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Abstract
Imaging studies of anatomic changes in regional gray matter volumes and cortical thickness have
documented age effects in many brain regions, but the majority of such studies have been cross-
sectional investigations of individuals studied at a single point in time. In this study, using serial
imaging assessments of participants in the Baltimore Longitudinal Study of Aging (BLSA), we
investigate longitudinal changes in cortical thickness during aging in a cohort of 66 older adults
(mean age 68.78; sd. 6.6; range 60-84 at baseline) without dementia. We used the Cortical
Reconstruction Using Implicit Surface Evolution CRUISE suite of algorithms to automatically
generate a reconstruction of the cortical surface and identify twenty gyral based regions of interest
per hemisphere. Using mixed effects regression, we investigated longitudinal changes in these
regions over a mean follow-up interval of 8 years. The main finding in this study is that age-
related decline in cortical thickness is widespread, but shows an anterior-posterior gradient with
frontal and parietal regions, in general, exhibiting greater rates of decline than temporal and
occipital. There were fewer regions in the right hemisphere showing statistically significant age-
associated longitudinal decreases in mean cortical thickness. Males showed greater rates of decline
in the middle frontal, inferior parietal, parahippocampal, postcentral, and superior temporal gyri in
the left hemisphere, right precuneus and bilaterally in the superior parietal and cingulate regions.
Significant nonlinear changes over time were observed in the postcentral, precentral, and
orbitofrontal gyri on the left and inferior parietal, cingulate, and orbitofrontal gyri on the right.

Introduction
Neuroimaging methods to assess brain atrophy have been extensively applied to track the
onset and progression of neurodegenerative conditions such as Alzheimer's disease (AD)
(Callen et al., 2001; De Santi et al., 2001; Du et al., 2001; Soininen et al., 1994).
Longitudinal analyses have proven especially useful in delineating changes in brain volume
during normal aging (Resnick et al., 2003), as well as in evaluating the temporal progression
of neuropathology in AD (Driscoll et al., 2009; Fox et al., 2000; Jack et al., 2004; Misra et
al., 2009; Mungas et al., 2005; Schott et al., 2005). In older individuals, longitudinal
decreases in gray and white matter volumes are widespread, and these declines are observed
even in very healthy subjects during normal aging (Resnick et al., 2003). In AD, the rates of
whole brain atrophy are several times greater than age-matched controls and differentiate the
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two groups with sensitivity greater than 90% (Fox and Freeborough, 1997). Medial temporal
lobe structures such as the hippocampus and entorhinal cortex are especially vulnerable to
early atrophic changes in AD (Du et al., 2004; Du et al., 2003; Jack et al., 2004), and
accelerated longitudinal tissue loss of these structures has been shown to precede the onset
of cognitive impairment in subjects at risk (Fox et al., 1996).

We have recently shown that spatial patterns of regional atrophy provide better
discrimination between MRI scans of cognitively normal and impaired individuals than a
global or single regional atrophy measure alone (Davatzikos et al., 2008a). Moreover, these
high-dimensional pattern classification approaches may have additional utility in the
differentiation between sub-types of dementia (Davatzikos et al., 2008b). Subsequently,
others have reported concordance between patterns of spatial atrophy detected in ante-
mortem MRI studies and the distribution of neurofibrillary pathology in the brain at autopsy
(Whitwell et al., 2008).

Recent studies suggest that the measurement of cortical thickness in vulnerable brain regions
may also be a useful tool to detect perturbations in brain structure in cognitively normal
subjects at risk for development of AD (Burggren et al., 2008) and in subjects with mild
cognitive impairment (MCI) (Singh et al., 2006). Furthermore, decreases in cortical
thickness appear to correlate well with severity of clinical impairment even in the earliest
stages of AD (Dickerson et al., 2008). These data indicate that cortical thickness may
represent a more sensitive, and perhaps complementary, measure of early pathological
change than standard MRI-based volumetry in subjects at risk for subsequent cognitive
decline. However, these studies, while suggestive, are cross-sectional and are therefore
limited in their ability to address the effects of age-related changes in cortical thickness over
time.

We have previously reported cross-sectional age differences and 4-year longitudinal age
changes in mean cortical thickness within eight sulcal regions in a subset of 35 older adults
from the Baltimore Longitudinal Study of Aging (BLSA) (Rettmann et al., 2006). In a cross-
sectional study that also included young and middle-aged individuals, global cortical
thinning was detectable by middle age with similar patterns of age differences in cortical
thickness in both males and females (Salat et al., 2004). In the present study, we extend
these investigations of cortical thickness through analysis of longitudinal changes in 66
older BLSA participants with upto eight serial imaging assessments. Further, we determine
whether age and sex influence rates of change in cortical thickness in older individuals
during normal aging.

Materials and Methods
Subjects

This analysis included 66 individuals in the neuroimaging substudy of the BLSA (Resnick et
al., 2000) all of whom completed at least 6 annual follow up scans. Most of these
participants (60 individuals) completed 8 annual follow up scans. The sample included 38
males and 28 females, with 37 and 26 right-handed males and females, respectively, ranging
in age at baseline from 60 to 84 years. The following exclusionary criteria were applied to
all entrants at baseline; central nervous system disease (epilepsy, stroke, bipolar illness, prior
diagnosis of dementia according to diagnostic and statistical manual-III-R criteria
(American Psychiatric Association, 1987), severe cardiovascular disease (myocardial
infarction, coronary artery disease requiring angioplasty, or bypass surgery), severe
pulmonary disease, or metastatic cancer. All participants remained free of dementia
throughout the duration of their involvement in the present study. The research protocol was
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approved by the local Institutional Review Board, and written informed consent was
obtained from all participants in conjunction with each neuroimaging visit.

Image Acquisition
The MRI acquisition of the brain volumes consisted of spoiled gradient echo (SPGR)
volumetric magnetic resonance images, axially acquired, with the following parameters: TR
= 35ms, TE = 5ms, flip angle = 45°, Image Matrix = 256 × 256, Field of View = 24cm, NEX
= 1; voxel dimensions 0.9375 × 0.9375 × 1.5mm. Each data set was acquired on one of three
GE Medical Systems Signa 1.5T scanners (GE Healthcare, Waukesha, WI).

Cortical Reconstruction
To reconstruct the cortical surface from acquired MR data, we used Cortical Reconstruction
Using Implicit Surface Evolution (CRUISE) (Han et al., 2004; Xu et al., 2000). This method
has undergone extensive validation which is detailed in (Tosun et al., 2006). The CRUISE
processing pipeline begins with a fuzzy tissue classification that is robust to noise and
inhomogeneity artifacts (Pham, 2001). The classification provides three membership
functions representing the fraction of WM, GM, and cerebrospinal fluid (CSF) present
within a given voxel of the image. The next step creates masks of the ventricles and
subcortical GM structures (e.g., putamen, thalamus) within the WM membership functions
using (Bazin and Pham, 2007). Next, a triangulated surface mesh lying on the GM-WM
boundary is computed as the 0.5 isolevel of the WM membership function. Noise, partial
volume effects, and scanner artifacts cause the WM isosurface to contain “holes” and
“handles” which are removed using a graph based correction algorithm (Han et al., 2002).
Because of the partial volume effect, opposing GM banks within narrow sulci are difficult to
distinguish as separate banks. To address this problem, CRUISE automatically edits the GM
membership function to create thin gaps between the banks of narrow sulci (Han et al.,
2004; Xu et al., 2000). The final stage in CRUISE uses a topology preserving geometric
deformable surface model (Han et al., 2003), initialized at the GM/WM surface, which is
driven toward the pial surface using forces derived from the edited GM membership
function. Figs. 1a-c show results of typical CRUISE processing of MRI data to generation of
surfaces.

Reliability Maps
Cortical surfaces are automatically labeled using the “reliability map” approach of (Wan et
al., 2008) which seeks to provide labels to regions that can be reliably labeled while leaving
ambiguous regions unlabeled. The first step is to create a reliability map using a separate
image database of labeled volumetric MRI scans (Desikan et al., 2006). The original data
were T1-weighted magnetization prepared rapid gradient echo (MP-RAGE) volumetric
scans comprising two sagittal acquisitions which were averaged to increase the contrast-to-
noise ratio. The data were manually labeled within the image volumes yielding 33 labels per
hemisphere; details can be found in (Desikan et al., 2006). In early validation trials of our
algorithm (see below) we found that several regions were inconsistently labeled, so we
merged these regions with adjacent regions, forming a superset of 20 labels per hemisphere.
Fig. 2 shows the surface labels on one of the atlas brains. Thirty four of these atlases were
found to be complete and suitable for our use. We randomly split the collection of
“Desikan” atlases into two groups, where the first group of 17 became the atlas database
while the second group of 17 were used to validate the approach (Wan et al., 2008). The
reliability map RA(υ) for atlas brain A has values in the interval [0, 1] on each voxel υ of A,
describing how reliably this voxel can be deformably registered to a subject brain. We create
RA(υ) as follows:
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Given N (= 17) atlases A1, A2, …, AN with labels Li(υ) on each voxel υ we obtain FAi(υ) by
deformably registering Ai against each of A1, …, AN, (excluding Ai) using the Adaptive
Bases Algorithm (ABA) (Rohde et al., 2003). We denote by A1i the atlas A1 deformably
registered to atlas Ai, i = 2, …, N. Then, L1i(υ) is found by deforming L1(υ) using the
corresponding deformation field. The reliability RA1(υ) evaluates the degree of agreement of
L1i(υ) with Li(υ), as follows

(1)

where, δ(a, b) is the Kronecker delta. A reliability value of 1 at a given voxel means that that
voxel has been mapped into the correct region (same label) for all N − 1 atlases. For each
atlas we compute this reliability map relative to the other N − 1 atlases before labeling any
subject not contained within the atlas. These reliability maps are defined on the atlas
volumes, but can be mapped to any surface that happens to be defined within the volume.
Fig. 3 shows a reliability map on a GM/CSF interface defined by CRUISE.

Labeling
For each atlas Ai we have labels Li(υ) and the reliability map RAi(υ) for all voxels υ of Ai. We
label subject S using M atlases (M ≤ N) as follows:

1. Register the M atlases to S and compute a voting score on each voxel that receives a
given label. Let LiS(υ) denote the result of transforming the labels Li(υ) into S using
the corresponding deformation field and RiS(υ) denotes the transformed reliability
map. Vj(υ) is the voting score that υ receives the label j and is defined as follows

(2)

where j = 1, …, K, with K being the total number of labels in the atlas. For each
voxel choose a candidate label l defined as l = argmax {j:Vj(υ)}.

2. For the candidate label, compute the average reliability value,

(3)

We assign the label l to the voxel υ if R(υ) is larger than a threshold t, otherwise we
leave the voxel unlabeled. That is,

(4)

We choose M in order to reduce the number of registrations required without
affecting the accuracy of the results. In (Wan et al., 2008) it was demonstrated that
choosing M = 3 yielded improvements over a traditional voting scheme with five
atlases. It was also determined that use of the threshold t = 0.80 yielded satisfactory
results, so that is the value we use in the present work.
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Thickness
We use the thickness estimation method described in (Han et al., 2001) to compute cortical
thickness. In this approach, cortical thickness is computed from the image volume using two
distance transforms, one computed from the inner surface and one computed from the outer
surface. A thickness value is assigned to each voxel in the volume between the two surfaces
and is defined as the sum of the distances from the voxel to each of the two surfaces. The
reconstructed central cortical surface is generated in the same coordinate space as the image
volume, which means that each vertex of its surface mesh can obtain image values by
directly mapping into the image data in the volume. Accordingly, we obtain measures of
cortical thickness at each surface vertex of the central cortical surface using trilinear
interpolation applied in the image volume containing estimates of cortical thickness at
volumetric grid points.

To test the repeatability of our thickness measures, we used the repeat scan data available
from the Open Access Series of Imaging Studies (OASIS) project (Marcus et al., 2007).
From the OASIS data pool we took ten subjects, each with two scans, and used the same
processing steps to generate our thickness estimates for each of the regions of interest. We
then did a test-retest analysis to determine the consistency of the measurements for a given
subject. Test-retest correlation values range from -1.0 to 1.0, and values above 0.75 are
considered to be very good test-retest reliability. The values from our ten subjects were
between 0.833 and 0.968, with an average test-retest correlation of 0.902. In addition, the
mean intraclass correlation coefficient (ICC)(S.D.) across regions in these subjects was
0.6(0.22). In our analysis of cortical thickness changes in aging, we analyze each volume
independently in carrying out computations leading to cortical thickness measurements, and
we use statistical analysis to analyze the resulting thickness data.

Statistical Analysis
Linear mixed effects models were used in our analyses (Hartley and Rao, 1967; Laird and
Ware, 1982). The main characteristic of the longitudinal data is that data points within each
subject are correlated and mixed effects models take into account these correlations as part
of the estimation process by including random effects, thus making the parameter estimates
unbiased and more efficient. The models were fit using the lme function from the nlme
package (Pinheiro & Bates, 2000) in R version 2.9.0.

We used the median thickness values for each of the 40 ROI's as our dependent variables.
There were two goals in this longitudinal study; i.e. characterization of the age-related
growth-decline curve and estimations of longitudinal rates of change and sex differences in
those changes. These goals were incorporated into the following analyses. We first used a
backward elimination from a full model for each gyral region of age*sex and age*scanner
which showed the sex term was significant in some regions while the scanner term never
reached significance. We therefore removed scanner as a potential predictor in all remaining
analyses. In the next round of analyses, we fit linear mixed effect models with a quadratic
functional form in age to the data. This allowed us to test if the observed longitudinal
changes were linear or nonlinear. The fixed-effect part of this model included intercept, sex,
age, age*age, and sex interactions with age and age*age as predictors. The initial random-
effect part of the model included intercept, age, and age*age. In the subsequent round of
analyses, we used models with linear longitudinal changes to estimate rates of change. The
fixed-effect part of this model included intercept, sex, age, and sex*age as predictors. The
initial random-effect part of the model included intercept and age. All the model reductions
started from random effects. Non-significant random effects were dropped from the model.
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The restricted maximum likelihood (REML) method was used in all models because it
produces unbiased estimates of variance and covariance parameters. The age variable was
centered at 60 and divided by 10. This means the intercept is the level at age 60 and change
is measured in decades. Effect coding was used for the sex variable (-0.5 for females and 0.5
for males). This parameterization allowed us to estimate sex adjusted longitudinal changes
and the sex difference in longitudinal changes at the same time.

Results
Estimated median changes in cortical thickness for the 40 ROIs are shown for the left and
right hemispheres in Fig. 4, which summarizes the main results in a single “dot plot.” Here,
the black dots give the estimated rates of change and the black lines denote 95% confidence
intervals (CIs). If the 95% CI crosses the zero line, then the slopes are not statistically
significant. For regions that also show a sex difference, red and blue points are indicated,
representing the female and male slopes, respectively. In addition, we also present our
results as measures of effect sizes in the various brain regions by deriving the standardized
regression coefficient in each cortical region analyzed. The derived estimated slope can
therefore be interpreted as the change in standard deviation units in cortical thickness per
decade (supplementary table-1). Significant longitudinal decreases in cortical thickness were
observed in most regions of the left cerebral hemisphere (p < 0.05). Fewer regions in the
right cerebral hemisphere showed statistically significant age-associated longitudinal
decreases in median cortical thickness. Two ROIs in the left cerebral hemisphere—the
fusiform and lingual gyri—showed significant longitudinal increases in mean cortical
thickness. We observe a clear anterior-posterior gradient (Resnick et al., 2003) in the
differential rates of decline in cortical thickness across the brain with frontal and parietal
regions showing greater rates of decline relative to temporal and occipital regions. This is
depicted in Fig. 5 which shows gyral regions on a representative surface colored according
to their estimated rates of change.

Analysis of sex differences showed statistically significant differences in rates of cortical
thickness changes between males and females in several regions (Fig. 4). These included
middle frontal (L), inferior parietal (L), parahippocampal (L), postcentral (L), superior
temporal (L), precuneus (R), superior parietal (L & R), and cingulate region (L & R). Males
showed consistently greater rates of decline in cortical thickness in these regions in
comparison to females.

When we examined nonlinear models in the analysis of cortical thickness trends, three ROIs
each in the left and right cerebral hemispheres showed significant nonlinear changes over
time. These included the postcentral, precentral, and orbitofrontal gyri on the left and
inferior parietal, cingulate, and orbitofrontal gyri in the right cerebral hemisphere, as
indicated by the asterisks in Fig. 4.

Discussion
Our principal objective in this study was to delineate the regional distribution of longitudinal
changes in thickness across the entire cortical mantle during normal aging in older adults. To
accomplish this goal, we analyzed cortical thickness measures in 20 distinct gyral regions of
interest (ROIs) in each cerebral hemisphere from 66 non-demented older individuals in the
neuroimaging substudy of the BLSA. We derived these data from MRI measures obtained
during annual serial neuroimaging with upto 8 annual follow-up assessments. We observe
significant and widespread longitudinal declines in cortical thickness during aging,
differential rates of decline in distinct cortical regions, and robust differences in rates of
cortical thinning in several regions between males and females.
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Structural neuroimaging studies of the aging brain have largely focused on volumetric
measures of the cerebral cortex (Coffey et al., 1992; Good et al., 2001; Liu et al., 2003;
Resnick et al., 2000; Scahill et al., 2003; Tang et al., 2001). This metric is however a
composite measure derived from the product of cortical surface area and cortical thickness,
each of which may in turn, be differentially affected during aging by a variety of genetic
and/or environmental influences (Panizzon et al., 2009). It is therefore surprising that there
have been relatively few studies focusing on the analyses of cortical thickness or surface
area as discrete measures in aging. Another feature of the majority of structural
neuroimaging studies of the aging brain is their cross-sectional design (Blatter et al., 1995;
Courchesne et al., 2000; Pfefferbaum et al., 1994; Sowell et al., 2004). These studies may be
somewhat limited in their ability to account for large inter-individual variability to changes
in brain structure and are restricted to studying the effect of chronological age on the brain
(Fjell et al., 2009). On the other hand, by incorporating data from multiple time points,
longitudinal studies are able to address intra-individual effects of the process of aging on
brain structure. Such studies have revealed regional patterns of change over time in brain
regions that are distinct from those observed in cross-sectional studies alone (Du et al.,
2006; Raz et al., 1997).

The main finding in this study is that age-related decline in cortical thickness is widespread,
but shows an anterior-posterior gradient with frontal and parietal regions, in general,
exhibiting greater rates of decline than temporal and occipital. This observation is in
agreement with an earlier study where we showed a similar pattern of longitudinal decline in
gray matter volumes across the brain during normal aging (Resnick et al., 2003). Our results
are also consistent with an earlier study from our group where we investigated longitudinal
changes in a variety of sulcal anatomical measures during normal aging in a subgroup of
these older participants over a 4-year follow-up interval (Rettmann et al., 2006). More
recently, a large cross sectional study on more than 800 individuals ranging in age from
18-93 years demonstrated similar patterns of widespread age-related declines in cortical
thickness (Fjell et al., 2009).

It is interesting to note in this context that recent studies suggest that measurements of
cortical thickness may be particularly sensitive to early detection of neuropathology within
vulnerable brain regions in subjects at risk for AD. A recent cross-sectional study showed
that measurements of cortical thickness in the entorhinal cortex (ERC) might be sensitive to
detection of pre-symptomatic pathological changes in older individuals at risk for AD
(Burggren et al., 2008). Furthermore, this report suggests that measurements of cortical
thickness in such individuals may be more sensitive to early pre-clinical pathological
changes than standard MRI-based volumetry. Taken together with the findings in our current
study, these results may indicate utility of cortical thickness measurements as
complementary end points in clinical trials of disease-modifying treatments in subjects at
risk for subsequent development of AD.

Our findings of relatively large declines in cortical thickness in the precuneus and cingulate
regions is also interesting in the light of previous functional neuroimaging studies that show
hypometabolism in these regions to be an early and distinctive feature of AD and mild
cognitive impairment (MCI) (Herholz et al., 2007; Matsuda, 2007). This suggests that our
observation of decreases in cortical thickness in these regions even in cognitively normal
older adults may represent an early and distinct anatomical signature of brain regions at risk
for functional decline. In the context of recent neuroimaging studies using the amyloid
tracer 11C[PIB] to study in vivo burden of fibrillar amyloid in the brain, the pattern of
decline in cortical thickness observed in the current study appears to be somewhat similar to
that of amyloid accumulation in older individuals, affecting predominantly frontal and
parietal brain regions more than temporal and occipital (Pike et al., 2007; Rowe et al., 2007).
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We have recently also combined [15O]water PET and 11C[PIB] to examine differences in
longitudinal changes in regional cerebral blood flow (rCBF) between cognitively normal
older individuals dichotomized into those with high and low mean cortical fibrillar amyloid
burden. We observed both significant increases and decreases in rCBF in several brain
regions between the groups (Sojkova et al., 2008). Interestingly, all the regions exhibiting
significant longitudinal changes in rCBF in those with high amyloid burden are those that
also show significant declines in cortical thickness in the present study, suggesting at least in
some regions the latter measure is related to changes in brain function during aging.

We also observed significant sex differences in rates of decline in cortical thickness in
several brain regions including middle frontal, inferior parietal, superior parietal, post
central, parahippocampal, precuneus, cingulate, and superior temporal gyri. The pattern of
declines in all these regions indicated greater rates of atrophy in men relative to women.
This finding is consistent with previous cross-sectional and longitudinal studies, including
our own that used volumetric MRI measures to analyze changes in brain volume during
normal aging (Coffey et al., 1998; Cowell et al., 1994; Gur et al., 1991; Resnick et al.,
2000). Some of these regions, including middle frontal, parahippocampal and superior
parietal gyri were also observed to exhibit similar sex differences in rates of atrophy in a
recent longitudinal study of changes in brain volume during normal aging (Driscoll et al.,
2009).

Some additional findings in this study that merit consideration include apparent increases in
cortical thickness during aging in the left lingual and fusiform regions. Other studies have
observed similar increases in the medial frontal region. Although intriguing, we have not
directly addressed the likely mechanisms underlying this observation. One plausible
explanation may be that decreases in gray white contrast during aging might result in
apparent increases in cortical thickness estimates. Our group (Davatzikos and Resnick.,
2002) as well as others (Salat et al., 2009) have observed that in some brain regions,
statistical effects of changes in gray-white contrast during aging may be stronger than those
attributable to cortical thinning (Salat et al., 2009). We also observed striking hemispheric
differences in rates of change in cortical thickness in the temporal lobe, with far greater
decreases in cortical thickness in the left hemisphere relative to right. Hemispheric
asymmetry in patterns of volume changes in the normal aging brain have been previously
reported, although these observations have been inconsistent.

We are aware that some caveats are to be considered in the interpretation of our results.
Since our principal aim was to undertake an exploratory analysis of the longitudinal changes
in cortical thickness across the entire cortical mantle, we have chosen to present results from
all brain regions examined without corrections for multiple hypotheses testing. While this
might increase the risk of type-I error, we believe that our approach now allows for further
directed analyses of age-related changes in specific brain regions as well as testing a priori
hypotheses on the role of biological modifiers of such changes. There is also the possibility
that substantial effects might occur in a focal region that falls across the boundary of a gyral
region and therefore fail to reach significance within either region. Other authors have
addressed this problem by performing statistical analysis point-by-point across the entire
cortical mantle after registration of multiple subjects to a common atlas (Salat et al., 2004).
However, it is important to point out that these methods have the potential to mix
registration errors with actual effects, and they also smooth the thickness values by large
amounts (e.g., approximating a Gaussian kernel of 22 mm full-width at half-maximum). The
net effect of these steps could account for the fact that significance is not achieved in most
cortical areas in these other works [see Fig. 3 in (Salat et al., 2004)]. Our approach is
fundamentally different in that it is pools data from regions that are conceptually registered
according to their gyral label, which removes the potential effects of registration errors. Our
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approach also averages over regions of the cortex in order to reduce noise in thickness
measurements, and these regions are histologically meaningful. Our pursuit of this approach
was specifically carried out in order to find more statistically significant relationships than is
generally achieved in longitudinal analyses.

It might be asked what effect that our particular labeling approach might have on our results.
We have run comparisons of our labeling approach against Freesurfer (Makris et al., 2005)
and found Dice coefficients falling around 0.75-0.85, which indicates reasonable agreement.
Most of the disagreement can be found at the edges of gyral regions in part because
Freesurfer gyral boundaries tend to be smoother than ours. The main reason that we
investigated the concept of reliability was because of these differences—both variations in
our own labeling on different brains as well as the differences between competing methods
such as Freesurfer. Though we have not demonstrated this experimentally, we believe that
through the use of reliability, our median thickness measurements arise from points on the
surface that would in large part be labeled the same by either Freesurfer or CRUISE.

Finally, like other automatic algorithms, CRUISE also shows the gyri around the central
sulcus to be thinner than what is expected according to histology. Hutton et al. (Hutton et al.,
2008) speculate that the reason for this difference might be related to contrast differences
between gray matter and white matter in this particular region of the brain. We believe that
the contrast in this region is not substantially different than elsewhere but that because the
histology of these regions is substantially different than other places on the cortex—e.g.,
large Betz neurons and large white matter tracts—the location of the edge of T1 contrast
shifts outward. As well, this region provides a very strong edge (though outward from what
histology might decide is the actual edge of the gray matter) and it is found very accurately
by CRUISE and other automatic algorithms. This may account for the much lower “noise”
in the measurements in these regions.

Conclusion
We have undertaken a longitudinal study in cognitively normal older individuals where we
derived automated measurements of cortical surface thickness across the entire cortical
mantle. Our results show widespread declines in cortical thickness during normal aging and
differential rates of cortical thinning in distinct brain regions. In the light of previous
functional neuroimaging studies both in normal controls as well as in those with established
AD, this study demonstrates the utility of cortical thickness as a potentially useful
neuroanatomical correlate of normal and perturbed brain function in health and disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Cut-away of MR image of a whole head showing the inner (white outline) and outer
(pink outline) cortical surface reconstructions. (b) Inner cortical surface. (c) Outer cortical
surface. (d) Gyral regions over which thickness data is pooled.
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Figure 2.
Two views showing automatically generated gyral regions of interest. Some regions are
labeled for reference.
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Figure 3.
Reliability map displayed on various views of an outer surface.
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Figure 4.
A dot plot showing median thickness changes by cortical region. The black dots are the
estimated sex-adjusted rates of change and the black lines represent the 95% confidence
intervals. If the 95% confidence interval crosses the zero line, then the slopes are not
statistically significant. For regions that also show a sex difference, red and blue points are
also printed, where red and blue are the estimated slopes for females and males,
respectively. Units are mm/decade. Asterisks indicate regions showing significant nonlinear
changes.
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Figure 5.
A typical outer cortical surface with the mean thickness trends for the entire population used
to color the entire corresponding gyral region. The color scale is in mm/decade.
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