen Platinum PCR Supermix (Cat.
No. 11306-016) with the following conditions: 95�C/3min;
25 cycles of 94�C/30 s, 55�C/30 s, 68�C/30 s; followed by
68�C/10min. PCR product was then purified with Qiagen
MinEluteTM 96 UF PCR Purification Kit (Cat. No.
28051). Following PCR purification, DNA was quantified
with the Invitrogen Quant-iTTM dsDNA BR Assay Kit
(Cat No. Q32853) and then adjusted to a concentration
of 10 mg/ml. Equal volumes of normalized DNAs were
then pooled. This pooled DNA (20- and 96-plex) consist-
ing of 130-bp PCR products was gel purified from 12%
polyacrylamide TBE gels using the crush and soak method
(35) followed by ethanol precipitation. Samples were used
directly for emulsion PCR and bead enrichment. Each
bead on the slide was hybridized twice, first to the P1
primer to sequence the yeast barcode (SOLiD Fragment
Library Sequencing kit—Master Mix 50 Cat No. 4406370;
SOLiD 3 Instrument Buffer kit Cat No. 4406479) and then
to the internal adaptor (IA) to sequence the SOLiD multi-
plexing tag (SOLiD Fragment Library Sequencing kit
Barcode set Cat No. 4406447). The 10-base multiplexing
tag allowed postsequencing assignment of each amplicon
to a particular experiment. The identity of each bead’s
multiplexing tag was determined allowing 0 mismatches.
To analyze the Bar-seq data, all counts were quantile
normalized such that each experiment had the same
count distribution. By analogy with barcode microarray
fitness experiments, fitness defect ratios for each strain
were calculated and expressed as the log2 ratio (control/
treatment).

RESULTS

As a proof of principle, we performed a 20-plex analysis of
five samples; two untreated controls and three chemically

treated samples (four replicates each plus a spike-in
control consisting of five unique samples). We found an
average correlation of r=0.989 between raw, unfiltered
counts in replicate experiments, indicating the sequencing
assay is highly reproducible. The same five samples were
hybridized to barcode microarrays. Treatment of the yeast
deletion pool with the DNA damaging agent cisplatin
resulted in fitness defects in strains deleted for a variety
of DNA repair genes, when either sequencing or array
were used as the readout [Figure 1a and Supplementary
Table S1 (10)]. Treatment of the yeast deletion pool with
the drug cervistatin showed a similar concordance
between Bar-seq and array readouts. For example, in
cervistatin treatment the strain deleted for Hmg1 [the
known drug target (19)] scored as one of the top hits in
both the microarray and Bar-seq assays (Supplementary
Figure S2). The fitness defect ratios across all strains were
well correlated (r=0.739).
We next expanded the degree of multiplexing from 20 to

96 individual experiments. The 96-plex experiment
includes 12 DMSO-treated vehicle controls, 84 drug-
treated samples and 5 spike-in controls. The experimental
samples were selected based on the availability of existing
hybridization data from our laboratory.
To assess our ability to resolve data from a 96-plex ex-

periment, we first examined the spike-in controls that con-
sisted of a pool of 953 yeast deletion mutants combined at
the same relative abundance (Pool-constant). This pool
was amplified in four separate PCR reactions, each
reaction having a different multiplexing primer with a
unique SOLiD indexing tag. Each sample was added to
the sequencing reaction at 1 of 4 relative quantities (1�,
2�, 4� or 8�). Comparison between these samples using
count ratios (Supplementary Figure S3) indicated that
there were sufficient sequencing counts in the 96-plex ex-
periment to identify a 4-fold difference in barcode abun-
dance between two samples. While the counts do not
scatter symmetrically around the expected ratio line
(likely reflecting slight imprecision at the pooling step)
the populations are distinct. Figure 1b shows two samples
from the 96-plex that clearly reveal distinct drug targets.
Methyl methanesulfonate (MMS), a DNA damaging
agent, shows that the Rad5 deletion strain exhibits a prom-
inent fitness defect after analysis by both multiplexed NGS
and microarray [Supplementary Table 2 (10)]. Results
obtained with a second, previously uncharacterized
compound 1561-0023 (from ChemDiv, Inc.) suggest that
it may be an inhibitor of Pkc1, a serine/threonine kinase
involved in cell wall remodeling during growth (36). We
compared the structure of this inhibitor to 150 known
Pkc1 inhibitors present in the ‘Chembl’ database
(http://www.ebi.ac.uk/chembldb/index.php using
ECFP_4 fingerprints to represent the structures and a
Tanimoto score cutoff of >0.3). This analysis found no
similar structures, suggesting this compound is a potential-
ly novel chemical probe for inhibiting Pkc1.
To assess if increasing the degree of multiplexing from

20 to 96 affected either data quality or data reproducibil-
ity, we examined the correlation of signal ratios in the
spike-in samples that were present in both sequencing
runs, using Pool-constant (at 8� abundance) and a
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second pool of the same 953 strains divided into four
levels of abundance relative to Pool-constant (i.e. 2�,
1�, 0.5� and 0.25� of Pool-constant). Ratios were
highly correlated between 20- and 96-plex runs
(r=0.943; Figure 2). Since the same pool of 953 strains
had previously been assessed with an Illumina Genome
Analyzer IIx, we performed a cross-platform comparison.
The ratios showed a strong agreement between both
methods with correlations of, r=0.866, 0.896 for the
SOLiD 20- and 96-plex, respectively (Figure 2). The
ratios calculated by microarray analysis were similar to
ratios calculated on either platform at each level of multi-
plexing (r ranging from 0.695–0.746; Figure 2).
We also assessed the performance of the SOLiD multi-

plexing tags used in the 96-plex experiment. Specifically,
index tags were first assigned to samples only when there
was a perfect match to the expected sequence. We then
reanalyzed this data to allow up to two mismatches to the
index sequence to ask if additional reads could be mapped,
without degrading performance due to misaligned reads.
In total, �320 million reads were collected in the 96-plex

experiment (including spike-in controls, this sample com-
prises 104 different index sequences). Of these sequences,
64.5% were separated into bins based on a perfect match
to the 10-bp index sequence. Of the 96 samples generated
from the complete pool, the average bin size was 2.1
million reads. The coefficient of variation across these 96
samples was 19%.

By allowing either one or two mismatches in the index
sequence, the total percentage of reads binned increased
from 64.5% to 80%. With one mismatch, the percentage
increase across the 96 bins ranges between 5.5% and
14.8%, with a further increase of 6.0–17% observed
with two mismatches (Supplementary Table S3 and
Figure S4).

We examined a number of sequence characteristics in
the index sequence to identify any factors that might con-
tribute to the variation in the increased bin sizes after
allowing mismatches. The GC content of the 10-base
index ranged between 20% and 80% with a median GC
content of 50%. No correlation was observed between the
GC content and the increased bin sizes after either one or
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two mismatches. Furthermore, the index sequences with
GC content at the extremes (20%, 80%) did not show
significant differences in bin increases versus index se-
quences with balanced GC. Mononucleotide runs of 3 or
4 bases were observed in 31 and 4% of the index se-
quences, respectively. Index sequences containing these
runs did not differ significantly from those that did not
have these runs with respect to the increases in bin size
after allowance of mismatches. We next examined vari-
ation in the dinucleotide pair at the end of the index
barcode immediately 30 to the sequencing primer. Of the
16 possible dinucleotides, 13 were present. No significant
differences were seen across these classes. Finally, to de-
termine if any of the index sequences introduced a second-
ary structure that might affect sequencing accuracy. We
determined the free energy (37) of the 70-base sequence
common to all reactions, which differed only by the index
sequence (sequencing primer/adapter+index+spacer+
upstream barcode). Maximal free energies ranged
between �11.69 and �5.04 kcal/mol. No correlation was

seen between free energy and increases in bin sizes after
allowance of mismatches.
A few index barcodes in the 96-plex experiment dis-

played relatively large increases in bin size after allowance
of mismatches compared with most of the sequences.
These all appeared in the five samples generated from
contrived pools (bins 100–104). After allowance of a
single mismatch in the index barcode, bin 100 increased
by 53%, followed by a further 24% increase after allow-
ance of two mismatches. After two mismatches, bins 102
and 103 also increased by 32 and 45%, respectively
(Supplementary Table S3 and Figure S4). No primary
sequence characteristic was observed in these index se-
quences, which was also not observed in the other index
sequences. For these three indexes, the GC content was
either 40 or 50%, only a single mononucleotide run of 3
bases was observed, the dinucleotide end sequences were
not unique and the free energy was at the less negative end
of the range, suggesting less secondary structure interfer-
ence. Based on this initial analysis of the index sequences,
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we conclude that despite their sequence differences, their
performance for this application is robust.

DISCUSSION

We previously determined, by simulation, that a minimum
of 50 counts per barcode was sufficient for accurate assess-
ment of strain abundance in Bar-seq analysis (19). In the
96-plex experiment each barcode was counted, on average,
262 times (ranging from 111 counts to 383 counts/
barcode). In contrast, the 20-plex experiment counted
each barcode an average of 1224 times. Both the counts
between replicates and the relative strain abundance in our
spike-in pools are highly correlated between the 20- and
96-plex runs, suggesting that empirically 100–300 counts/
barcode is sufficient. Additional studies will be required to
determine the actual lower limit of counts at different false
discovery thresholds. From a practical perspective, we
were able to clearly identify drug targets in many of the
experiments in the 96-plex run (Figure 1b), suggesting
higher order (>96) multiplexing can be achieved. Fitness
defect ratios for all strains/pool were highly correlated
across different platforms (SOLiD, Illumina/Solexa and
microarray; Figure 2). This matched sequencing array
data set of a 20- and 96-plex samples should be useful
for assessment of platform-specific performance.
Furthermore, given the similarity in experimental design
of yeast deletion pool experiments and highly multiplexed
shRNA assays in mammalian cells (38), the methods
described here should translate well to these more
complex pooled assays.
Finally, the data presented in this study may prove

useful by providing a large data set to augment
computer-aided barcode design efforts (33,39,40), which
will become increasingly important as the levels of multi-
plexing increase further. In summary, we present a robust
96-plex method for sequencing pools of medium complex-
ity (1000–50 000 members/pool) that should be applicable
to other sequencing applications.

SUPPLEMENTARY DATA

Supplemental figures are available at NAR Online. Raw
data available at: http://chemogenomics.med.utoronto.ca/
supplemental/multiplex/.
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