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Summary
In individually matched case–control studies, when some covariates are incomplete, an analysis
based on the complete data may result in a large loss of information both in the missing and completely
observed variables. This usually results in a bias and loss of efficiency. In this article, we propose a
new method for handling the problem of missing covariate data based on a missing-data-induced
intensity approach when the missingness mechanism does not depend on case–control status and
show that this leads to a generalization of the missing indicator method. We derive the asymptotic
properties of the estimates from the proposed method and, using an extensive simulation study, assess
the finite sample performance in terms of bias, efficiency, and 95% confidence coverage under
several missing data scenarios. We also make comparisons with complete-case analysis (CCA) and
some missing data methods that have been proposed previously. Our results indicate that, under the
assumption of predictable missingness, the suggested method provides valid estimation of
parameters, is more efficient than CCA, and is competitive with other, more complex methods of
analysis. A case–control study of multiple myeloma risk and a polymorphism in the receptor Inter-
Leukin-6 (IL-6-α) is used to illustrate our findings.
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1. Introduction
The problem of missing covariate data in individually matched case–control studies is quite
common. Some of the main reasons are refusals to answer interview questions, loss to follow-
up, incomplete medical records, and inability to collect information from all subjects on some
variables that need expensive procedures of measurement. For example, in genetic case–control
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studies, researchers frequently store blood or other specimens that carry DNA information to
test and determine if any specific set of genes are associated with outcome. Unfortunately, data
are sometimes missing because subject’s specimens are misplaced, degraded, or have
insufficient volume for a successful assay. In a study of the association between risk of multiple
myeloma and some polymorphisms of the IL-6 genes (−174 GC SNP, −174 RA SNP, −572
GC SNP, −598 RA SNP), the IL-6rα receptor SNP (−174 RA) was missing in 40 pairs from a
total of 112 case–control pairs due to problems related to assaying (Cozen, Gebregziabher, and
Conti, 2006). Since the laboratory that processed the DNA assaying did not have information
on the case–control status of the specimens, the missing data mechanism can be assumed to
be independent of case–control status. Similarly, in a Danish 1:5 matched case–control study
designed to identify risk factors for hospitalization due to respiratory syncytial virus infection,
233 infants were matched to controls by their age, gender, and municipality of residence
(Nielsen et al., 2003). In this study, an important risk factor found was smoking status of the
mother during pregnancy that was missing for 38% of the study subjects. Because smoking
information was ascertained prior to the disease, missingness was not related to the case–
control status. However, missingness could depend on the smoking status of the mother, since
it is not unreasonable to assume that smokers might be more likely to refuse to answer a
smoking question than nonsmokers due to the sensitive and personal nature of the information.
A common theme in these data examples is that missingness does not depend on case–control
status, which, following event time terminology, we will call predictable missingness, as
defined precisely at the end of this section as well as in Section 2.

We use the nested case–control model for individually matched case–control studies in which
controls are sampled from risk sets defined by the cases, failures in a cohort followed for time
to disease event (Oakes, 1981; Breslow et al., 1983; Langholz, 2007). We assume that failures
occur at unique times (in practice, ties can be randomly broken), so that there is only one case
in each case–control set. This “continuous time” model is quite reasonable for most individually
matched case–control studies. As we discuss in Section 5, our methods also apply for matched
data from binary disease outcome when disease is rare. The focus of the article is the analysis
of missing covariate data in individually matched case–control studies when the missingness
does not depend on a disease status. To address the problem, we propose a semi-parametric
partial likelihood approach. First, we derive the missing-data-induced intensity for the
proportional hazards model and then propose a “semi-parametric induced model” that is
consistent with the missing-data-induced intensity and depends only on observable quantities
and nuisance parameters. We then give the corresponding partial likelihood that is used for
estimation and to derive expressions for efficiency. The key requirements for valid estimation,
over and above those nested case–control data without missing data, are (1) predictability, that
conditional on covariates, missingness does not depend on case–control status, and (2)
conditional independence, that the associations between covariates and disease are the same
in subjects with and without missing data. Finally, our theoretical development provides a
rigorous derivation of the missing indicator method and a justification for its use.
Implementation of the semi-parametric induced intensity method turns out to be very easy,
simply an extension of the missing indicator approach to analysis with missing data. The
standard case–control data structure is retained, and a missing indicator plus, possibly,
interactions between the missing indicator and known covariates, are included as variables in
the analysis. We note that both cases and controls will have missing data and that, under
predictable missingness, it is the relative difference in case–control missingness across known
covariate values that provides the information needed for valid modeling of the missingness.

A common practice for dealing with missing data is to simply delete subjects who have missing
values on variables included in the model. This method referred to as complete case analysis
(CCA) is characterized by a severe loss of data. Another commonly used method is “break the
matching” (BM), that is, the individual matching is ignored and the observed data from all
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cases and controls are analyzed as an unmatched case–control study. This method could lead
to a biased inference if there is uncontrolled residual confounding by matching factors that
cannot be quantified. Another method that is occasionally used is the missing indicator method
(Huberman and Langholz, 1999; Greenland and Finkle, 1995; Li, Song, and Gray, 2004). For
pair-matched studies, it is indicated in Huberman and Langholz (1999) that this method is
always at least as efficient as CCA and always less subject to bias than BM. In simulation
studies, where there is no inherent confounding in the data, it is shown to result in an improved
efficiency and less bias (Li et al., 2004). Other missing data methods that can be used in
individually matched case–control studies include likelihood methods (Satten and Kupper,
1993; Satten and Carroll, 2000; Rathouz, Satten, and Carroll, 2002; Rathouz, 2003), mid-point
imputation (MPI; Paik and Sacco, 2000), weighted conditional likelihood (WCL; Lipsitz,
Parzen, and Ewell, 1998), multiple imputation (MI; Rubin, 1987), and some recently suggested
GEE-based methods (Lin, Lai, and Chuang, 2007) and Bayesian methods (Sinha, Mukherjee,
and Ghosh, 2004; Sinha et al., 2005; Sinha and Maiti, 2008).

In this article, we assess the performance of the proposed method empirically in an extensive
computer simulation study in which one covariate Z is known for all subjects, while a second
covariate X has missing values from a predictable missing data mechanism with probability of
missing possibly depending on Z or/and X but not on time to event or the binary event indicator
D (dN in the counting processes notation). Suppressing time and thinking of the population in
a risk set at a single failure time, the predictable missing mechanism implies that given (X,Z),
missingness is independent of D. That is, pr(M = 1| X,Z,D) = Pr(M = 1| X,Z), where M is an
indicator of whether X is missing or not. Relative to the commonly used missing data
classification such as missing completely at random (MCAR), missing at random (MAR), or
nonignorable (NI), a predictable missing mechanism covers MCAR, some MAR, and some
NI situations. It excludes situations like pr(M = 1| X,Z,D) = Pr(M = 1| D) or pr(M = 1|
X,Z,D) = Pr(M = 1| X,D), which in our terminology are called nonpredictable missing
mechanisms. We consider the implications of X missing data when either X or Z are of primary
interest in the study. We also compare the performance of the proposed methods with CCA,
MPI, WCL, and MI.

2. Missing Data Methods Based on an Induced Intensity
Following Borgan, Goldstein, and Langholz (1995), let Ni (t) be the binary indicator whether
subject i has experienced the event by time t, t ∈ [0, τ < ∞] with Ni (0) = 0, Yi (t) a binary
indicator whether subject i is still at risk at time t, Xi (t) (subject to missing) and Zi (t) (not
subject to missing) be the corresponding covariates at time t and Mi (t) be a binary random
variable indicating whether Xi (t) is missing (i = 1, … , n). We assume that Mi (t) can depend
on Xi (t) and Zi (t) but not on dNi (t), the disease status at time t. We call this a predictable
missing mechanism. Define filtration, which is the history of the observed values of the
variables in brackets, ℱt = {Ni (u), Yi (u), (Xi (u),Mi (u), Zi (u)), u ≤ t, i = 1, … , n} where, as
usual, the Xi, Zi ℱ-predictable and the Ni ℱ-adapted. We also include the missing indicator
variables Mi and assume that they are ℱ-predictable, that is, it only depends on data available
or known just prior to time t. Let ℛ(t) = {i : Yi (t) = 1}. Note that Xi, Zi, Ni, Mi are as defined
above with their dependence on time t suppressed. The goal is to make the “best guess” possible
of disease risk at t from the information in ℱt−.

To represent a nested case–control study in which controls are sampled from each failure time
risk set, let Ni,r (t) be a counting process jointly indicating if subject i has experienced the event
by time t and r is sampled as a case–control set. Define a filtration ℋt = {Ni,r (u), Yi (u), (Xi
(u),Mi (u), Zi (u)), u ≤ t, i ∈ r ⊂ ℛ(t)}. We consider the following Cox model for the rate of
disease as a function of covariates X and Z:
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(1)

where λ is hazard rate, t denotes the elapsed time, β1 and β2 are unknown parameters to be
estimated, and α(t) is an unspecified baseline hazard function. Suppose there are , and
λ0 such that the model (1) coincides with the intensity λi,r(t,ℋ) corresponding to the counting
process Ni,r (t) and the information available right before time t,ℋ t−, given by,

(2)

where ℛ̃(t) is the sampled case–control set and πt (r | i) = pr(ℛ̃(t) = r |dNi (t) = 1,ℋ t−) (Borgan
et al., 1995). Note that given X and Z, the ℋ-intensity defined in equation (2) does not depend
on the missing indicator Mi (t). This is a conditional independence assumption that the effect
of X and Z on disease rates in missing is the same as in nonmissing subjects.

When X is partially missing, let t = {Yi (u),Ni,r (u), (Xi (u)(1 − Mi (u)),Mi (u), Zi (u)); u ≤ t, i
∈ r ⊂ ℛ(t)} be the missing data filtration.

Our objective is to derive a missing data “induced” intensity from the complete data intensity
(2) and then extend the complete data model (1) to encompass the possible forms of the induced
intensity. Since the filtrations are nested with t ⊂ ℋt , by applying the innovation theorem
(Aalen, 1978; Andersen et al., 1992), suppressing possible dependence on t of X, Z, and M, the
missing-data-induced intensity is,

(3)

where

(4)

Equation (4) is the rate of disease when some subjects have missing X values and is the
expectation of exp(βX) conditional on not being observed, and the fully observed data. This
expectation can vary over time due to the selective elimination of subjects with higher risk
from the risk sets over time known as differential censoring pattern that depends on X or time
dependence of X, and, if X and Z are correlated, can vary over Z as well. In order to
accommodate the missing data, we must extend the full data model (1) so that (3) is in the
model space. We propose to replace ϕ(t, Z) in (3) by a model, ϕ(t, Z; η), a function of the
“observables” t and Z, and a parameter vector η = (η1, …, ηp ). The novelty here is that we can
handle missing data by appropriately modeling ϕ(t, Z; η) as long as the missingness process is
predictable. Moreover, the parameters in the distribution of X |Z in subjects for whom X is
missing are accommodated in the induced intensity model instead of being estimated separately
as done in other studies (Rathouz et al., 2002). A semi-parametric missing-data-induced
hazards model extension of (1) is then given by

(5)
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The complexity of ϕ(t, z; η) depends on the number of parameters in η and the form of ϕ
function. The simplest case is when ϕ(t, z; η) = η1, a single parameter that is independent of
t or any components of the vector Z and defined as the log rate ratio for missingness. This leads
to the single missing indicator (SMI) method. To accommodate variation over Z assuming no
effect from t, we could define ϕ(t, z; η) = η1 + η2Z, which we call a modeled missing indicator
(MMI) method. This leads to the inclusion of a linear interaction parameter between M and
Z on to SMI. On the other extreme, the completely unstructured model ϕ(t, z; η) leads to CCA.
To see this, note that ϕ(t, Z) will vary and be common to all subjects with the same Z values at
each failure time and will drop-off from the partial likelihood in the same way as λ0(t). This
will lead to a likelihood that is proportional to the CCA likelihood (see Web Appendix A). In
practice, we could use standard modeling techniques to find a model for ϕ that adequately fits
the data.

2.1 Partial Likelihood
Model (5) is of proportional hazards form, so that a partial likelihood can be derived in the
usual way (Borgan et al., 1995) as,

(6)

where  is a product integral. Under the conditional independence assumption, and assuming
that, in addition to model (2), there exists an η0 such that ϕ(t, Z) = ϕ(t, Z; η0), standard likelihood
properties can be established. In particular, the score is a martingale and the predictable
variation differs from the expected information by a martingale. Further, consistency and
asymptotic normality of all parameter estimates holds if conditions 1–4 of Borgan et al.
(1995) hold for the particular sampling scheme π(r | i) when applied to the induced model and
intensity (3).

2.2 Asymptotic Efficiency Comparison for Simple Random Sampling of Controls
In this section, we give analytic expressions for the asymptotic information from the partial
likelihood for full (nonmissing) data, for CCA and SMI for missing data, and compare their
efficiency to each other, for 1:m − 1 simple random sampling of controls. A general expression
for the asymptotic information under independence for a single covariate X with missing values
is given in Theorem 1 of Web Appendix B.

The general expression can be used to make asymptotic efficiency comparisons in some
informative special cases. Consider dichotomous X with pr(X(t) = 1| Y (t) = 1) = π, pr(X(t) =
1,M(t) = 0| Y (t) = 1) = π1, pr(X(t) = 0, M(t) = 1| Y (t) = 1) = π0, and pr(M(t) = 1| Y (t) = 1) =
q, respectively; assumed constant over time, see 6.3(B) in Goldstein and Langholz (1992). Let
m0,m1,m2 be the number of observations in a case–control set with X = 0, X = 1, and X =
missing, respectively, and define
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where υ is a 2×2 symmetric matrix with the expression for the components,

The full (no missing) data and CCA asymptotic Fisher information (AFI) for β are proportional
to the β, β corners of Γ*(1, 0) and Γ*(q, 0), respectively. The SMI AFI for β is proportional to
the inverse of the β, β corner of [Γ*(q, eη0 )]−1.

Now, consider 1:1 matching (m = 2) and the situation when X does not depend on M (MCAR
situation) so that π0 = (1 − π)(1 − q) and π1 = π(1 − q). The AFI expressions simplify
considerably and are proportional to

Based on these expressions, relative efficiencies, computed as the ratio of the AFI
corresponding to the estimate from SMI or CCA to the AFI of the estimate from the full data
analysis and the relative efficiency of SMI to CCA, are presented in Figure 1 and Figure 2. All
the figures show that the relative efficiency of CCA and SMI are equivalent when q = 0, there
is no missing data, and both CCA and SMI converge to the same efficiency performance as
q approaches one. However, when X is partially missing, the figures show that the missing
indicator method performed much better in terms of efficiency than CCA. It is easy to show
analytically that AFI for SMI is always between the AFIs for the CCA and complete data.

3. Simulation Study
The study group consists of individually matched case–control sets that were generated using
the paradigm of risk set sampling from cohort data in continuous time (Thomas, 1977; Oakes,
1981; Langholz, 2007), which was implemented using SAS 9.1 (SAS Institute Inc., 2003).
Typically, in this paradigm, a random sample of controls of fixed size (one or four in our
studies) is sampled at each failure time of a cohort study independently from controls in each
risk set. However, to evaluate the performance of estimators for a bias as well as efficiency, it
is sufficient and simpler to generate “independent” risk sets rather than to generate failure time
data and then form the risk sets (Langholz, 2007). This is valid because when sampling is
independent across risk sets, the asymptotics only depend on the distribution of the covariates
at each point in time, not on how the covariates are connected over time by the individuals in
the cohort. First, a binary or continuous exposure X and a three level potential confounder Z
were generated. Three correlation or association settings between Z and X, which correspond
to independent, moderate association, and strong association between X and Z were fixed as
follows: logit[pr(X = 1|Z)] = 0.5 − 0.69Z for moderate and logit[pr(X = 1|Z)] = 1.0 − 1.40Z for
strong association. These would determine the confounding effect of Z on the association
between X and the case indicator D since the generation of D depends on both X and Z. A single
case was randomly chosen from the risk set based on probability proportional to ri (βX , βZ) =
exp(ZiβZ + XiβX ), which is the parametric component of the Cox model. These probabilities
of failure or D = 1 were generated for exp(βX ) values of 0.5, 1.0, 1.5, and 2.0 and exp(βZ) =
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1.42. These result in a fixed number of independent risk sets that form the cohort risk set data.
Finally, one control was (or four controls were) randomly sampled from controls in each risk
set. Case–control sets were generated in this way to create a case–control study of the desired
size of 2n or 5n (Langholz, 2007). This process was repeated for each simulation replicate
where new risk sets are generated for each replicate so that the joint distribution of (X,Z) varies
across risk sets (code at http://hydra.usc.edu/timefactors).

3.1 Missing Data Generation and Analysis
Data sets with missing exposure X data were generated from the case–control study with a 20%
or 50% missing proportion. We considered a wide range of missing scenarios broadly classified
into MCAR, MAR, and NI types in the sense of Little and Rubin (2002). Further classification
of the missing data mechanism was made based on the dependence of the probabilities of
missing X on D. Given X and Z, if M is independent of D then the missing mechanism is
classified as a predictable mechanism, but if M depends on D then it is classified as a
nonpredictable missing mechanism. We made the assumption that the missingness model is
logistic and is specified as

where M is the missing indicator, Z1, Z2 are dummy variables representing two of the three
categories of Z, γ0 determines the overall proportion of missingness and the other coefficients,
γs are the corresponding log odds ratios (ORs) for missingness. Overall, five missing data
mechanism scenarios, MCAR, MAR(Z), MAR(D), NI(X), and NI(X,Z) were considered. The
values for the coefficients in the missingness model were γd = 2.2, γx = 2.2, γz 1 = −1.6, γz 2 =
−0.8 and the value of the intercept γ0 was determined depending on the desired overall missing
data proportion desired in the case–control data set. For MCAR, all coefficients except γ0 were
set to zero, whereas for MAR(Z) all parameters except γ0, γz 1, γz 2 were zero. For the NI(X)
scenario, where pr(M = 1| X,Z,D) = Pr(M = 1|X), γ0 and γx took values as defined above but
all other coefficients were set to zero. For NI(X,Z), only γd was set to zero whereas all other
coefficients were set at the values given above.

The resulting data sets from each scenario were analyzed using the three special cases of the
induced intensity method: CCA, a SMI, and MMI. We also compared the semi-parametric
method to other missing data methods including MPI, WCL, and MI methods cited in the
Introduction with the implementation described in Web Appendix D.

From 1,000 replicates, we computed the average coefficient values β̂X, β̂Z their corresponding
empirical standard errors, the average of the estimated standard errors, empirical coverage
probability of the 95% confidence interval, relative efficiency, and relevant statistics to assess
the properties of each method and to assure the simulation study is performing as expected.

3.2 Results of Simulation Study
In each of Table 1–Table 3, the rows give the sampling design, missingness type, and
confounding level, and the columns display the methods of analysis. The “no” panel of the
table provides results when X and Z are independent, i.e., Z is not a confounder. The “strong”
panel of the table provides results when X and Z are strongly negatively correlated or associated,
hence Z is a strong confounder, since Z is associated with D. We only present tabulated results
for 1:1 matching when n = 400. Results from n = 200 and n = 400 for both the 1:1 and 1:4
matching scenarios were qualitatively similar to results from n = 100 for 1:2 matching except
the magnitude of the power of the Wald test, 95% coverage and relative efficiency were smaller,
as expected, in the n = 100 scenarios.
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The first three columns of Table 1 show percent relative bias in the rate ratio estimates of the
effect of X for the 1:1 sampling design with 20% and 50% missing data proportions. For the
same design when there was no missing data, the relative bias in the average rate ratio was
0.7% indicating that the estimates from full sample data were very close to the true value. But,
when there was 20% or 50% missing data, as seen in the “strong” panel of the table, when X
and Z were confounded the rate ratio estimates from the SMI were biased even under MCAR,
which is in agreement with Li et al. (2004)’s observation. The inclusion of the linear missing
indicator-Z interaction term controlled the confounding. Interestingly, as shown from the MAR
(D) mechanism results, the assumption of predictable missingness has a big impact on CCA
and SMI, whereas MMI seems to be robust. To further investigate the robustness to the
assumption of predictable missing mechanism, limited simulations based on NI(X,D)
mechanism showed that all the methods give highly biased results (not shown).

The last three columns of Table 1 show percent relative bias in the rate ratio estimates of the
effect of Z for the 1:1 sampling design with 20% and 50% missing data proportions. Similarly
for βZ , SMI was biased when there was strong confounding even under MCAR. As in the
previous tables, the magnitude of the bias in the 20% missing proportion scenario was lower
than the 50% scenario, but the trend in bias was similar.

The empirical relative efficiency of CCA, SMI, and MMI compared to the full data estimate
is summarized in Table 2 for situations in which the bias was small. The methods that were
unbiased for βX were more efficient than CCA, while the other estimators were of comparable
efficiency. For estimation of βZ , the CCA estimator was less efficient than MMI, which, in
turn, was less efficient than SMI.

Table 3 shows the empirical 95% confidence coverage for β̂X and β̂Z The coverage probabilities
were close to the nominal value of 95% in all scenarios where the estimators were unbiased.
To check the validity of the Wald’s tests, we performed a simulation study with βX = 0 when
βZ = 0.35 and βZ = 0 when βX = 0.693 and the tests had test size close to the nominal 5% level
(data not tabulated).

Bias and efficiency results of the semi-parametric induced intensity estimators with other
missing data methods are given in Web Appendix D. While no method is superior in all
respects, the SMI performed well in terms of efficiency when there is no confounding and the
MMI estimator performed well in terms of unbiasedness when there was strong confounding.
MI and MPI methods also performed well but were somewhat biased for βZ when missingness
depended on X and there was strong confounding with Z. We note that although the WCL
method was unbiased in a wide range of situations, it exhibited poor efficiency that was
comparable to the CCA.

We also investigated two other regression imputation methods, one based on imputing
predicted values from f(X | Z,D) (Gibbons and Hosmer, 1991) and the other imputing from f
(X |Z) (Caroll and Stefanski, 1990). As was found by Paik and Sacco (2000), the first is severely
biased for all scenarios of missingness. The latter is unbiased except when missingness depends
on D (results not tabulated).

4. Data Example
Our data example comes from collaborative work on a case–control study of the association
between multiple myeloma risk and some polymorphisms in the IL-6 region. The details of
the study are reported elsewhere (Cozen et al., 2006). Briefly, the 150 cases, the residents of
Los Angeles County, were diagnosed with primary multiple myeloma or plasmacytoma
(ICD-03 9731–9734) from October 1, 1999 through December 31, 2002, and were under the
age of 75 at diagnosis. They were ascertained by the University of Southern California Cancer
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Surveillance Program (USC-CSP), the population-based cancer registry for Los Angeles
County. The controls were family members (siblings and cousins) and consisted of 112 controls
individually matched to each case on some age- and sex-based priority algorithm (Cozen et
al., 2006). A second group of 126 controls consisted of population-controls who were frequency
matched to an expected race-, age-, and sex-distribution and were identified by a random digit
dialing. Additional variables were education level (≤12,13–15, ≥16), BMI (<25,25–29.9, ≥30
kg/m2), and continuous age. DNA was extracted from cases’ and controls’ samples and at least
one single nucleotide polymorphism (SNP) was successfully genotyped from every subject in
each group. Our analysis is limited to the case and relative-control comparison.

The distribution of the genotypes and the odds ratio (OR) estimates from CCA, SMI, and MMI
are provided in Table 4. We also report MI results based on 10 imputations with all completely
observed covariates and case–control status as predictors for the imputation model. Analysis
using CCA led to a loss of about 40 case–control pairs as a result of missing values in
IL-6rα, BMI, or education. The estimates from CCA were smaller than the others with relatively
large asymptotic standard error (ASE). On the other hand, SMI resulted in large OR estimate
with ASE = 0.174. MI and MMI resulted in similar OR estimates with ASE of 0.171 and 0.191,
respectively. We presented two different scenarios of MMI. While MMI1 was based on
modeling the interaction between the missing indicator and gender, MMI2 was based on
modeling the interaction between missing indicator and race. The OR estimate from MMI2
had smaller standard error. Based on our observation from an unconditional logistic regression
analysis of case–control status as an outcome and IL-6rα as a missing covariate after breaking
the matching, compared to race adjusting for gender, had a smaller impact in changing the OR
for IL-6rα. So, bias and efficiency trade-off considerations would imply that there is no need
to consider MMI1. This is consistent with our simulation results that a larger confounding
effect is needed before we see the impact of modeling the interaction between the missing
indicator and completely observed confounding variables.

5. Discussion
In this article, we proposed a semi-parametric missing-data-induced approach to the analysis
of individually matched case–control data when there is at least one covariate with missing
values and the missing data mechanism does not depend on case–control status. Our work gives
a rigorous theoretical development justifying the use of missing indicator methods that can be
easily implemented using familiar modeling techniques and standard conditional logistic
regression software. The relevance and application of the theory we developed is demonstrated
using data from computer simulations and application to a real data example.

Let M be an indicator of whether X is missing or not. For SMI, the missing-data-induced model
will have the terms (1 −M)X and M and the coefficient of the term (1 −M)X yields an estimator
of the true coefficient of X when the missing data mechanism does not depend on case–control
status. The SMI, M, can be replaced with multiple terms that include interactions between M
and components of the vector of observed covariates Z based on standard modeling
considerations. In our simulation results, concordant with other studies, we found that the SMI
resulted in a biased estimation of either X or Z effects when the association between X and D
was confounded by Z. The bias was significantly reduced when we added missing indicator
terms that include interactions between M and Z. Thus, when the association between X and
D is strongly confounded by Z, the variation in the rate ratio associated with the missing
indicator needed to be modeled over values of the known covariates in the model to control
for covariate-disease confounding using covariate-missing indicator interaction terms.
However, in most settings, that is, modest amount of missing data and no strong confounding
by other covariates, the SMI should be adequate.
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Given that the derivation of some of the existing methods (Satten and Kupper, 1993; Lipsitz
et al., 1998; Paik and Sacco, 2000; Satten and Carroll, 2000) including MI all rely on an MAR
assumption, the finding that missing indicator methods do not require the MAR assumption is
of a great practical value in case–control studies as MAR is likely to be violated. For instance,
in the low birth weight data and smoking example used by several studies (Li et al., 2004;
Sinha et al., 2004; Sinha et al., 2005; Sinha and Maiti, 2008) making the assumption of MAR
may not be justifiable, since it is not unrealistic to think that smokers are more likely to leave
a smoking question missing than nonsmokers. Thus, the biggest consideration should be
whether missingness depends jointly on X and D. In many settings, covariate information is
collected from sources compiled prior to the occurrence of disease in cases, and it may safely
be assumed that missingness does not depend on a disease status. In these situations, missing
indicator methods will provide a valid estimation. However, when information is collected
after a disease occurrence, one needs to carefully assess whether missingness depends on both
X and D.

Two general approaches that have been widely discussed in the missing covariate data literature
and shown to lead to consistent inference under different sets of assumptions are modeling the
missingness process (Lipsitz et al., 1998) and modeling the distribution of the missing covariate
(Satten and Kupper, 1993; Paik and Sacco, 2000; Satten and Carroll, 2000). Rathouz et al.
(2002) proposed a semi-parametric efficient approach that jointly uses both these approaches.
Like this method, our proposed method makes use of the data on (D,Z) from the incomplete
pairs leading to gain in efficiency over those methods that throw it away. The additional novelty
in our approach is that the parameters in the distribution of X |Z in subjects for whom X is
missing are accommodated in the induced intensity model instead of being estimated separately
as done in other studies (Rathouz et al., 2002; Sinha et al., 2004). It will be of interest to compare
the performance of all these different approaches, a topic for future work. Our simulation study
indicated that, under the predictable missing data mechanism, the appropriate semi-parametric
induced intensity estimators had smaller variance than the WCL (Lipsitz et al., 1998) estimator
and were generally comparable to the MPI (Paik and Sacco, 2000) and MI methods (Rubin,
1987), but much simpler to implement.

Interestingly, other investigators have studied the performance of SMI under several analytic
settings, such as in unmatched case–control data (Vach and Blettner, 1991; Greenland and
Finkle, 1995) and individually matched case–control data (Huberman and Langholz, 1999; Li
et al., 2004) and least squares regression (Jones, 1996) and found that it performed poorly. The
bias observed in the individually matched studies may be attributable to the use of a single
indicator when strong confounders of exposure are also in the model (Vach and Blettner,
1991; Li et al., 2004); a result concordant with our findings. Thus, while we have shown that
missing indicator methods can be advantageous for individually matched data, others have not
found a comparable gain in other data settings.

Our theoretical development builds on past theoretical work on case–control data resulting
from a sampled risk set framework (Goldstein and Langholz, 1992; Borgan et al., 1995). This
approach is especially convenient in that most studies are reasonably represented by the model
and the process representation provides a nice analysis framework. Other models for matched
case–control data are based on simple binary data. Our methods can be adapted to this model
under a rare disease assumption. Let the odds of disease be given by λ(x, z) = α exp(β1x +
β2z). Loosely, under a rare disease assumption, the probability of disease is then
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The missing-data-induced probability can then be approximated as

where ϕ(z) = logE[exp(β1X) | Z = z,M = 1] would be modeled as a function of the observable
Z as ϕ(Z; η) which is described in Section 2. The conditional logistic likelihood contribution
for individually matched data can then be derived as highly stratified data so that the probability
of two events in a given stratum is exceedingly small (Breslow and Day, 1980) or by taking a
retrospective approach with independent sampling of a case and m − 1 controls (Hosmer and
Lemeshow 2000).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Relative efficiency of CCA and SMI estimates compared to full data analysis for varying β but
fixed η and p(X = 1), 1:1 matched case–control data. This figure appears in color in the
electronic version of this article.
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Figure 2.
Relative efficiency of CCA and SMI estimates compared to full data analysis for varying p
(X = 1) but fixed β and η. 1:1 matched case–control data. This figure appears in color in the
electronic version of this article.
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Table 4

Genotype distribution and analysis results of the association between multiple myeloma and IL-6rα, Los-Angeles
County, 1999–2002

Genotype distribution of IL-6rα, Los-Angeles County, 1999–2002

IL-6rα Case Relative-Control
Case/relative used

for Cozen et al.

DD 55 50 36/39

DA+AA 55+11 37+14 46/43

Missing 29 11 68/30

Total 150 112 150/112

Odds Ratio estimates for the association of IL-6rα and the risk of multiple myeloma

Method OR ASE 95% CI

CCA 1.80 0.464 (0.70, 4.50)

SMI 2.95 0.174 (2.10, 4.16)

MMI1 1.92 0.219 (1.25, 2.95)

MMI2 2.14 0.191 (1.47, 3.42)

MI 2.08 0.171 (1.49, 2.91)

ASE, asymptotic standard error; CI, confidence interval; CCA, complete case analysis adjusted for education level, BMI, and age as in Cozen et al.,
2006; SMI, single missing indicator; MMI, modeled missing indicator; MMI1, MMI with interaction between missing indicator and gender; MMI2,
MMI with interaction between missing indicator and race (white/black); MI, multiple imputation.

Note: From the total of 112 pairs CCA uses 82 complete pairs
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