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Abstract
Temporal lobe epilepsy (TLE) characterized by an epileptogenic focus in the medial temporal lobe
is the most common form of focal epilepsy. However, the seizures are not confined to the temporal
lobe but can spread to other, anatomically connected brain regions where they can cause similar
structural abnormalities as observed in the focus. The aim of this study was to derive whole brain
networks from volumetric data and obtain network-centric measures which can capture cortical
thinning characteristic for TLE and can be used for classifying a given MRI into TLE or normal,
and to obtain additional summary statistics which relate to the extent and spread of the disease. T1
weighted whole brain images were acquired on a 4T magnet in 13 patients with TLE with mesial
temporal lobe sclerosis (TLE-MTS), 14 patients with TLE with normal MRI (TLE-no) and 30
controls. Mean cortical thickness and curvature measurements were obtained using the Freesurfer
software. These values were used to derive a graph, or network, for each subject. The nodes of the
graph are brain regions, and edges represent disease progression paths. We show how to obtain
summary statistics like mean, median and variance defined for these networks and to perform
exploratory analyses like correlation and classification. Our results indicate that the proposed
network approach can improve accuracy of classifying subjects into 2 groups (control and TLE),
from 78% for non-network classifiers to 93% using the proposed approach. We also obtain
network “peakiness” values using statistical measures like entropy and complexity - this appears
to be a good characterizer of the disease, and may have utility in surgical planning.

Introduction
Temporal lobe epilepsy (TLE) is characterized by an epileptogenic focus in the mesial
temporal lobe structures and is the most common form of partial epilepsy with a prevalence
of 0.1% in the general population. Based on imaging and histopathology two types of non-
lesional TLE can be distinguished: 1. TLE with mesial-temporal lobe sclerosis (TLE-MTS,
about 60–70%), characterized by an atrophied hippocampus with clear MRI abnormalities
and severe neuronal loss. Depth EEG shows a relatively circumscribed epileptogenic zone in
mesial temporal structures. 2. TLE with normal appearing hippocampus on MRI (TLE-no,
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about 30–40%) and mild or no neuronal loss on histological examination. In TLE-no depth
EEG shows a more widespread, less well defined epileptogenic area in the mesial temporal
lobe extending into the inferior and lateral temporal lobe (Vossler et al. 2004). In both TLE
types however, seizures are not restricted to the temporal lobe but can spread to other
anatomically connected extratemporal brain regions, and can cause similar if less severe
abnormalities. The pathophysiology of these extratemporal changes is not entirely clear and
possible mechanisms include secondary neuronal loss due to deafferentiation and neuronal
loss/dysfunction due to local excitotoxic effects of seizure spread with propagation of
epileptogenic activity to secondary regions (Zumsteg et al., 2006; Huppertz et al., 2001).

The anatomically defined projections of the epileptogenic focus to other temporal and
extratemporal regions will determine the distribution and severity of extrafocal
abnormalities. Therefore, a description of the distribution of extratemporal abnormalities
might provide additional information regarding the exact location of the epileptogenic focus.
Recently regionally unbiased whole brain cortical thickness measurements based on T1
weighted images were reported (Fischl and Dale, 2000; Thompson et al., 2005), and their
use in TLE have shown them to be very sensitive for the detection of distributed atrophic
effects in TLE-MTS and TLE no (Lin et al., 2007; MacDonald et al., 2008; Bernhardt et al.,
2008; Mueller et al. 2009a).

However, these studies have not considered the network-level architecture (i.e. topology) of
the observed pattern of extrafocal cortical thinning. The overall goal of this study was
therefore to test if it is possible to derive, for each patient, a TLE-related network within the
brain by looking at extrafocal abnormalities in cortical thinning. The nodes of this network
are the regions significantly affected by the disease, and the link between any two nodes
represents the probability of the two regions having a disease progression path between
them. Prior studies have already demonstrated that it is possible to derive connectivity
between cortical regions in terms of statistical associations between brain regions across
subjects in terms of cortical thickness (Lerch et al., 2006; He et al., 2007 and 2008; Chen et
al., 2008) or volume (Bassett, et al., 2008).

In this work we propose a generalized Gibbs probability model for network connectivity,
attempt to derive individual brain networks from this model (rather than group networks
proposed by previous authors), and propose a graph-theoretic method for performing
conventional statistical analysis like correlation and classification using network-level
information. Finally we explore traditional network features such as degree distribution and
clustering, and novel features such as network entropy and complexity. Our chosen disease
model is TLE, for which the following questions were addressed. 1. Do networks derived by
this approach differ between TLE-MTS and TLE-no? 2. How do these networks contribute
to the focus localization in TLE-MTS and TLE-no? 3. Can the information contained in the
structure of these networks be used to correctly classify a subject into disease group?

Theory
A Generalized Gibbs Probability Distribution Model For Cortical Thickness

Our input consists of the 68 cortical ROIs provided by Freesurfer (Fischl et al., 2004) and 4
sub-cortical ROIs from hippocampal volumetry – details are in the Methods section. Each of
these ROIs is mapped to a node in our hypothesized network. Suppose we are given N
subjects each of whom belongs to one of the three groups {control, TLE-MTS, TLE-no}.
Let a subject k ∈ {1, …, N}, have a (n × n) table Tk of cortical thickness values, where Tk (i)
denotes the cortical thickness of the i-th ROI of the k-th subject, and i ∈{1,.., n}. Let the
mean and standard deviations of each ROI thickness over all known healthy subjects be μT
(i) and σT (i). Define the normalized z-scores of these subjects as follows
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(1a)

Observations of TLE subjects indicated significant cortical thinning, and also higher surface
irregularity reflected by higher average curvature. In Figure 1 a scatter plot of cortical
thickness versus curvature (normalized z-scores) indicates a moderate negative correlation
between the two for TLE patients and almost no correlation for healthy subjects. Therefore
we define the z-scores corresponding to cortical curvature, given curvature tables Ck:

(1b)

For subcortical structures, thickness is difficult and/or inappropriate to measure. Instead we
obtain their volume tables Volk using Freesurfer and from hippocampal subfield volumetry
(see Methods), and normalize them in the same way as thickness and curvature:

(1c)

Since the data have been normalized by noise variance of each ROI, it is now possible to use
these values irrespective of whether they came from thickness, curvature or volume.

Given the preponderance of evidence that statistical association of cortical thickness or
volume denotes cortical connectivity (Lerch et al., 2006; He et al., 2007 and 2008; Chen et
al., 2008) or volume (Bassett, et al., 2008), we now attempt to fit a probabilistic model to
this data and ask whether individual networks can be created from this model that captures
the network properties of the disease. We hypothesize that there exists a function χ: R × R
→ R such that the probability of a disease progression path between any two nodes i and j of
the k-th subject is given by

(2)

The distribution over the entire brain network is given by

(3)

Where  is the normalizing constant and is called Partition Function. This is a generalized
version of Gibbs distributions defined over a Markov Random Field (Geman and Geman,
1984; Li, 1995). Gibbs distributions were originally used in statistical mechanics, and have
since appeared in diverse fields to capture the statistics of images (Geman and Geman 1984;
Besag, 1986), chaotic systems (Beck and Schlogl, 1993), and as natural spatial priors in
MRI image reconstruction (Raj et al., 2007).

Clearly from equations (2) and (3), the set of pairwise potentials χ(Zi, Zj) form a sufficient
statistic for the entire distribution, and have a special connotation as Potential Functions in
statistical mechanics. This paper treats them simply as a matrix of connection strength
between nodes, but their meaning should always be understood in terms of the probability
distribution shown in equations (2,3).
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A New Proposal To Create Networks Characteristic of TLE
The correct form of χ, which depends on the disease process, may be chosen from a set of
candidate formulas by optimizing over some reasonable objective function, for instance
using a Gibbs learning algorithm (Li, 1995). In Appendix A we show that a particular choice
of the model, with χ(Zi, Zj) = Zi · Zj amounts to the Pearson correlation which has appeared
in previous reports. Here we do not rigorously go into the problem of model selection. We
created a short list (Appendix B) of so-called robust L1-norm models (e.g. Raj et al., 2007)
and selected the following formula for χ that gave the highest classifying power, as shown in
Figure 6. Define a (n × n) connectivity matrix ℂk of subject k, for each pair of nodes i and j
in the network as

(4a)

For subcortical regions we have volume but not thickness or curvature, and a comparable
connectivity score is defined as

(4b)

Network Pruning—Noise reduction is accomplished by imposing the condition that
affected regions exhibit both thinning and curvature increase:

(5a)

For subcortical regions:

(5b)

Finally, nodes which have zero or very small connections (using a user-defined threshold) to
other nodes are eliminated.

Graph Theoretical Features of an Individual Network
Several network-level summary measures are known (Watts et al., 1998). The degree of a
node is the average number of connections to that node. The clustering coefficient of a node
is the average number of connections between the node’s neighbors divided by all their
possible connections. Chen et al. (2008), Bassett et al. (2008) and He et al. (2007, 2008)
found these measures to indicate so-called small world properties in the brain. In this study
degree is computed as the sum of connectivity weights. In contrast to prior work our
individual subjects’ networks obtained from cortical thickness data simply do not show
enough group-wise differences in terms of the above popular network metrics to make them
useful for classification (see Figure 7). We therefore propose three additional summary
features that do capture relevant group differences and measure the “peakiness” of the
network: Network Entropy, Statistical Complexity (Crutchfield and Young, 1989), and
Mono-exponential decay of degree curve.
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First we transform a given network into a Markovian transition matrix, where the sum of the
connectivity exiting any node adds up to 1, and therefore each edge weight can be thought of
as the probability of moving from that node to its neighbor. Define a new connectivity
matrix ℂ̃k from ℂk whose rows have been normalized to sum to 1. The transition
probabilities between any two nodes are given directly by the edge weights of this
normalized matrix: pij = ℂ̃k (i, j). It is well-known (Zhang et al., 2008) that the left-most
eigenvector v1 of ℂ̃k represents the stationary distribution of the network, and gives node
probabilities according to pi = v1 (i). Then the new summary features are:

a.
Network Entropy: . Low entropy denotes a “peaky” connectivity
curve.

b.
Network Statistical Complexity: . Complexity is an
information measure representing uniformity in connection weights, thus low
complexity denotes higher “peakiness”.

c. Mono-exponential decay constant τ of sorted degree curve: s(i) ∝ smax e−i/τ,
where s(i) is the sorted connectivity sum for node i, and smax is its largest value.
Small τ denotes peakiness.

A Proposal For Classifying Networks
Let the TLE network of subject k be given by the graph Gk = {Vk, Ek}, where Vk is the set of
nodes or vertices of the graph, and Ek is the set of edges. Denote the set of all such graphs by
Ω. Since the epileptogenic network of different subjects may vary in terms of affected
nodes, severity and spatial distribution, we allow graphs to have varying number of nodes,
edges and topologies, in particular, |Gk|≠|Gk′|, Vk≠Vk′. This is to be contrasted with
traditional similarity measures defined on scalars or vectors, which require equal size of all
constituents.

We propose a new method for specifying the “distance” between individual networks, as
follows. Suppose we start with the network Gk, and insert or delete nodes as well as edges
one by one, until we match the network Gk′ - such that there exists a graph isomorphism
between Gk and Gk′. Each of these modifications comes at a pre-defined cost, in our case, a
unit cost for inserting or deleting a node, and a cost of |eij| for inserting or deleting an edge
of weight |eij|, and a cost of |eij − e′ij| for modifying the cost of edge eij to e′ij. Let us define
the edit cost of this edit path from Gk to Gk′ as the sum of all these pre-defined costs added
over all the insert/delete/modify steps. Then the Graph Edit Distance (GED) between Gk and
Gk′ is the edit cost of the edit path from Gk to Gk′ which gives the minimum cost:

(6)

Details are in Appendix C. The GED allows us to treat individual networks like random
variables, by a mapping from graphs to non-negative scalar variables, as described in
Appendix C. Pairwise GED distances are then embedded into a Cartesian feature space
using a popular algorithm called MultiDimensional Scaling (MDS) (Seber, 1984). MDS has
been successful in several biomedical data analysis problems, particularly genomic data
analysis (Tzeng et al., 2008).

The entire process beginning with FreeSurfer analysis on MR images, to network formation,
to GED distance to the MDS mapping is depicted in a flowchart in Figure 2. Finally, the

Raj et al. Page 5

Neuroimage. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cartesian feature vectors are fed to a classification routine to obtain class labels for each
subject. We chose a classical clustering method for this purpose, called linear discriminant
analysis (LDA) (Krzanowski, 1988; Appendix C).

New TLE-Specific Measures: Dispersion, Severity and Temporal Lobe Specificity
Dispersion—We define a new network measure of “peakiness” called Dispersion. For
maximum descriptive power we propose the first Principal Component (PC1) of the 3
previously defined peakiness measures (entropy, complexity, exponential decay), each
normalized to have unit variance. PC1 is determined simply as follows (Jolliffe, 2002).

(7)

In order to convert PC1 in the range (0,1), we perform the logit transform (Ashton, 1972)

(8)

Severity—Overall brain atrophy or severity can be defined as the sum of connectivity over
all nodes

(9)

Temporal Lobe Specificity—The clinician is also interested in assessing how specific
the disease is to the temporal lobe, and how much it has dispersed outside the temporal lobe.
A simple measure of TL specificity, as a ratio of connectivity within ipsilateral temporal
lobe, over the entire brain is:

(10)

TL specificity could be an important measure for patients slated for temporal lobe resection
surgery.

Methods
Study Population

This study was approved by our institution’s IRB and written informed consent was
obtained from each subject according to the Declaration of Helsinki. Twenty-seven patients
suffering from drug resistant TLE were recruited between mid 2005 and end of 2007 from
the Pacific Epilepsy Program, California Pacific Medical Center and the Northern California
Comprehensive Epilepsy Center, UCSF, where they underwent evaluation for epilepsy
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surgery. Thirteen patients had evidence for MTS on 1.5T MRI (TLE-MTS) and 14 patients
had normal appearing hippocampi and normal reads on 1.5T MRI (TLE-no). The presence
of MTS in TLE-MTS was confirmed by hippocampal subfield volumetry using high
resolution T2 weighted images aimed at the hippocampus. The absence of MTS was
confirmed in all but one TLE-no who had a significant volume loss in the ipsilateral
subiculum. TLE groups were matched for lateralization: 9 left/8right (female), and 5 left/5
right (male). Subjects were grouped into ipsilateral and contralateral, by side-flipping one
group, so that all patients had the focus on the left side. Identification of epileptogenic focus
was based on seizure semiology and prolonged ictal and interictal Video/EEG/Telemetry
(VET) in all patients. The control population consisted of 30 healthy volunteers. Table 1
displays subject characteristics.

MRI acquisition
All imaging was performed on a Bruker MedSpec 4T system controlled by a Siemens Trio™

console and equipped with an eight channel array coil (USA Instruments). The following
sequences were acquired: 1. For cortical thickness and thalamus measurements a volumetric
T1-weighted gradient echo MRI (MPRAGE) TR/TE/TI = 2300/3/950 ms, 1.0 × 1.0 × 1.0
mm3 resolution, acquisition time 5.17 min. 2. For the measurement of hippocampal
subfields, a high resolution T2 weighted fast spin echo sequence (TR/TE: 3500/19 ms, 0.4 ×
0.4 mm in plane resolution, 2 mm slice thickness, 24 slices acquisition time 5:30 min., and
3. For the determination of intracranial volume (ICV), a T2 weighted turbospin echo
sequence (TR/TE 8390/70 ms, 0.9 × 0.9 × 3 mm nominal resolution, 54 slices, acquisition
time 3.06 min).

Cortical Thickness Measurement
All T1 images were segmented using EMS (van Leemput et al., 1999a,b). The bias field
maps and tissue maps obtained during this process were used for bias correction and skull
stripping of the T1 image. FreeSurfer (version 3.05, https://surfer.nmr.mgh.harvard.edu) was
used for cortical surface reconstruction and cortical thickness estimation. The procedure has
been extensively described elsewhere (Fischl et al., 1999a,b; Fischl and Dale, 2000; Fischl et
al., 2001; Fischl et al., 2002; Fischl et al., 2004a,b; Dale et al., 1999; Segonne et al., 2005).
Visual inspection by raters unaware of the clinical diagnosis was used to manually correct
errors due to segmentation miss-classification, if necessary. An automatic parcellation
technique was used to subdivide each hemisphere into 34 gyral labels (Desikan et al., 2006).

Hippocampal subfield volumetry
The method used for subfield marking has been described previously (Mueller et al. 2009b).
The marking scheme depends on anatomical landmarks, particularly on a hypointense line
representing myelinated fibers in the stratum moleculare/lacunosum (Eriksson et al. 2008)
which can be reliably visualized on high resolution images. Therefore external and internal
hippocampal landmarks are used to further subdivide the hippocampus into subiculum, CA1,
CA1-2 transition zone and CA3 dentate gyrus.

Network-level Processing
Means of healthy male and female controls were subtracted from all gender-grouped
datasets in order to remove systematic gender-related bias. Since gender-specific healthy
mean values are available, it was not necessary to perform the usual correction involving
intra-cranial volume as a covariate. Our subjects are approximately age-matched, and
therefore no age effect adjustment was needed. A connectivity matrix was then obtained
each subject’s tables using Eqs. (4–5).
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Group networks—A summary network for the entire group (c.f. He et al., (2007)) was
obtained as follows. Across the entire group, a count was maintained of all non-zero edge
weights and the strongest 15-percentile of edges were retained. The summary network has
the same nodes as an individual network, and its edge weight are given by the number of
times that edge appeared in individual networks.

Classification—Euclidean embedding of proposed Graph Edit distance between subjects
was performed using the MDS algorithm. Classification using linear discriminant analysis
yielded TLE-MTS, TLE-no and Control groups. In order to avoid using the same data for
both training and classification, we adopted the jack-knife or leave-one-out approach. Each
subject, whether control or TLE, was classified by using the remaining subjects as training
set. Results of this leave-one-out validation were summarized by the Receiver Operator
Characteristics (ROC) curve (Kraemer et al., 1992).

Lateralization—The sum of outgoing connectivities (“severity”) of each node was
computed and sorted. Then a lateralization label (“left” or “right”) was assigned to each
subject, depending on which hemisphere had the larger number of such highly-connected
nodes. A concordance score (from 0–100%) was computed by comparing with the
lateralization obtained by VET.

Network-level metrics—Traditional network measures (degree, clustering), new ones
(network entropy, statistical complexity and monoexponential decay parameter fit), and
TLE-specific ones (Dispersion, Severity, TL-specificty) were computed. Histograms of
these features were compiled, a 2-sample one-sided student’s T-test was performed between
each group pair, and their p-values were obtained.

Results
Cortical Thickness and Curvature

Normalized thickness maps are consistent with earlier reports (Mueller et al., 2009a) and are
not shown here. Briefly, TLE-MTS was associated with prominent cortical thinning in
ipsilateral medial posterior temporal and lateral prestriatal structures, additional regions with
less severe cortical thinning were found in superior frontal, pre/postcentral and superior
temporal regions bilaterally. TLE-no was associated with prominent cortical thinning in
ipsilateral anterior inferior, lateral and superior temporal, opercular and insular regions. Less
prominent cortical thinning was also found in superior frontal regions and pre/postcentral
regions bilaterally. As reported before, there was more widespread contralateral involvement
in TLE-no than in TLE-MTS. We did not find significant (p<0.05) curvature changes as a
stand-alone measure, however Figure 1 shows that moderate correlation exists between
thickness and curvature in TLE but none in healthy subjects.

Summary Group Network
Figure 3 shows summary networks for TLE-MTS and TLE-no groups, displayed using a
novel illustration method whereby cortical nodes are mapped to an ellipse except for the
cingulate which are mapped as arcs within the ellipse for ease of visualization. High
threshold (85-percentile) and low threshold (70-percentile) cases are shown separately in
order to give a sense of how frequently the edges appear in their group. Localized nature of
TLE-MTS is easily distinguished from more diffuse TLE-no. While TLE-no has a larger
number of edges at low threshold than TLE-MTS, the opposite is true at high threshold. This
implies that TLE-MTS has a few very strong edges, while TLE-no has more, well-
distributed, but weaker edges. Table 2 shows that node connectivity strength is distributed in
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the brain as expected from prior studies, with dominant ipsilateral temporal involvement in
TLE-MTS and bilateral involvement in TLE-no.

Classification Using Individual Networks
Figure 4 shows 2-way (Control vs. TLE) and 3-way (Control vs. TLE-MTS vs. TLE-no)
ROC classification curves from the leave-one-out analysis. Best accuracy is obtained by
graph edit distance measure (93% area under ROC Curve, compared to 78% for vector
distance classifier). The classification performance is higher for the 2-group case compared
to the 3-group case, as expected. Figure 6 shows that the max() function (Eq. 4) produces the
best classifier AUC of all alternatives listed in Appendix B. Supplementary Figure S1 shows
that classification accuracy increases substantially when one uses both thickness and
curvature rather than thickness alone.

Lateralization
Concordance between lateralization from VET with the network approach is plotted in
Figure 5 against the number of highest-connected nodes used in the calculation of laterality.
Only 40% concordance is achieved by looking at the first 3 most well-connected nodes in
the networks, rising to 100% with increasing number of nodes.

Summary Network Measures
Degree distribution, clustering coefficient, and sum of outgoing connection weights are
presented in Figure 7 after sorting from highest to lowest. Only the last measure showed
significant group differences. The 3 new summary measures (network entropy, network
statistical complexity and mono-exponential decay of sorted degree curve are shown in
Figure 8. The p-values corresponding to a 2-tailed t-test between the 3 groups are
significant, as shown between each group pair. Note how these measures impose a specific
order on the 3 groups: the TLE-MTS patients are distinguished by “peaky” summary curves,
which indicate a well-localized epileptic focus. The TLE-no patients show greatly reduced
peakiness in their curves, as expected. Healthy subjects show the least amount of peakiness,
indicating no specific focus, as expected.

TLE-Specific measures
A scatter plot of severity versus dispersion is shown in Figure 9, which demonstrates that
while all TLE-MTS fall comfortably within the expected quadrant of high-severity-low-
dispersion, the TLE-no is more dispersed as well as less severe. Figure 10 shows a scatter
plot of dispersion versus TL specificity, and again indicates that TLE-MTS subjects fall in
the expected quadrant of low-dispersion-high TL specificity.

Discussion
Summary of findings

Network-centric results of Figure 3 and Table 2 are consistent with prior findings of Mueller
et al., (2007,2009a, McDonald et al. 2008, Lin et al. 2008) and that TLE-MTS shows
significant focal cortical thinning in the ipsilateral temporal lobe, and TLE-no shows weaker
but more widespread bilateral involvement. However, the network approach brings added
value by improving classification and providing new metrics like degree distribution,
clustering coefficient, entropy and complexity. New metrics like severity and dispersion
may also improve characterization of epilepsy. Network analysis seems to provide
especially better characterization of TLE-no, which was traditionally problematic due to
lack of measureable sclerosis on MRI exams. Voxel-based morphometry on the 1.5T
(Mueller et al., 2006) found no significant hippocampal or cortical atrophy in TLE-no
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compared to healthy subjects. Mueller et al., 2009b confirmed the absence of hippocampal
atrophy in TLE-no using high resolution T2 subfield mapping at 4T but reported about 17%
of TLE-no to have non-specific abnormalities which were inadequate for focus localization.
Network-based classification results in Figure 4 are significantly improved compared to the
presented volumetric assessment based conventional classifier using the same volumetric
data. However, we have not investigated other contrast mechanisms like T2 relaxation
(Mueller et al., 2007) and MRSI (Mueller et al. 2004) which might provide additional
information not possible by volumetrics alone. The laterality result in Figure 5 showing
100% concordance with VET, if replicated in future studies, might be significant for clinical
practice.

Comparison with previous network studies
Network methods have been utilized in different biomedical fields, e.g. to study biochemical
and metabolic interactions, epidemiological relationships or protein interaction and gene
expression interactions (Guimera et al., 2007; Price et al., 2007; Steuer et al., 2007; Beneito
et al., 2008; Charbonier et al., 2008; Liang et al., 2008). Similar network methods have also
been applied to MR diffusion tractography (Hagmann et al., 2008), functional MRI (fMRI)
(Achard et al., 2006) and magnetoencephalography (MEG) (Kujala et al., 2008). In prior
thickness- or volume-based studies (Lerch et al., 2006; He et al., 2007; Chen et al., 2008; He
et al., 2008; Bassett et al., 2008) anatomical connection was defined as statistical association
between brain regions, as measured by the Pearson correlation coefficient across subjects.

Properties of an unweighted version of their network were characterized in terms of degree,
clustering coefficient, and path length, and confirmed so-called “small-world” attributes in
the brain as well as modular architecture in healthy development (Chen et al., 2008). There
are several important differences between our approach and these papers, which provide
insight into disease groups but little practical diagnostic information or exploratory analysis
of individual subjects.

GED methods have recently appeared in the graph processing and machine learning (Robles
et al., 2005) where they were mainly used for hand-writing detection, face recognition, line
drawing matching and feature matching. GED does not previously appear to have been
reported in biomedical imaging. Its use in performing statistical analysis in any context also
appears to be novel.

The Individual TLE-Specific Network Approach
Unlike previous group networks where ensemble correlation signifies connectivity, links in
our networks come from potential functions (Eq 4) between a pair of ROIs, and must be
interpreted as the probability of disease path (Eq 2–3) rather than anatomic connectivity.
Since they come from a single pair of thickness values, not ensemble average, these
probabilities can be very noisy due to substantial noise embedded at various points in the
data pipeline - in the MRI signal, in the segmentation step, inhomogeneity correction step, or
the registration step, and finally in the cortical measurement step. Further uncertainty is
introduced by natural anatomic variations present in human brains. Yet we are able to infer
individual networks reliably enough to perform accurate classification and to obtain
lateralization information. Why? First, only significantly atrophied ROIs show up as
network nodes due to normalization to z-scores, and are further pruned by joint thickness
and curvature constraints. Second, even if individual links in the network are noisy, the
network as a whole should still be informative. Since all subsequent computations, whether
edit distance classification or aggregate network measures like degree, clustering, entropy
and complexity, are performed on whole networks and depend on overall network topology,
they are quite reliable.
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What explains the suitability of max() function over other potential functions for epilepsy
classification? Progression of atrophy in epilepsy is likely caused by excitotoxicity
accompanied by grey-matter loss and damage of the white matter tracts which channel the
disease from one cortical or subcortical region to another (Shin et al., 1994; Zumsteg et al.,
2006; Huppertz et al., 2001). We speculate that since the more affected node in the node pair
will dominate atrophic progression in this model, the likelihood of a pathway to become a
disease propagation path depends only on the more affected region irrespective of whether
the other terminal is healthy or atrophic. However, we stress that the proposed network-
centric approach does not rely on a particular connectivity formula – we simply chose the
one that was demonstrably the most informative.

Interpreting TLE-Specific measures—Histograms of network peakiness measures
(Entropy, statistical complexity, exponential decay) shown in Figure 8 strongly suggest that
the TLE-no group shows network characteristics somewhat between the TLE-MTS and
Healthy groups. Due to this mixture effect, neither conventional summary network statistics
(Figure 7) nor conventional vector distance metrics appear to give good 3-way classification.
Figure 8 further suggests that the TLE-no group might in fact be a mixture of MTS-like and
Healthy-like subgroups, as indicated in the figure by blue and pink. The “Healthy-like”
subgroup show high dispersion of epileptic focus in terms of their network properties more
akin to the Healthy group. This conclusion is also supported by Figure 9, where TLE-MTS
subjects uniformly appear to have high-severity and low-dispersion, but TLE-no subjects are
more dispersed and less severe. Figure 10 indicates that TLE-MTS subjects fall in the
expected quadrant of low-dispersion-high TL specificity. Within the temporal lobe, these
patients have high severity, but the disease has not dispersed outside of the TL. However, a
look at the TLE-no shows that while some of these subjects display TLE-MTS-like
properties, others possess high dispersion.

Significance, Limitations and Future Work
Classification results in Figure 4 show added clinical value of TLE networks compared to
volumetric data, but cannot serve as replacement for ictal EEG recordings which is the gold
standard for focus localization. Instead, our intent was to show how to quantify and analyze
the information contained in networks derived from volumetry, whether for epilepsy or (in
the future) for diseases with more challenging clinical diagnoses, like Alzheimer’s disease,
Parkinson’s disease, schizophrenia and multiple sclerosis. Networks analysis could be used
to obtain an initial indication of TLE-MTS, or TLE-no or of a different from of epilepsy,
and a strong indication of lateralization. This information may prevent unnecessary invasive
EEG recordings in inappropriate subjects. It will be interesting to see if there is a difference
in success rate of resection surgery between the TLE-no in the high dispersion versus low
dispersion regions of Figure 9. If network measures are indeed shown to be predictive of
surgical outcome, then they could provide another tool for surgical planning. These ideas are
speculative and need to be carefully validated through a larger study with sufficient
statistical power and long-term post-surgical follow-up. Future cortical parcellation
techniques with more ROIs might produce more localized node information. Functional
(fMRI and MEG) data as well as DTI data elucidating fiber architecture perhaps in
combination with cortical thickness might yield larger, more reliable brain networks.
Proposed graph edit distance-based network analysis technique will continue to be useful in
these applications. We also note that applying proposed technique to TLE is just a first step.
The ultimate goal is to use such techniques for focus localization in types of partial epilepsy
where the standard methods fail, e.g. non lesional neocortical epilepsy.

Limitations—Many attendant limitations of preprocessing steps that may adversely affect
our results were described by Mueller et al., (2009a). Other limitations include:
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1. Cortical atrophy is the macro-structural irreversible endpoint of a
pathophysiological cascade induced by epilepsy. Therefore proposed approach is
not promising for early detection or characterization of more subtle alterations in
the brain. Other MRI contrasts (T2, DTI, ASL, MRSI) might be more sensitive in
this respect. T2 relaxation (Mueller et al., 2007) and MRSI (Mueller et al. 2004)
were shown to provide sensitive characterization of epilepsy but it is unclear how
to apply proposed network approach on these datasets. However, DTI may be ideal
for this purpose and will be undertaken in future studies.

2. Cortical networks inherit the errors and inconsistencies of Freesurfer. Preliminary
analysis of back-to-back scans (unpublished) indicate up to 10% variation in
thickness of smaller cortical structures even in healthy subjects. Accuracy of
cortical parcellation depends on MR image quality – Freesurfer did not succeed on
a 1.5T data set from Cornell due to lower SNR and diffuse grey-white boundary.

3. Initial classification into 3 groups (healthy, TLE-MTS, TLE-no) was based on MRI
exams at 1.5T, which has limited SNR and resolution. This classification was
subsequently supported by 1) histopathological exam on a subset of 10 patients that
has undergone surgery, and 2) All subjects also had subfield volumetry as
described in Mueller et al. 2009. The presence of MTS was confirmed in all TLE-
MTS. Except for one TLE-no who had a significant volume loss in the ipsilateral
subiculum, absence of MTS was confirmed in all TLE-no. However, the gold
standard to determine if pathology and VET focus lateralization were correct are
the histopathological examination of the resected tissue and seizure-freedom after
surgery. Since not all patients have undergone surgery yet, we cannot eliminate the
possibility that the 3 groups are less distinct than initially assessed based on 1.5T
scans.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: CONNECTION BETWEEN GIBBS POTENTIAL AND
CORRELATION

Let us write the thickness correlation between two cortical regions as ,

where  is the ensemble expectation over all subjects, and  by
definition. Now consider a candidate Gibbs potential formula χ(Zi, Zj) = ZiZj, and assume
that data from different subjects are independently distributed. Then the joint probability

over all subjects is given by 
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In other words, the Pearson correlation computed in previous anatomical connectivity work
reduces to a special case of our proposed Gibbs potential, when χ(Zi, Zj) = Zi · Zj.

APPENDIX B: IDENTIFYING THE BEST CONNECTIVITY FORMULA
The results described in this paper were obtained using a specific potential formula: Eq. (4)
because it was found to give the best classification results. In fact, a number of other
formulas were evaluated, as summarized below.

(A1)

(A2)

(A3)

(A4)

(A5)

Each of these is a heuristic, and the “correct” formula is at this point only justifiable by its
classification performance in terms of area under the ROC curve (Figure 6) though some
arguments for its suitability were given in Discussion. Area under ROC is a good measure of
fitness because it measures how informative any network is regarding the disease
mechanism it is supposed to capture.

APPENDIX C: CLASSIFYING NETWORKS USING GRAPH EDIT DISTANCE

Specifying a Distance Between Two Networks
Starting with network Gk, and inserting or deleting nodes as well as edges one by one, until
we arrive at an isomorphism of Gk′, we define the minimum cost of this edit path as the
Graph Edit Distance (GED) between Gk and Gk′:

(C1)

Where each insert/delete modification comes at a pre-defined cost, in our case, a unit cost
for inserting or deleting a node, and a cost of |eij| for inserting or deleting an edge of weight |
eij|, and a cost of |eij − e′ij| for modifying the cost of edge eij to e′ij. Note that as defined, this
distance is not commutative: dGED (Gk, Gk′) ≠ dGED (Gk′, Gk).

The GED allows us to treat individual networks like random variables, by the following
mapping from graphs to non-negative scalar variables:
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(C2)

where Ḡ is a centroid graph defined below, and σGED is the variance of dGED (Gk, Ḡ) for all
k. The mapping Z: Ω → ℜ converts a given network into a distance from some centroid
graph. The centroid graph is a graph such that the sum of its GED distances from all
subjects’ graphs is smallest:

(C3)

Converting pairwise distances to points in Euclidean space
In order to completely convert individual networks into random vectors for the purpose of
statistical analysis, a geometric embedding of the pairwise GED distances into Euclidean
space is performed via a popular algorithm called Multi-Dimensional Scaling (MDS)
(Seber84). MDS has been successful in several biomedical data analysis problems,
particularly genomic data analysis (Tzeng et al., 2008). MDS converts a matrix of pairwise
GED distances, DGED = {dGED (Gk, Gk′)|} into a matrix Δ of size ndims × N, ndims < N, such
that its columns represent Cartesian coordinates of the geometric embedding of i-th subject’s
network. The coordinate vectors given by the columns of Δ, i.e. δi = Δ(:, i), faithfully satisfy
the GED distance criteria between every subject, such that

(C4)

Further statistical analysis can be performed on Cartesian vectors δi. This procedure is useful
for classification algorithms that can only take feature vectors as input, rather than pairwise
distances between points in feature space. Given a database of graphs, the procedure for
Gaussian statistical analysis will proceed as follows.

1. Obtain pairwise distance matrix DGED for all graphs in database.

2. Perform MDS to obtain Δ = MDS(DGED)

3. Determine covariance matrix C = (ΔΔH)

A number of routine statistical tasks can now be performed, for example any supervised or
unsupervised (clustering) algorithm that utilizes distance measurements. For instance,
suppose it is determined that the graphs belong to 2 distinct groups, such that in Cartesian
space

A given graph Gk can be assigned to either group A or B according to which of
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is smaller. Hypothesis testing to determine whether two graphs Gk and Gk′ belong to the
same Gaussian distribution can similarly be performed.

Classification Using Linear Discriminant Analysis
Multiple-group classification on δi is performed via. Linear Discriminant Analysis (LDA),
which is a classical method for separating data points into groups. It works by fitting normal
distributions to each group and finding the classification which maximizes the linear
discriminant between groups (Krzanowski, 1988). Suppose there are ng groups, and the
mean and covariance of the embedded coordinates (e.g. δk) for each group are given by μ1,
…, μng, and C1, …, Cng. Let the overall mean of the data set be given by μ̄ = mean(μ1, …,
μng). Then the LDA method finds the classification Ψ: ℝndims → ℤng that maximizes the so-
called linear discriminant:

(C5)

where the between-class and within-class scatter matrices SB, SW are defined by

(C6)

In this work LDA was solved using standard eigen-decomposition method (Krzanowski,
88).

Raj et al. Page 17

Neuroimage. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Normalized cortical thickness versus curvature of various ROIs from TLE (a) and Healthy
(b) subjects. The data was condensed by averaging over their respective groups before
plotting. Correlation coefficient R and significance value (p) are shown inside the plots.
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Figure 2.
Summary flowchart of GED-based network classification. Various MR brain volumes from
different subjects are processed by FreeSurfer to get cortical thickness and curvature of
parcellated cortical structures. A network is built for each subject. These networks are fed
into the GED algorithm to compute pairwise distances between them. The MDS (multi-
dimensional scaling) algorithm is applied to convert these pairwise distances into Cartesian
coordinates in the embedded Euclidean space. Finally, LDA (linear discriminant analysis) is
performed to get disease class for each subject.
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Figure 3.
Epilepsy-derived brain network connectivity of TLE subjects. For visual convenience
cortical networks are depicted as 2D circular rings, with cortical ROIs residing on the
circumference, except for cingulate structures which are shown as brown arcs within the
circle.
Following a dorsal view, frontal lobe is represented in light blue arc, temporal lobe (dark
blue), parietal lobe (green) and occipital lobe (orange). A histogram of the 5 most popular
connections across all subjects was compiled and this histogram was then thresholded to
obtain the connectivities above. The straight lines between ROIs denote the presence of the
most frequently occurring connections among all subjects in the specified group. Plots on

Raj et al. Page 20

Neuroimage. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the left ((a) and (b)) show the first few most frequent connections by setting a high
threshold, and on the right (c) and (d) show a few more of these frequent connections by
relaxing the threshold a little.
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Figure 4.
Receiver Operator Characteristic (ROC) curves for the GED-distance based classification, as
well as the standard difference norm-based classification. (a) corresponds to 2-group
classification (TLE vs Healthy), and (b) corresponds to 3-group classification (TLE-MTS vs
TLE-no vs Healthy). Note that there is some loss of performance from the 2-group case to
the 3-group case, but the GED-based method consistently outperforms the standard non-
graph approach.
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Figure 5.
Concordance between VET-based lateralization of epileptic focus and MRI-based
lateralization. The x-axis depicts the number of highly-connected nodes used to estimate
lateralization.
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Figure 6.
Area under ROC curves, for 5 different edge weight formulas. The formula producing best
classification power is indicated by red arrows and boxes. Note the, max() function appears
to be most informative edge weight for Epilepsy.
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Figure 7.
Plots of 3 network metrics for 3 disease classes: TLE-MTS (left column), TLE-no (middle
column) and Healthy (right column). Sum of outgoing connectivities for each node (top
row), degree of each node (middle row) and clustering coefficient of each node (bottom
row). No summary statistic was significantly different between groups except the scale
difference of connectivity sum.
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Figure 8.
Histograms of network metrics. TLE-MTS (left column), TLE-no (middle column) and
Healthy (right column). Network entropy for each subject (top row), statistical complexity
(2nd row), monoexponential decay parameter fit (3rd row), and area under the connectivity
sum curves shown in top row of figure 6 (bottom row). The p-values corresponding to a 2-
way T-test between the 3 groups, for each of these 4 summary metrics, are shown between
corresponding group pairs. TLE-no group shows network characteristics somewhat between
the TLE-MTS and Healthy groups. We conjecture that the TLE-no group can be separated
into TLE-MTS-like and Healthy-like subgroups, as shown by the two colors in the middle
column: blue for TLE-MTS-like subgroup, and pink for Healthy-like subgroup. The
“Healthy-like” subgroup show high dispersion of epileptic focus in terms of their network
properties more akin to the Healthy group.
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Figure 9.
Network-derived measures of epilepsy severity and dispersion. These measures can prove
useful to a clinician interested in surgical planning.

Raj et al. Page 27

Neuroimage. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Scatter plot of Dispersion versus Temporal Lobe Specificity of cortical atrophy. The inverse
relationship between dispersion and TL specificity of most TLE subjects indicates that the
dispersion is a result of out-migration of epileptogenic regions from TL to other regions of
the brain. Among TLE-MTS patients this out-migration is limited. However, some TLE-no
subjects, as indicated in the figure, exhibit high dispersion as well as low TL specificity.
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Table 1

Study subject characteristics. Number of subjects (age range, mean ± stdev)

Gender Control TLE-MTS TLE-no

Female 20 (38.8 ± 9.7) 8 (39.6 ± 9.9) 9 (35.0 ± 7.5)

Male 10 (37.9 ± 9.7) 5 (44.4 ± 6.4) 5 (37.0 ± 5.8)
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Table 2

Total node strength in each lobe, as percentage of total. Connections weights lower than the low threshold in
Fig. 2 were not counted.

Lobe

TLE-MTS TLE-no

Ipsi Contra Ipsi Contra

Occipital 0 3 0 5

Parietal 3 3 3 5

Temporal 47 3 25 20

Cingulate 8 8 10 6

Frontal 14 11 14 12

Total 72 28 52 48
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