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Abstract
Purpose of review—We discuss the latest findings on the biochemistry of lecithin:cholesterol
acyltransferase (LCAT), the effect of LCAT on atherosclerosis, clinical features of LCAT
deficiency, and the impact of LCAT on cardiovascular disease from human studies.

Recent findings—Although there has been much recent progress in the biochemistry of LCAT
and its effect on HDL metabolism, its role in the pathogenesis of atherosclerosis is still not fully
understood. Studies from various animal models have revealed a complex interaction between
LCAT and atherosclerosis that may be modified by diet and by other proteins that modify
lipoproteins. Furthermore, the ability of LCAT to lower apoB appears to be the best way to predict
its effect on atherosclerosis in animal models. Recent studies on patients with LCAT deficiency
have shown a modest but significant increase incidence of cardiovascular disease consistent with a
beneficial effect of LCAT on atherosclerosis. The role of LCAT in the general population,
however, have not revealed a consistent association with cardiovascular disease.

Summary—Recent research findings from animal and humans studies have revealed a potential
beneficial role of LCAT in reducing atherosclerosis but additional studies are necessary to better
establish the linkage between LCAT and cardiovascular disease.
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Introduction
Lecithin:cholesterol acyltransferase (LCAT) (EC2.3.1.43), first described in 1962 by
Glomset[1], is a key enzyme for the production of cholesteryl esters in plasma and promotes
the formation of high density lipoprotien (HDL). Shortly after its discovery, LCAT was
proposed by Glomset[2] to promote the Reverse Cholesterol Transport (RCT), the anti-
atherogenic mechanism by which excess cholesterol is removed from cells by HDL and
delivered to the liver for excretion[3,4]. Although the role of LCAT in cholesterol efflux
from cells has largely been substantiated, its overall role in the pathogenesis of coronary
heart disease (CHD) is still not completely understood, because it appears to depend upon
other genes and environmental factors. In this review, we will first briefly discuss the
biochemistry of LCAT and its role in HDL metabolism. Next, we will review the effect of
increasing or decreasing the expression of LCAT on lipoprotein metabolism and
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atherosclerosis in various animal models. Finally, clinical features of LCAT deficiency and
evidence from recent human studies on the effect of LCAT on CHD will be discussed.

LCAT Biochemistry
The human lcat gene, localized at 16q22, is 4.5 kb in length and contains 6 exons, which
contain 1.5 kb of coding sequence[5]. It is primarily expressed in the liver but is also
produced in smaller amounts in the brain and testes[6–12]. LCAT gene expression is
relatively insensitive to most drugs, diet modifications or other lifestyle factors; however,
fibrates lower plasma LCAT activity by approximately 20%[13,14], whereas torcetrapib and
atorvastatin can modestly increase LCAT levels HDL[15–17]. The mature protein contains
416 amino acids and the primary amino acid sequence of LCAT is relatively well
conserved[5–8,18]. There is limited information on the tertiary structure of LCAT, but a
stucutural model for LCAT based on its homology with the α/β hydrolase fold family
proteins, such as the lipases, has been described[19]. The model nicely predicts the
conformation of the known catalytic triad of the enzyme, which is formed by Ser181,
Asp345, and His377 residues. Two disulfide bridges have been described in LCAT[20].
Residues 53 to 71, which contains the disulfide-linked Cys50-Cys74 residues, forms part of
the lid-region and a lipid binding surface[21–23], which partially covers the active site of the
enzyme[24]. LCAT also contains two free cysteines (Cys31, Cys184), which account for the
sensitivity of the enzyme to inhibition by sulfhydryl reactive agents[25]. The mature fully
processed protein is approximately 63 kDa, which is more than 20% greater than the
predicted protein mass. Most of this extra mass is due to the presence of N-linked
glycosylation[26,27], which are important for its biological activity [28–31].

The LCAT reaction occurs in two steps (Fig. 1). After binding to a lipoprotein, LCAT
cleaves the fatty acid in sn-2 position of phosphatidylcholine and transfers it onto Ser181.
Next, the fatty acid is transesterified to the 3-β-hydroxyl group on the A-ring of cholesterol
to form cholesteryl ester. Because cholesteryl esters are more hydrophobic than free
cholesterol, it migrates into the hydrophobic core of lipoprotein particles. Approximately
75% of plasma LCAT activity is associated with HDL, but LCAT is also able to bind and
produce cholesteryl esters on LDL and other apoB-containing lipoproteins[32,33]. Human
LCAT preferentially acts on phospholipids containing 18:1 or 18:2 fatty acids, whereas rat
and mouse LCAT prefer phospholipids containing 20:4 fatty acids[34,35]. Other
phospholipids, such as phosphatidylethanolamine, can also participate in the LCAT
reaction[36], whereas other lipids, such as sphingomyelin, can inhibit LCAT [37–40].

In vitro, many different apolipoproteins can activate LCAT[41,42], but compared to apoA-I,
they appear to be less effective and are not as abundant as apoA-I in plasma., They may still,
however, play a physiologic role, particularly apoE, in activating LCAT on apoB-containing
lipoproteins [43]. The exact mechanism by which apoA-I activates LCAT is not known[44–
47], but one proposal is that it stabilizes an active conformation of LCAT, similar to the way
colipase activates pancreatic lipase[48,49]. In several recent HDL structural studies, the
regions of apoA-I that activate LCAT appear to be more surface exposed compared to most
other parts of apoA-I[44,50,51].

LCAT in HDL metabolism
Figure 2 shows where LCAT fits into the RCT pathway[3]. This pathway promotes the
removal of excess cellular cholesterol from peripheral tissues and its delivery to the
liver[52,53] for excretion into the bile. It begins with the formation of HDL largely in the
liver[54–56] and the transfer of phospholipid and cholesterol by various transporters[57–60]
to HDL and its eventual uptake into the liver. According to this model, LCAT plays two
important roles. First, as originally proposed by Glomset[3], LCAT has been shown to
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promote the efflux of cholesterol from peripheral cells[61]. The esterification of cholesterol
on HDL increases the concentration gradient for free cholesterol between cell membranes
and HDL. Without the ongoing esterification of cholesterol, the capacity of HDL to remove
and bind additional cholesterol would eventually be diminished over time. CETP may
further enhance this process by transferring cholesteryl esters formed by LCAT from HDL
onto LDL[62,63], creating additional capacity for HDL to bind cholesterol. The
esterification of cholesterol also transforms the discoidal shaped nascent HDL with a pre-
beta migration position on agarose gels into spherical shaped HDL, which is called alpha-
HDL. Because cholesteryl esters are much more hydrophobic than cholesterol, the other
consequence of LCAT is that it prevents the spontaneous back exchange of cholesterol from
HDL to cells and thus promotes the net cellular removal of cholesterol [61]. Cholesteryl
esters on HDL and LDL are essentially trapped on these lipoproteins until they can be
removed from the circulation by the liver.

Analysis of LCAT in animal models
An important experimental system for testing the role of LCAT in the RCT pathway and its
effect on atherosclerosis has been the development of various animal models with either
increased or decreased expression of LCAT (Table 1).

One of the first LCAT transgenic mice produced had a relatively high level of expression,
(10–200 fold), which was associated with an increase in total cholesterol, LDL-C and HDL-
C[9,69]. Mice with the highest level of LCAT were found to produce heterogeneous size
HDL, which contained a mixture of apoA-I and apoA-II, as well as apoE, particularly on the
larger HDL particles that were enriched in cholesteryl esters. ApoE-rich HDL in these mice
was found to be dysfunctional, at least in regard to the delivery of cholesterol to the
liver[69,70]. LCAT has also been overexpressed in transgenic rabbits[11], which unlike
mice express CETP. As observed in mice, overexpression of LCAT in rabbits also increased
HDL-C but unlike mice it decreased LDL-C[71]. Transient expression of hLCAT in squirrel
monkeys with adenovirus also raised HDL-C and decreased apoB-lipoproteins, due to
increased catabolism[66].

LCAT transgenic rabbits had 50–60% lower levels of pro-atherogenic apo B
lipoprotiens[71] and were protected against diet-induced atherosclerosis[10]. LCAT
transgenic rabbits crossed with LDL-receptor deficient rabbits showed that the LDL-
receptor is necessary for the ability of LCAT to lower apoB-lipoproteins and for reducing
atherosclerosis[72]. In contrast, LCAT overexpression in mice did not protect against diet-
induced atherosclerosis[70,73,74], and in fact, in some cases, increased atherosclerosis mice
with very high levels of LCAT [70]. Crossbreeding of LCAT and CETP transgenic mice led,
however, to an approximate 50% reduction of diet-induced atherosclerosis compared to
LCAT transgenic mice, although it was still increased above control mice[69]. The HDL
produce by these mice in the presence of CETP was found to be more functional. In
addition, these mice had lower levels of apoB containing lipoproteins[69].

Studies of LCAT-knockout (K/O) mice have also advanced our knowledge of the effect of
LCAT on HDL metabolism. LCAT-K/O mice have markedly reduced plasma total
cholesterol, cholesteryl esters, HDL-C, apoA-I, and an increase in plasma
triglycerides[67,68]. The amount of alpha-HDL was strikingly decreased and the residual
HDL was mostly pre-beta type HDL. When LCAT-K/O mice were placed on high
cholesterol/cholate diet, it induced the formation of LpX-like lipoprotein particles, which
can also be produced in cholestatic liver disease. Unlike normal lipoproteins, which have a
micellar-like structure with a single monolayer of phospholipids and neutral lipid core, these
abnormal particles, are multilamellar phospholipid vesicles that contain a minimum amount
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of neutral lipids but can contain common plasma proteins like albumin entrapped within the
particle. Similar to LCAT-deficient patients, LCAT-K/O mice on a high fat diet developed
proteinuria and glomerulosclerosis, characterized by mesangial cell proliferation, sclerosis,
and lipid accumulation, which may be the consequence of the renal deposition of LpX [75].
Another mouse model of LCAT deficiency that spontaneously developed glomerulopathy on
a normal chow diet was created by crossing LCAT-K/O mice with SREPB1a transgenic
mice[76], which have increase production of apoB containing lipoproteins. These mice also
had lower levels of paraoxonase and platelet-activating factor acetylhydrolases[77], two
anti-oxidant enzymes that normally reside on HDL.

Unexpectedly, LCAT deficiency in mice significantly reduced diet-induced atherosclerosis
when on a high cholesterol/cholate diet, despite causing a marked decrease of HDL-C[75].
This protection was also observed for LCAT deficiency when present in LDL-receptor-K/O
and CETP-transgenic mice placed on high-cholesterol/cholate diet, as well as in apoE-K/O
knockout mice on normal chow diet[75]. In all these cases, LCAT deficiency was associated
with a significant decrease of apoB-containing lipoproteins. In another study, LCAT-K/O ×
apoE-K/O mice placed on a high fat diet but without cholate showed instead an increase of
atherosclerosis[78]. On this diet, apoB levels increased and cholesteyl esters were enriched
in pro-atherogenic saturated fatty acids. In contrast, LCAT-K/O × apoE-K/O mice on a
normal chow diet had lower apoB levels and developed less atherosclerosis compared to just
apoE-K/O mice[79]. Interestingly, these mice have higher paraoxonase 1 activity and
decreased markers of oxidative damage compared to just apoE-K/O mice, presumably
because in the absence of LCAT, paraoxonase 1, can relocate from HDL to the abnormal
apoB-containing lipoproteins that accumulate with LCAT deficiency. Overall the results
from the various animal models, indicate that there is a complex interaction between LCAT
and atherosclerosis, which depends on the diet and can be modulated by the other proteins in
the RCT pathway, such as CETP and the LDL-receptor. It appears, however, that the anti-
atherogenic effect of LCAT more closely correlates with its ability to lower plasma levels of
apoB-lipoproteins than on its ability to raise HDL-C.

Human Genetic Disorders of LCAT
Over 60 different mutations in the LCAT gene have been described[80–82], which can lead
to two rare autosomal recessive disorders, namely Familial LCAT Deficiency[83,84] (FLD)
or Fish-Eye Disease[85] (FED). Both conditions are characterized by low HDL-C and
corneal opacities, but FLD subjects have a more severe deficiency of LCAT and can develop
other signs and symptoms (Table 2).

FED subjects were first described to have reduced LCAT activity on HDL (alpha-LCAT)
but near normal activity on LDL (beta-LCAT), whereas LCAT is nearly absent on both
lipoproteins in FLD[86]. Some LCAT mutations have been shown to selectively affect
LCAT activity on HDL[87], but not all mutations can be neatly categorized as affecting only
the esterification of cholesterol on HDL or LDL, suggesting that some patients with FED
may differ from FLD by having more residual LCAT activity on both HDL and
LDL[88,89].

FED and FLD subjects can have normal to elevated total cholesterol and triglycerides, and
they both present with a similar low level of HDL-C (Table 3).

Although also low in FED subjects, FLD subjects have a much lower ratio of CE/TC
because of their greater reduction in LCAT activity. This is consistent with the much lower
cholesterol esterification ratio (CER) typically found in FLD compared to FED[86]. The
CER assay, which is a measure of LCAT activity based on endogenous lipoproteins, is
performed by adding radiolabeled cholesterol to plasma and then determining the rate of
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cholesteryl ester formation. LCAT mass can be highly variable, because some mutations
will primarily affect enzyme activity but not mass.

Many of the clinical features of these two diseases can be partially explained by the
underlying defect in LCAT. As with other disorders of the RCT pathway, such as Tangier
disease and apoA-I deficiency[94], cholesterol can accumulate in the cornea of these
patients[80,91], most likely as a consequence of decreased cholesterol efflux. A physical
examination of the eyes of these subjects will typically reveal a pale cloudy cornea, with a
whitish ring around the periphery that is similar to arcus senilis. Typically the corneal
deposits do not significantly interfere with vision, but some patients have required corneal
transplantation[80]. Hepatosplenomegaly may be a consequence of increased lipid
accumulation, possibly from decreased cholesterol efflux but also because of accelerated red
blood cell removal. FLD subjects can have normocytic normochromic anemia and abnormal
red blood cells shapes, most likely because of a disturbance in the exchange of lipids
between red blood cells and the abnormal level and type of lipoproteins in these subjects.
Renal disease is the major cause of morbidity and mortality in patients with FLD.
Proteinuria can develop in childhood and progresses to nephrotic syndrome typically by the
fourth to fifth decade of life[95]. Eventually these patients can develop hypertension and
end-stage renal disease, which can be treated by renal transplantation, but the disease can
reoccur in the renal allograft[95]. A recent report has suggested that angiotensin-converting
enzyme inhibitors, which reduces proteinuria, may be useful in these patients for delaying
the progression of the renal disease[96].

LCAT and Cardiovascular Disease
Although CHD has been reported in FLD and FED patients[82,87,90,91,97–101], in many
cases they do not develop clinically apparent disease[102] and hence the role of LCAT in
the pathogenesis of atherosclerosis has been controversial. Recently, a relatively large study
of carriers of LCAT defects have reported not only reduced HDL-C but also a marked
increase in C-reactive protein and in intima media thickness (IMT) of the carotid artery. No
significant change in IMT was observed in homozygotes, but an increased incidence of
CHD was reported when heterozygotes were compared with controls[90–92,103–105].
Similar findings for heterozygous subjects were observed in a 25 years follow-up study of a
large Canadian LCAT deficient family and in 13 unrelated Italian families with FLD and
FED[81,93]. These results suggest that while heterozygosity for LCAT deficiency is
associated with increased IMT and CHD, this may not be true for homozygous subjects, but
this could potentially be explained by the low number of homozygous subjects studied. An
alternative explantion is that homozygous FLD and FED patients may be partially protected
from their low HDL, because they often also have reduced levels of LDL-C compared to
heterozygotes and controls[80].

LCAT is not a very polymorphic protein and only a few studies examining genetic variants
of the LCAT gene in the general population have been described. A novel P143L SNP with
a frequency of about 6% was identified in a Chinese patients with coronary artery disease
and was found to be linked with low HDL-C[106]. In contrast, a study of type 2 diabetes
found no association between CHD and two other LCAT variants, Arg147Trp and
Tyr171Stop[107]. Another LCAT variant, rs2292318, which was initially associated with
lower HDL-C in a patient population with CHD, could not be subsequently validated in an
independent population sample[108]. The lack of a clear association of LCAT SNPs with
CHD may simply be due to lack of prevalent SNPs in the population, the possibility that the
SNPs do not alter LCAT activity, and because total variation of HDL-C explained by LCAT
SNPs appears to be relatively small[109].
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Recently, a study reported greater IMT and elevated LCAT activity in subjects with
metabolic syndrome, suggesting that higher LCAT activity may not be beneficial[110]. A
similar positive association of LCAT was also observed in patients with angiographically
proven CHD[111]. These results are in contrast, however, to multiple earlier papers
describing either a negative or no association between LCAT activity and CHD[112–114].
These seemingly contradictory results may potentially be explained by the fact that most of
these studies are relatively small and do not examine the other proteins and enzymes in the
RCT pathway, which can potentially alter the effect of LCAT on atherosclerosis. For
example, low LCAT activity when also linked with elevated levels of pre-beta HDL was
associated CHD[115]. Another possible explanation for the contradictory results is that there
may be other biochemical markers for the cholesterol esterification process that are better
than the in vitro LCAT activity assay for assessing the HDL maturation process, such as the
fractional esterification rate of apoB-depleted plasma (FERHDL)[116,117]. Finally, it is
important to note that it is impossible to p determine from epidemiologic studies whether
LCAT is playing a causal role in promoting or decreasing atherosclerosis or instead may be
being up or down regulated by some sort of compensatory response.

Summary
Although LCAT has been a subject of great interest in cardiovascular research for several
decades, we still do not have a clear answer on its role in the pathogenesis of CHD. The
preponderance of evidence appears to support the original contention by Glomset[3] that
LCAT is an anti-atherogenic factor, but its effect is dependent upon other factors that
modulate the RCT pathway, such as CETP. As was observed in mice[70], it is possible that
LCAT could be pro-atherogenic for a subset of patients, with a particular lipoprotein
disorder or profile that may alter the normal affect of LCAT on CHD. Our incomplete
understanding of LCAT has discouraged efforts by drug companies to develop agents to
modulate LCAT activity for the treatment of CHD. A small molecule that activates LCAT,
however, has recently been described, but it is only in pre-clinical testing[118]. There may
also be utility in increasing LCAT levels when reconstituted forms of HDL are infused in
patients for the rapid stabilization of patients with acute coronary syndrome[4]. Under these
circumstances, LCAT may perhaps become rate limiting and the addition of extra LCAT
may potentiate the beneficial effects of the infused HDL. Besides using small molecule
activators of LCAT or drugs that may increase the transcription of LCAT, the use of
recombinant LCAT protein may be a good strategy for acutely raising LCAT, during HDL
therapy4. Although it is a rare disorder, recombinant LCAT protein may also be useful as an
enzyme replacement therapy agent for the prevention of renal disease in FLD subjects,
particularly because of its relatively long half-life[119,120], and the fact that LCAT acts in
the plasma compartment and does not need to be delivered to a specific tissue or cellular
compartment. Finally, once the complex interaction between LCAT and atherosclerosis is
better understood, the measurement of some aspect of LCAT activity could potentially also
aid in cardiovascular risk assessment.
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Figure 1. Diagram of the Reverse Cholesterol Transport Pathway
Pre-beta HDL produced, as a consequence of the interaction of apoA-I with the ABCA1
transporter on the liver, obtains additional phospholipid and cholesterol from ABCA1
transporters on peripheral cells, such as macrophages. In addition, HDL can acquire more
lipid by other mechanisms, such as from the ABCG1 transporter, the SR-BI receptor or by
an aqueous diffusion process. Cholesterol removed from cells by HDL is converted to
cholesteryl esters by LCAT, which transforms pre-beta HDL to alpha-HDL. Cholesterol can
be directly returned to the liver after uptake by the SR-BI receptor or after transfer to apoB-
containing lipoproteins by CETP. Phospholipid transfer protein (PLTP) and hepatic lipase
(HL) promote the interconversion alpha-HDL and pre-beta HDL.
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Figure 2. Diagram of the LCAT Reaction
LCAT cleaves the fatty acid (R2) from the sn-2 position of phosphatidylcholine and then
transesterifies it to the A-ring of cholesterol, producing lysophosphatidylcholine and
cholesteryl ester.
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Table 1

Animal models of overexpression or deficit of LCAT.

Species Model Construct Reference

Mice Transgenic Genomic hLCAT with its own promoter and 3′-flank 10

Mice Transgenic Genomic hLCAT with albumin enhancer and promoter 85

Mice Transgenic Genomic hLCAT with its own promoter and 3′-flank 82

Rabbits Transgenic hLCAT with its own promoter and 3′-flank region 11

Squirrel monkey Viral infection hLCAT in adenovirus 88

Mice Knockout Homologous recombination replacement vector 92

Mice Knockout Homologous recombination replacement vector 93
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Table 2

Clinical Findings in Patients with FLD and FED

Clinical Features FLD FED

Corneal opacities + +

Anemia + −

Target cells in blood + −

Proteinuria + −

Renal Failure + −

Atherosclerosis −/+ −/+

Hepatosplenomegaly + −/+

Lympnadenopathy + −/+
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Table 3

Plasma Lipids and Lipoprotein Profile in Patients with FED

FED (range) Reference Range

TC (mg/dL) 186 (64–253) 120–280

TG (mg/dL) 146 (60–408) 40–250

HDL-C (mg/dL) 9 (0–27) 30–85

Apo A-I (mg/dL) 42 (29–45) 90–190

CE/TC 0.46 (0.57–0.65) 0.67–0.71

CER (nmoL/mL/h) 51 (25–74) 40–80

LCAT mass (μg/mL) 3.5 (0–4) 3.8–6.6

TC: total cholesterol; TG: triglycerides; CE/TC: cholesteryl ester/total cholesterol ratio; LCAT: lecithin:cholesteryl acyltransferase; CER:
cholesteryl esterification rate. Data from approximately 15 FLD subjects are shown as mean with range in parenthesis. Modified from re,f 95 with

additional data from ref. 105 and 127.
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Table 4

Plasma Lipids and Lipoprotein Profile in Patients with FLD

FLD (range) Reference Range

TC (mg/dL) 173 (89–323) 120–280

TG (mg/dL) 605 (85–1480) 40–250

HDL-C (mg/dL) 8 (0–16) 30–85

Apo A-I (mg/dL) 39 (36–48) 90–190

CE/TC 0.06 (0.06–0.49) 0.67–0.71

CER (nmoL/mL/h) 1 (0–16) 40–80

LCAT mass (μg/mL) 0.5 (0–2.6) 3.8–6.6

TC: total cholesterol; TG: triglycerides; CE/TC: cholesteryl ester/total cholesterol ratio; LCAT: lecithin:cholesteryl acyltransferase; CER:

cholesteryl esterification rate. Data from approximately 50 FLD subjects are shown as mean with range in parenthesis. Modified from ref. 95 with

additional data from ref. 105 and 127.
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