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Summary
During the second trimester period, neuroepithelial stem cells give birth to millions of new
neuroblasts, which migrate away from their germinal zones to populate the developing brain and
terminally differentiate into neurons. During this period, large numbers of cells are also eliminated
by programmed cell death. Therefore, the second trimester constitutes an important critical period
for neuronal proliferation, migration, differentiation and apoptosis. Substantial evidence indicates
that teratogens like ethanol can interfere with neuronal maturation. However, there is a paucity of
good model systems to study early, second trimester events. In vivo models are inherently
interpretatively complex because cell proliferation, migration, differentiation, and death
mechanisms occur concurrently in regions like the cerebral cortex. This temporal overlap of
multiple developmental critical periods makes it difficult to evaluate the relative vulnerability of
any individual critical period. Our laboratory has elected to utilize fetal rodent cerebral cortical-
derived neurosphere cultures as an experimental model of the second-trimester ventricular
neuroepithelium. This model has enabled us to use flow cytometric approaches to identify
neuroepithelial stem cell and progenitor sub-populations and to show that ethanol accelerates the
maturation of neural stem cells. We have also developed a simplified mitogen-withdrawal/matrix-
adhesion paradigm to model the exit of neuroepithelial cells from the ventricular zone towards the
subventricular zone and cortical plate, and their maturation into multipolar neurons. We can treat
neurosphere cultures with ethanol to mimic exposure during the period of neuroepithelial
proliferation and by using the step-wise maturation model, ask questions about the impact of prior
ethanol exposure on the subsequent maturation of neurons as they migrate and undergo terminal
differentiation. The combination of neurosphere culture and stepwise maturation models will
enable us to dissect out the contributions of specific developmental critical periods to the overall
teratology of a drug of abuse like ethanol.
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1 Introduction
1.1 The Fetal Alcohol Syndrome

Heavy ethanol consumption during pregnancy can persistently alter fetal development and
lead to a constellation of craniofacial, brain, and cardiovascular defects that are collectively
termed the fetal alcohol syndrome or, F.A.S (1). The constellation of brain defects includes
microencephaly, malformations of gyri, diminution or loss of interhemispheric
communicating fiber tracts like the corpus callosum (reviewed in (2,3)), and the presence of
“brain warts” or heterotopias containing displaced neurons (3,4). Because of an increasing
recognition that lower levels of ethanol consumption during pregnancy also can lead to
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neurological, behavioral, and cognitive deficits, the range of defects associated with in utero
alcohol exposure have collectively been termed fetal alcohol spectrum disorders or, F.A.S.D
(5,6).

In utero alcohol exposure is the most important nongenetic cause of mental retardation.
Genetic susceptibility factors do increase vulnerability to in utero ethanol exposure.
However, the identified risk factors include genes like alcohol dehydrogenase (e.g., the, A.
D.H1B*2 allele (7)), which control the metabolism of ethanol and, consequently, titrate
either maternal or fetal blood alcohol levels. It follows, therefore, that a dose of ethanol that
results in permanent alteration of the nervous system must produce its effects by disrupting
events underlying critical periods of neural development, rather than recruiting genetic
susceptibility factors per se. In other words, the effect of ethanol during a particular
developmental period is determined by the specific biological events that occur during that
period. Therefore, to study the effects of ethanol on brain development, we need to pay close
attention to appropriately modeling relevant underlying biological events. It is critically
important that models of neural development closely mimic pertinent aspects of in utero
developmental biology.

1.2 Effects of Alcohol During Brain Growth and Development
The brain growth spurt period (the second and third trimester equivalent of human gestation,
comparable with the latter half of gestation and the early postnatal period of rodent
development (8)), is characterized by rapid neuronogenesis ((9), the initial period of neuron
generation), compensatory apoptosis (10,11), neuroblast migration out of the ventricular
zone (VZ), and early neuronal maturation. This developmental phase constitutes a period of
particular vulnerability to alcohol. Most studies on the effects of alcohol on brain
development have focused on the third-trimester model. For example, early studies from
West and his colleagues used a third-trimester model in rats to demonstrate neuronal cell
loss in the cerebellum, olfactory bulb, and hippocampus after alcohol exposure (12–17).
Rodent cell culture models and tumor-derived cell lines also have been used extensively to
understand the effects of ethanol on neuronal survival and differentiation, i.e., events that
occur during the third trimester. Using these models, we and others, have shown that, in
differentiated neural tissue, part of alcohol’s neurotoxicity may be caused by the induction
of death mechanisms (18–21), the loss of growth and survival factors (22–28), alterations in
neuronal migration (29), and in neurotransmitters systems (30), among others. Further, in
vitro studies found that the state of differentiation of the cells determined the degree of
sensitivity to alcohol insult (31,32), confirming in vivo work showing windows of
vulnerability that reflected maturation of the neurons (16,33,34).

In contrast to the extensive research that has focused on the third-trimester effects of
ethanol, the second trimester represents a poorly understood and lessstudied period of
vulnerability to ethanol. The second trimester is an important time frame for study of
alcohol’s effects because during this period, millions of new neurons are born, migrate away
from neuroepithelial germinal zones (primarily the ventricular and subventricular zones),
and populate various brain regions (35,36), laying down a cellular framework for the rest of
brain development. The maturation of neural stem cells plays a crucial role in the process of
neuronogenesis. An early study by Barnes and Walker (37) reported a loss of hippocampal
neurons from a second-trimester equivalent alcohol exposure, and significant work from
Miller’s lab showed alcohol-induced changes in cortical neuronogenesis (38–40). Others
have shown that rats exposure to ethanol over a 2-d window from, G. D.14–15 exhibit an
immediate enlargement of the, S.V.Z, suggesting, N.S.C/NPC maturation (41), disorganized
cortical architecture at the end of the neuronogenic period (42), and a persistent thinning of
lamina V of the rodent cerebral cortex (43), suggesting that the effects of second-trimester
ethanol exposure are persistent.
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Until recently, we have lacked good culture models to examine the cell and molecular
biological underpinnings of ethanol’s actions. In this chapter, we will discuss cell and tissue
culture models that we use in our laboratory to model pertinent events that occur during the
second trimester of human gestation, with specific reference to the formation of the cerebral
cortex.

1.3 Neurodevelopment During the Second-Trimester Period
During the second trimester-equivalent prenatal period of neurogenesis, the number of
neuroepithelial cells expands rapidly to generate most of the neurons of the adult brain (44)
requiring, as with other tissues (Fig. 1. (45)), the conversion of uncommitted stem cells to
more fate-restricted progenitors, then to blast-cells, and ultimately neurons (Fig. 2). The
fetal murine cerebral cortical ventricular zone initiates proliferation by gestational day (GD)
11, and a neural stem cell (NSC) that starts proliferating on, G. D.11 will undergo ~11
integer cell cycles during the period required to generate cortical plate (CP) neurons (36).
During the peak period of neuronogenesis, the rodent cerebral cortex is estimated to add
~2400 new neurons to the cerebral CP per minute (46). Neuroepithelial cells are coupled to
each other by gap junctions during S and G2 phases of cell cycle (47) and are vulnerable to
apoptosis during these cell cycle phases (11). Consequently, the fate of a single
neuroepithelial cell is likely to be tied to the fate of its neighbors, and to its cell cycle stage,
and the collective neuroepithelial response to a teratogen may be more critical than the
response of individual neuroepithelial cells. A teratogen that alters the rate of proliferation
and death in neuroepithelial cells is likely to significantly alter the structure of the mature
brain.

1.4 The Neurosphere Culture Model Recapitulates the Second-Trimester Neuroepithelium
The nonuniform distribution of cell proliferation cycles throughout the neuronogenic period
suggests that classes of rapidly proliferating neuroepithelial progenitors that are present
early in the neuronogenic period are either eliminated or otherwise suppressed as the
ventricular zone matures. We and others have modeled the fetal neuroepithelium using
neurosphere cultures derived from the fetal mouse and rat ventricular zones. We typically
isolate cortical tissue from GD 12.5 mouse fetuses corresponding to the initial period of CP
neuronogenesis (although we have also isolated tissue from rat fetuses and, at later
gestational ages, corresponding to the peak of CP neurogenesis). Isolated cells are dispersed
into defined culture medium and may be further fractionated by immunomagnetic separation
(MACS, Miltenyi Biotech), or by fluorescence-assisted cell sorting (FACS). In the presence
of mitogenic factors, the individual neuroepithelial cells form floating clonal colonies, or
spheroid bodies. In the absence of extracellular matrix molecules, cells preferentially adhere
to each other and are often referred to as “neurospheres.” An individual neurosphere is quite
heterogenous, with respect to maturation state. Cells expressing the nestin, glial fibrillary
acidic protein (GFAP), and the early neuronal maturation marker, microtubule-associated
protein-2 (MAP-2), can all be identified within neuronal cultures. However, other markers
such as NeuN, which identify mature neurons, are not present in neurosphere cultures.
Neurospheres grown from single cells can assume varying sizes during a 48- to 72-h period,
suggesting that their parental neuroepithelial cells are intrinsically variable with respect to
cell cycle kinetics, perhaps reflecting an emerging heterogeneity of fate within the
neuroepithelium.

1.5 Mapping the Diversity of Fetal Neuroepithelial Cells
Increasing evidence suggests that cortical neuron heterogeneity results from early
diversification of the neuroepithelium (48–52), well before the advent of external influences
in the form of cortico-fugal projections from other brain nuclei. For example, pyramidal
neurons of the mature cerebral cortex are generated within the cortical ventricular zone,
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wherea interneurons are generated within the ventral ganglionic eminences and migrate
tangentially into the CP (53–55). Neuronal heterogeneity in terms of gene expression
patterns and lamina preference emerges within each neuroepithelial zone as well.
Transcription factors like Lhx-1&2, TBr-1, and Emx-1 identify distinct subpopulations of
neuronal precursors (53,56). Because of these and other data, it has been suggested that the
cortical neuroepithelium contains a “protomap” (56) of the mature adult cortex and that the
principal determinants of cortical structure arise from diversification of stem and progenitor
cells within the cortical neuroepithelium itself.

Transcription factor identity, however, is not useful for isolating live neuroepithelial
subpopulations. Such cell-types are more easily isolated based on their differential
expression of cell-surface antigens. For example, we and others have shown that cell-surface
molecules like the Fas/Apo-1/CD95 suicide receptor (10,11), β2-microglobulin, a, M. H.C
class I antigen (50), and receptor tyrosine kinase, EphA (56), all mark subsets of
neuroepithelial precursors within the, V. Z. Interestingly, these proteins (57,58), or their
family members (59), also mark cells in various stages of hematopoiesis, supporting the
notion that stem and progenitor cells in dissimilar tissues nevertheless express a common
repertoire of surface antigens.

Hematopoietic-derived cells express different surface antigens at various developmental
transitions (60) and, thus, surface antigen expression reflects the status of development
along a competency continuum. In our research, we have elected to use cell-surface markers
derived from the hematopoietic system, like, C. D.133/prominin-1, Sca-1 (Ly6A/E), CD117/
c-kit, and, A. B.CG2 (ATP-binding cassette, sub-family G (WHITE), member 2), to define
early cortical neuroepithelial subpopulations. These cell surface markers have been used
successfully to monitor stem cell heterogeneity in a variety of tissues (61–64). ABCG2 in
particular is most likely to mark stem cells uniquely. Stem cells in the hematopoietic and
nervous system (61,65,66) display a unique ability to rapidly induce efflux of Hoechst dye
(#33342), thereby generating a characteristic staining-pattern (termed the side population or
‘SP’), which can be assessed by flow cytometry (67,68). The, S. P.-population in
hematopoietic tissues represents less than 1% of the total population and is a rare event, as is
expected for a stem cell group. The protein, ABCG2 (69), confers a, S. P.-population
phenotype to stem cells, and is downregulated in more differentiated cells (70–72). In our
research, we have therefore used, A. B.CG2 expression to mark neural stem cells, and to
monitor this population after ethanol exposure. Stem cells can exhibit two alternate modes
of cell division (73); the first, symmetric division (Fig. 1a), results in the formation of two
daughter stem cells, whereas the second, i.e., asymmetric division, results in the formation
of one daughter stem cell, and a second, more mature, daughter progenitor cell (Fig. 1b).
Symmetric division boosts the pool of stem cells while asymmetric division maintains the
stem cell pool.

In the mouse, a major burst of cell proliferation occurs between, G.D.11 and, G.D.14,
encompassing 63% of the integer cell cycles that span the neuronogenic period (36). Within
the hematopoietic system, this burst pattern is consistent with the appearance of colony-
forming units (CFUs or early progenitors), which proliferate rapidly by symmetric division
(Fig. 1b) to regenerate lineage-specific colonies, and are present in large numbers. Recent
evidence indicates that such symmetric division of neural, C. F.U-equivalents occurs at a
high rate in the apical portion of the fetal neuroepithelium, and is an important source of
neurons (73). Our data show that the antibodies to Sca-1, CD133, and, C.D.117 label ~30%,
12%, and 20% of neuroepithelial cells, respectively, by flow cytometry (74). Because these
antigens mark a significantly larger number of cells than, A. B.CG1, it is likely that these
antigens mark more mature (CFU and later) stages of neuronal lineage. Later symmetric
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division may result in the continued formation of lineage committed, blast precursors (Fig.
1c).

1.6 Modeling Early Cortical Neuronal Differentiation With Culture Models
Cells leave the, V.Z. to directly form CP neurons (75), or to form radial glial and astrocytic
intermediate blast precursors to additional neurons (Fig. 2 (76,77)). Our laboratory has been
interested in developing models to study this transition between cell proliferation and
differentiation in the cerebral cortex. In our initial model of cortical maturation, we infected
fetal rodent-derived cortical cells with an adenovirus expressing a temperature sensitive,
S.V.40-large T antigen (tsTA) (78). At the permissive temperature for T-antigen expression
(+tsTA) fetal cortical cells proliferate rapidly, assume an epithelioid morphology, and
express the intermediate filament protein, nestin. However, at the non-permissive
temperature for T-antigen expression (−tsTA), neuroepithelial cells exit cell cycle, and large
numbers of cells undergo apoptosis by p53-dependent mechanisms (11,78). Surviving cells,
however, undergo morphological transformation and initiate the growth of neurites.
Treatment with retinoic acid results in further differentiation along a neuronal lineage (78).
In this model, SV40-tsTA served as a molecular switch between states of cell proliferation
on one hand, and differentiation and apoptosis on the other. Although this model did
partially segregate critical periods, it was subject to several limitations. First, it was not clear
whether specific subpopulations of the neuroepithelium are selectively eliminated by
apoptosis in the −tsTA condition. Second, the, S.V.40-T antigen maintains cells in cell cycle
by suppressing cell cycle arrest factors like p53 and p21/Waf-1, thereby permitting the
accumulation of gene mutations and ultimately, escape from cell cycle controls.

1.6.1 Naturalistic Models of Neuronal Differentiation—In comparison with, S.V.40-
T antigen-transformed cells, neurosphere cultures can be differentiated under well-defined,
naturalistic conditions, to model the exit of neuroblasts out of the, V.Z., and their maturation
into multipolar neurons. In the model outlined herein, we empirically defined conditions that
include sequential withdrawal of mitogenic factors and addition of extra-cellular matrix (to
activate integrin signaling (79)), resulting in the sequential appearance of two unique
morphological phenotypes of migratory bipolar, or multipolar neurons. We classify the
migratory, bipolar cells as belonging to the subventricular zone (SVZ) or “early-neuronal
differentiation” phenotype. The multipolar morphology is characteristic of both, S.V.Z (75)
and CP neurons. We refer to this phenotype as the, C. P. or “late neuronal differentiation”
phenotype. This model provides for several advantages. We have shown that the
transformation between proliferation and differentiation phenotypes is not accompanied by a
significant alteration in apoptosis (80), unlike our previous, S. V.40-T antigen-transformed
model. Second, this model recapitulates the major second-trimester events, neuroepithelial
proliferation, migration, and neuronal maturation, which are necessary for the development
of brain regions like the cerebral cortex. Finally, and most importantly, this model permits
us to expose cells to a presumptive teratogen during one stage of differentiation, and to
examine the immediate (activational) effects on cells within that stage, as well as the
persistent (organizational) effects of that teratogen on subsequent neuronal differentiation.
This model therefore enables us to capture the key feature of a teratogen, which is its ability
to persistently and permanently alter the development of tissues, even though it is no longer
present within that tissue’s environmental milieu.

2 Materials
Dulbecco’s phosphate-buffered saline (DPBS, cat. no. 14040-133), Dulbecco’s Minimal
Essential Medium (DMEM, cat. no. 10313-021) Hanks’s Balanced Salt Solution (HBSS,
cat. no. 14175-095), trypsin/EDTA (cat. no. 25300-112), bovine serum albumin, fraction-V,
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(BSA-V, cat. no. 1526037), Laminin (cat. no. 23017-015), ethylene diamine tetraacetic acid
(EDTA), DMEM/F12 (cat. no. 11330-032), basic fibroblast growth factor (bFGF; cat. no.
13256-029), human recombinant epidermal growth factor (EGF; cat. no. 53003-018) ITS-X
supplement (Insulin, Transferrin, Selenium, cat. no. 51500-056), and heparin (cat. no.
15077-019) are obtained from Invitrogen. Recombinant human Leukemia Inhibitory Factor
(LIF; cat. no. L200) is obtained from Alomone Labs. Progesterone (cat. no. P6149) and 95%
ethanol is obtained from Sigma.

3 Methods
3.1 Isolation of Embryonic Neural Precursors

Timed-pregnant C57/Bl6 mice were generated by timed-mating for 1 h, and GD −0.5 was
defined as the day when female mice exhibited postcoital sperm plugs. Mice were
maintained in the animal housing facility at Texas A&M University System Health Sciences
Center, College of Medicine, on a 12, 12-h light-dark schedule. At, G. D. 12.5, mice were
anesthetized with a mixture of ketamine (0.09 mg/g body weight) and xylazine (0.106 mg/g
body weight) by intramuscular injection. The abdomen of the anesthetized pregnant mouse
was swabbed first with 80% ethanol (vol/vol), and then with Betadine (10% povidone-
iodine; see Note 1). A laparotomy was then performed with fresh sets of dissection
instruments to make sequential incisions into the skin and underlying peritoneum. The
gravid uterus was dissected, rinsed in chilled, D. P.BS (see Note 2), the fetuses dissected,
and fetal brains removed and placed in chilled, H. B.SS supplemented with glucose and
magnesium chloride. Meningeal tissue was removed (see Note 3), regions of the mouse fetal
brain corresponding to the structural precursor of the neocortex were isolated, and care was
taken to exclude the structural precursors to the striatum and hippocampus. Individual
cortical fragments (see Note 4) are collected in sterile 15-mL conical tubes and gently
triturated in trypsin/EDTA. Trypsin is inactivated with, D. M.EM containing 10% fetal
bovine serum. The cell suspension is centrifuged for 5 min at 18°C, 1000 rpm (300 g). Cell
pellets are resuspended in chilled, D. P. BS containing 0.5% BSA, Fraction-V, and 2.0 mM

1Betadine (10% povidone-iodine) can be purchased as an over-the-counter antimicrobial agent from any local pharmacy or
supermarket. It is easy to apply if you first drench the mouse abdomen with 80% ethanol, to wet the fur. Apply Betadine liberally,
ensuring coverage of the entire lower abdomen, including the ano-genital region and the proximal tail. Wait 5 min to let the Betadine
dry, then use a separate pairs of scissors and forceps to open up the skin and underlying peritoneum so to limit the carryover of
contamination from one layer to the next.
2While dissecting out the uterus, be careful to prevent contact with the retracted skin and peritoneal flap. Avoid perforating the
gastrointestinal system while dissecting away the uterine horns, to prevent bacterial contamination. This dissection may be performed
under aseptic conditions. Place the dissected uterus into a Petri dish containing sterile DPBS and transfer the Petri dish to a sterile
laminar-flow hood or workbench. Rinse out the uterine horns by three transfers to new PBS-filled Petri dishes. Serial rinsing serves to
eliminate any bacteria or fungal spores that become adherent to the uterine horns during the initial dissection. The uterine horns can
then be sliced open with a fresh pair of scissors, and the fetal amniotic sacs should then be extracted and transferred to a new PBS-
filled Petri dish. Using a fresh set of Dumont-style foreceps, dissect the individual fetuses away from their amniotic sacs and placenta,
and transfer them to a new HBSS-filled Petri dish. Further microdissections are performed on a chilled stage of a dissecting
microscope, within the confines of a sterile, laminar-flow workbench. The stage is chilled to 4°C by circulating a chilled mixture of
polyethylene glycol and water through channels imbedded into the stage. Using a fresh set of microscissors and forceps, the fetal
cranial skin is removed. At this developmental stage, the calvarial bones are extremely thin and can be dissected away with scissors
and microforceps. Cuts are made at the level of the olfactory bulb and the brainstem, and the brain lifted away. The key to successful
sterile dissection is to serially dilute bacterial and fungal inoculums by repeated changes of sterile PBS. The use of fresh, sterile sets of
instruments at each step of the dissection also limits carry-over of contaminants.
3It is easier to start peeling away meningeal tissue from the ventral portion of the brain first. Using a pair of fine, Dumont-style
forceps, flip the brain over so that the ventral surface faces upwards. Gently peel back the meningeal tissue from around the
hypothalamic region first, then working outwards, peel meningeal tissue as a continuous sheet over the lateral margins of the
telencaphalic vesicles. Then flip the brain over so that the dorsal surface faces upwards. Continue peeling back the meningeal tissue
gently over the telencephalic vesicles so as not to disrupt the meningeal sheet. The cortical neuroepithelium is fragile at this age, and is
easily fragmented by careless handling. We find that trans-illumination with a flat panel optic fiber light, set into the cooling plate
below the brain tissue, serves to increase the contrast between meningeal and brain tissue. Structures of interest, tissue precursors to
the cortex, hippocampus, striatum and diencephalon, for example, can then be microdissected with a microscalpel.
4To limit the impact of litter-to-litter variations on studies, we typically collate fetal cortical tissue from three to four litters per
experiment into a single collection tube
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EDTA. Total cell counts are determined using a hemocytometer. Dispersed neuroepithelial
precursors are established in culture at an initial density of 106 cells in T-25 flasks
containing serum-free mitogenic media (DMEM/F12, 20 ng/mL bFGF, 20 ng/mL EGF, 0.15
ng/mL (see Note 5) LIF, ITS-X supplement, 0.85 Units/mL heparin, and 20 nM
progesterone). Cultures are incubated at 37°C, 5% CO2 in a humidified environment to
generate neurospheres (Fig. 3). Cells are allowed to proliferate as neurospheres until cultures
achieved a density of 2 × 106 cells per T25 flask (see Note 6), and after approximately 6–8
passages (at ~3 d per passage), used for experiments.

3.2 Ethanol Treatment
Neurosphere cultures in T25 flasks are randomly assigned to control or ethanol treatment
groups. In our laboratory, we have treated neurosphere cultures with a wide range of ethanol
doses, ranging from 60 mg/dL (~13 mM) to 920 mg/dL (200 mM). We monitor culture
media ethanol concentrations with gas chromatography. Ethanol containing medium is
prepared freshly before use, from 95% ethanol. Each flask is defined as a single sample.
Culture medium is changed every 2 d. Control and ethanol-treated flasks are capped tightly
with phenolic caps, and sealed with parafilm to limit the loss of ethanol. These measured
doses range in equivalence to consumption levels that can be attained by social drinkers (60
mg/dL) to those attained by chronic alcoholics (320–620 mg/dL, 70–135 mM (81,82)), to
levels above those typically attainable in chronic alcoholics (920 mg/dL). Our analysis
indicates that there is no significant change in ethanol content within culture dishes over the
exposure time period (Fig. 4).

3.3 Differentiation of Neurosphere Cultures
We characterize our neurosphere cultures as a fetal ventricular-zone “ neuroepithelial
proliferation” or, V. Z. model. To initiate the differentiation program, neurosphere cultures
are transferred to fresh T-25 flasks, Petri-dishes, or microwell plates coated with laminin (at
50 ∝g/mL in, D.M.EM/F12 for 1 h). The presence of laminin by itself is enough to cause
neurospheres to become adherent and permits neuroepithelial cells to migrate away from the
parent neurosphere (80), indicating that laminin-mediated activation of integrins is a strong
migratory stimulus. However, migrating neuroepithelial cells acquire a squamous epithelioid
appearance and do not exhibit neurites and growth cones that are typical of migratory
neurons. Within 24 h after concurrent removal of EGF and LIF from the culture medium
(i.e., the +Laminin/+FGF/−EGF/−LIF condition) these migratory cells lose their epithelioid
morphology and assume a bipolar appearance (Fig. 5). Unlike cells of the neurosphere
cultures, these migrating cells express the neuronal nuclear antigen, NeuN, within their
nuclei and consequently can be defined as early, migratory neurons. We refer to the
+Laminin/+FGF/−EGF/−LIF condition as the ‘Early Neuronal Differentiation’ or SVZ
model condition.

Neuroepithelial cells cultured on Laminin, without any mitogenic factors (i.e., in the
+Laminin/−FGF/−EGF/−LIF condition), continue to express NeuN in their nuclei, and
additionally, assume a multipolar morphology, characteristic of more mature neurons. We
refer to this condition as the “late neuronal differentiation condition” or the CP model.
Neurosphere cultures can be directly transferred to either the SVZ or CP conditions to
produce the early or late neuronal phenotypes or, alternatively, differentiated sequentially
through the, S. V.Z and, C. P. condition. We typically culture cells in these early or late

5The concentration of LIF at 0.15 ng/mL (as with other factors) has been empirically determined in our laboratory. In our hands, a 10-
fold increase in LIF concentration (i.e., 1.5 ng/mL) results in neurosphere cultures becoming adherent to the culture plates, suggesting
that greater levels of LIF induce morphological transformation.
6Cell number can be verified using a standard hematocytometer. Unstained cells are spherical, refract light well, and are easy to
visualize and count.
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differentiation conditions for between 24 to 72 h. Flow cytometric analysis has shown that,
in contrast to our previous +/−tsTA model of conditionally immortalized cortical cells (78),
neuroepithelial cells differentiated by mitogen-withdrawal and extra-cellular matrix addition
do not undergo a significant change in apoptosis as a function of differentiation state (80).
Neuroepithelial cells undergoing differentiation in this model system also exhibit significant
changes in their profile of secreted cytokines. Vascular endothelial growth factor (VEGF)-A
and monocyte chemotactic protein (MCP)-1 are significantly decreased as neuroepithelial
cells differentiate, whereas levels of granulocyte-macrophage colony stimulating factor
(GM-CSF) increase (80). Furthermore, we have been able to use this model to show that
ethanol exposure during the proliferation phase has a persistent (organizational) effect on the
secreted cytokine profile during the neuronal differentiation period. Therefore, this model
facilitates the temporal separation of major second-trimester developmental programs, that
is, neuronognesis, migration and neuronal differentiation, which normally occur together in
the developing brain. The advantage of this simplified model is that we can now expose
neuroepithelial cells to a teratogen during the progression of one developmental program,
and study the impact of that teratogen on subsequent developmental programs, thereby
teasing apart the activational and organizational effects of teratogens.
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Fig. 1.
Schematic for modes of cell division observed in the stem cell beds. Symmetrical division
(a) results in the generation of two daughter stem cells and permits the early expansion of
the stem cell pool. Asymmetric division (b) in contrast, results in the generation of one stem
and one more mature, progenitor daughter cell (e.g., in bone marrow, this results in the
generation of a common lymphoid or myeloid progenitor, and a replacement stem cell).
Asymmetric cell division therefore results in the maintenance of the stem cell pool.
Subsequent cell divisions result in the clonal expansion of the progenitor pool (e.g., the
transformation of a common myeloid progenitor to erythroid or myeloid CFUs). During the
late period of maturation (c) symmetric cell division results in two daughter cells that are
more mature, blast-type cells, resulting in a depletion of the parent progenitor pool (e.g.,
transformation of an erythroid CFU to a proerythroblast, resulting finally in the formation of
an erythrocyte)
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Fig. 2.
Presumptive maturation program of neural stem cells. Neural stem cells give rise to
progenitors, which give rise to blast-type cells (radial glia and astrocyte-type cells), which
can give rise to neurons
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Fig. 3.
(a) Boxed area indicates the region from which neuroepithelial cells are isolated. (b and c)
Neuroepithelial cells dispersed by trituration, and cultured in defined medium, generate
nonadherent aggregates of cells referred to as neurospheres. The cellular composition of
neurospheres is heterogeneous, and includes cells that express stem and progenitor markers
(ABCG2, Sca-1, c-kit/CD117, CD133), nonselective markers of immature cells (nestin),
markers for blast cells (Glial Fibrillary Acidic Protein, GFAP), as well as markers for early
neuronal maturation (MAP-2). However, neurosphere cells do not express the neuron-
specific marker, NeuN
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Fig. 4.
Schematic of the Mitogen-withdrawal, extra-cellular matrix addition paradigm. (a) The
mitogenic condition results in an expansion of the nonadherent neurosphere population.
Exposure to laminin in addition to mitogenic medium (b) results in neurospheres becoming
adherent. However, migratory neuroepithelial cells retain an immature squamous epithelioid
appearance. Withdrawal of EGF and LIF, and provision of laminin as an adhesion matrix
(c), results in neurospheres becoming adherent to the culture dish, and the appearance of
bipolar migratory cells. These cells express nuclear NeuN, but do not exhibit nestin
immunoreactivity, showing that these cells have transformed into migratory neurons. The
additional removal of FGF (d) results in the appearance of multipolar neurons between 24
and 72 h
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Fig. 5.
Gas chromatographic analysis of ethanol content in culture medium over a 5-d exposure
period. Culture medium is replaced on day 3. The data show that ethanol concentrations
remain stable over the period of the experiment
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