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Abstract

Background: Trypanosoma spp, biologically transmitted by the tsetse fly in Africa, are a major cause of illness resulting in
both high morbidity and mortality among humans, cattle, wild ungulates, and other species. However, tsetse fly
distributions change rapidly due to environmental changes, and fine-scale distribution maps are few. Due to data scarcity,
most presence/absence estimates in Kenya prior to 2000 are a combination of local reports, entomological knowledge, and
topographic information. The availability of tsetse fly abundance data are limited, or at least have not been collected into
aggregate, publicly available national datasets. Despite this limitation, other avenues exist for estimating tsetse distributions
including remotely sensed data, climate information, and statistical tools.

Methodology/Principal Findings: Here we present a logistic regression model of tsetse abundance. The goal of this model
is to estimate the distribution of tsetse fly in Kenya in the year 2000, and to provide a method by which to anticipate their
future distribution. Multiple predictor variables were tested for significance and for predictive power; ultimately, a
parsimonious subset of variables was identified and used to construct the regression model with the 1973 tsetse map.
These data were validated against year 2000 Food and Agriculture Organization (FAO) estimates. Mapcurves Goodness-Of-
Fit scores were used to evaluate the modeled fly distribution against FAO estimates and against 1973 presence/absence
data, each driven by appropriate climate data.

Conclusions/Significance: Logistic regression can be effectively used to produce a model that projects fly abundance under
elevated greenhouse gas scenarios. This model identifies potential areas for tsetse abandonment and expansion.
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Introduction

Tsetse background
Trypanosomiasis is a neglected tropical disease that currently

represents a major threat to African cattle, costing ,US$1.3

billion per year [1]. The vector for trypanosomiasis, the tsetse fly

(Glossina spp), requires a habitat strongly influenced by ecological

and climatic features [2,3] — and particularly soil moisture — all

of which are influenced by rainfall, soil type, temperature, and

other climate variables. Tsetse flies can be categorized into three

major subgenera: palpalis (riverine), fusca (forest), and morsitans

(savanna). The most common variety of tsetse in East Africa, the

morsitans group, primarily feeds on wildlife and cattle, and only

occasionally on humans. Infection with trypanosomes may result

in clinical disease, known as sleeping sickness in humans and

nagana in cattle. However, infection in cattle often goes

undiagnosed, and small-area studies show difficulty in relating

incidence in cattle with tsetse challenge [4].

Kenya has a long history of tsetse infestation, and with it a

heavy economic toll. Livestock production accounts for roughly

8% of Kenya’s GDP. In endemic areas, tsetse control could

increase livestock productivity by as much as 52% [1,5]. Historical

evidence indicates that various attempts to control or eradicate the

flies have been hampered by a variety of socioeconomic and

geographic factors. Among these geographic factors is elevation

(Fig. 1 (A)), which is associated with numerous habitats and

microclimate zones at different elevations. These microclimates,

often associated with scattered tree cover, offer tsetse flies seasonal

refugia and access to migrating host species. Specific tree species

have long been connected to tsetse-infested areas [6], and recent

work has shown that specific vegetation structures and geometry

are sought by tsetse flies [7]; woody savanna land cover is

especially favored [8]. Such habitats can be identified in part

through the remotely sensed Normalized Difference Vegetation

Index (NDVI) (Fig. 1 (B)) and maximum temperature (Fig. 1(C).

Fly larvae can die as a result of drying soils. Temperature

extremes, particularly above ,36uC and below ,10uC, also lead

to adult fly mortality through starvation and water loss via

respiration [9,10]. Low humidity — moisture levels directly related

to precipitation (Fig. 1 (D) — is also involved in fly mortality,

though the exact mechanism is not clear [9,11,12]. Other

important factors affecting tsetse abundance include savanna

canopy cover (where flies retreat during daytime heat), presence/

absence of host species (notably cattle and/or wildlife [13–15]),
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and distance to seasonal refugia. McDermott et al. [16]

optimistically noted that increasing human populations could lead

to slight declines in tsetse population through habitat loss,

particularly in the Lake Victoria basin region. Despite these

numerous factors influencing tsetse presence, estimating fly

distributions has been difficult.

Overview of previous efforts and methods
Several efforts to express the relationships between tsetse

abundance, climate and socioeconomic variables have been

attempted, with mixed results. A Kenya-wide 1973 survey of

tsetse distribution by species based on field reports and other

sampling [2] is considered among the best maps of fly distribution

(hereafter, ‘‘1973 data’’), but that map is now over 30 years old.

More commonly, modeling approaches have been used to

estimate fly populations, often using remotely sensed data

[17,18,19]. Several simple linear models [20,21] have been

developed, largely with annually averaged data, to identify fly

habitats and maximum fly belt extents. More recent research by

the Food and Agriculture Organization of the United Nations

(FAO) together with the International Atomic Energy Agency

(IAEA) (hereafter, ‘‘2000 FAO data’’) [3,22,23] employed logistic

regressions of remotely sensed data for predicting tsetse

abundance to produce a ‘‘snapshot’’ of tsetse distribution at a

given point in time. While all of these methods have tried to

connect annual data to tsetse distribution, they are hampered by

a variety of factors, including irreproducible methods, statistical

approaches hampered by excessive multicollinearity, and poor

availability or absence of observed data — particularly with

respect to tsetse and animal populations. Human population

growth also affects land use, primarily through agricultural

expansion, which leads to declining tsetse habitat (excluding

palpalis species) [24]. Significant shifts in tsetse distribution by

2040 are predicted throughout Africa with a ,7% decrease in

overall tsetse population [24]. Another hampering factor is

seasonal climate; since weather is highly variable in Kenya, tsetse

distributions vary similarly. Despite these limitations, almost all of

these studies have focused on identifying areas suitable for tsetse

survival, and thus implicitly focus on regions where the average

annual climate is suitable for tsetse flies to live. However, both

climate and climate variability are showing signs of change due to

regional climate shifts [16]. If these recent patterns of climate

Figure 1. Driving variables. (A) elevation, (B) renormalized NDVI, (C) 2000 maximum temperature, (D) 2000 annual precipitation.
doi:10.1371/journal.pone.0011809.g001

Logistic Model of Tsetse
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change are responsible for shifts in tsetse distribution, projections

of climate change can then be employed to identify areas at

particular risk for increased tsetse abundance.

These potential shifts in climate regimes motivate this study.

Kenya’s government agencies need specific projections of tsetse

habitat to establish monitoring and control activities. Given that

no published logistic regression model has been made available,

and given the need for high-resolution projections, we present here

a new model complete with maps of potential tsetse expansion.

Purpose of the study
The objective of this study was to estimate the distribution of

tsetse flies using a regression model based on remotely sensed data

and climate data. No similar model of tsetse abundance as a

function of climate data has been presented in the peer-reviewed

literature. Our second and parallel objective is to develop a logistic

regression model (LM) to incorporate measures of climate

variables for predicting future tsetse-susceptible trends in distribu-

tion. Ultimately, the final product of this study was to produce a

map of regions that may be newly susceptible to tsetse expansion

under anticipated variable climate conditions due to greenhouse

gases (GHG).

Results

Model construction with 1973 data
Several different independent variables were used to construct

the model; a correlation matrix and basic statistics concerning

these parameters’ roles in the model are given in Table 1 and

Table 2 respectively. This set of variables had the best AIC (Akaike

Indicator Criterion) score. Most of the variables are significant

based on the p-value with the exception of NDVI for May. Bold
italics in Table 2 are where the standard error is more than 25%

the value of the estimated coefficient, which indicates that those

variables are often not predictive of tsetse abundance. Land cover

(a binary suitable/unsuitable map) was a strong predictor; it also

had a relatively large standard error. Other variables and their

interaction terms may in some ways replace the role elevation and

other omitted terms might have played in predicting tsetse

abundance. Wet days and precipitation, which at first glance

should be exceedingly collinear, were selected to represent

separately the driest months (in the cases of September wet days

and February wet days) and rainy periods (in the cases of

March+April+May (MAM) precipitation—the ‘‘long rains’’— and

October+November+December (OND) precipitation—the ‘‘short

rains’’. We stress that this is a predictive, not explanatory model,

and under such circumstances this is acceptable.

Several of these variables change seasonally, particularly NDVI,

wet days, precipitation and maximum temperature. However, the

Table 1. Correlation Matrix for the broad set of variables considered.

ELEV 20.01 0.37 0.50 0.53 0.53 0.19 0.39 0.45 0.50 0.39 20.78 20.68

20.01 LC 20.04 0.01 0.03 0.05 20.05 0.01 20.05 0.00 20.03 0.03 0.03

0.37 20.04 COW 0.39 0.37 0.36 0.26 0.29 0.17 0.35 0.29 20.39 20.33

0.50 0.01 0.39 ND2 0.91 0.87 0.56 0.30 0.24 0.42 0.49 20.57 20.52

0.53 0.03 0.37 0.91 ND5 0.93 0.55 0.41 0.11 0.55 0.58 20.64 20.53

0.53 0.05 0.36 0.87 0.93 ND10 0.57 0.47 0.05 0.63 0.67 20.66 20.50

0.19 20.05 0.26 0.56 0.55 0.57 WJAN 0.45 0.04 0.49 0.68 20.48 20.46

0.39 0.01 0.29 0.30 0.41 0.47 0.45 WFEB 20.26 0.66 0.59 20.52 20.37

0.45 20.05 0.17 0.24 0.11 0.05 0.04 20.26 WSEP 20.02 20.05 20.16 20.16

0.50 0.00 0.35 0.42 0.55 0.63 0.49 0.66 20.02 PMAM 0.79 20.68 20.42

0.39 20.03 0.29 0.49 0.58 0.67 0.68 0.59 20.05 0.79 POND 20.64 20.43

20.78 0.03 20.39 20.57 20.64 20.66 20.48 20.52 20.16 20.68 20.64 TJAN 0.90

20.68 0.03 20.33 20.52 20.53 20.50 20.46 20.37 20.16 20.42 20.43 0.90 TOCT

doi:10.1371/journal.pone.0011809.t001

Table 2. Variables used in the logistic regression and selected
statistics.

Estimate Std. Error z value P

(Intercept) 23.70 2.83 21.3 0.2

Land Cover 2.68 0.76 3.5 3.9E-04

ND2 4.26 1.58 2.7 7.1E-03

ND5 1.19 1.50 0.8 0.4

PMAM 20.92 0.16 25.6 2.1E-08

POND 4.05 0.29 13.7 ,2E-16

TJAN 20.46 0.08 25.5 4.7E-08

TOCT 0.35 0.03 10.2 ,2E-16

WJAN 20.09 0.00 221.9 ,2E-16

WSEP 20.80 0.11 27.6 3.2E-14

LandCover:ND5 21.30 0.36 23.7 2.6E-04

ND2:ND5 3.73 1.00 3.7 2.1E-04

ND2:PMAM 20.54 0.09 26.1 9.1E-10

ND5:PMAM 0.31 0.08 3.7 2.3E-04

PMAM:POND 20.02 0.005 24.2 2.7E-05

LandCover:TJAN 20.07 0.02 23.2 1.2E-03

PMAM:TJAN 0.03 0.00 7.5 6.0E-14

POND:TJAN 20.11 0.01 213.2 ,2E-16

TJAN:WJAN 0.00 0.00 22.9 ,2E-16

ND2:WSEP 0.42 0.07 6.2 4.2E-10

ND5:WSEP 20.49 0.06 27.7 1.3E-14

POND:WSEP 0.04 0.00 10.8 ,2E-16

TJAN:WSEP 0.02 0.00 8.3 ,2E-16

ND2:POND 20.54 0.13 24.1 3.7E-05

doi:10.1371/journal.pone.0011809.t002

Logistic Model of Tsetse
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primary focus of this study is in understanding tsetse distributions

in relation to climate parameters—in this case, precipitation and

maximum temperature. Therefore, our results will focus largely on

those variables. From Table 3, MAM precipitation is not

significant alone, but instead shows significance in interaction

terms with other variables. Temperature for January and October,

wet days in September, and their interaction term have very strong

predictive power, and indeed are highly collinear. Similarly,

NDVI has a significant interaction term with land cover, and it

also wields strong predictive power singly and via interactions with

climate variables.

Among the more robust surveys is the 1973 assessment, which

we used as ‘‘ground truth.’’

The 1973 observations in Fig. 2 (A) are binary presence/absence,

and thus the comparison with the LM probability data (B) is stark.

Almost uniformly, the LM results predict a greater abundance of

flies in areas where no flies (white in A) are observed, with the

exception of cooler temperature regions in the highlands; for those

values the LM predicts very low or zero probability of tsetse flies.

The 1996 estimates, which were based on expansion of the 1973 fly

belts, are also shown in Fig. 2 (A) for comparison. The high-

occurrence conditions in the observed data are along the coastal

areas, the slopes of Mount Kenya, the Chyulu Hills, the Mara, and

in the Rift Valley. The LM captures that high occurrence well, but

overestimates abundance particularly for temperatures between

,27u and 30uC in the arid east. To compare a binary map with the

LM map, we assigned LM values greater than 50% to one, and

values less than 50% to zero. The resulting binary difference map in

Fig. 2 (C) shows overestimation, underestimation, and a ‘‘within

50%’’ estimation. This comparison is admittedly coarse, but it

highlights areas where tsetse distributions are poorly modeled. As

the Kappa statistic is inappropriate for presence/absence compar-

isons, we calculated a Mapcurves GOF (‘‘Goodness-Of-Fit’’) score

[25] of 0.20 for the area. ‘‘Mapcurves GOF’’ is a statistical tool

recently developed for comparing categorical maps [25]. This

statistic, used to compare the similarity of two maps, indicate that

the maps ‘‘agree’’ for approximately 20% of the area, ‘‘agreement’’

being in the same 10% bin range. This level is relatively low, but the

1973 observations, which the model is compared against, have

several shortcomings as well, discussed below, that makes this GOF

level reasonable.

Validating the model with FAO data from 2000
Having built the model and identified areas of disagreement

with FAO data, we sought to test the LM against a separate survey

of tsetse data for a different time. The LM coefficients were used to

construct a year 2000 tsetse distribution based on the selected

variables. To evaluate the model’s performance, we looked at both

the parameter space and the map differences. Of particular

interest is the parameter space for precipitation and maximum

temperature. Fig. 3 compares the observed tsetse distribution over

average annual precipitation and average annual maximum

temperature parameter space showing some similarities and some

distinct differences. The overall shape of the distribution is

determined by the temperature and precipitation values that

occurred in the kriged Climatic Research Unit (CRU) data, so

both distributions have the same basic shape. The main differences

lie in different color shades that represent fly abundance. For

example, near the top center of both graphs are high abundance

values (yellow to orange, at a probability of roughly 0.6–0.8).

These high-rainfall, fly-prevalent areas correspond to the Indian

Ocean coast and the modeled abundance (right panel) shows a

strong correspondence with the reported fly abundance (left

panel). For some precipitation and temperature combinations, the

model over-predicts (e.g. for areas between 33u–35uC) or under-

predicts (for areas below ,26uC). The underpredicting areas are

primarily in savanna regions southeast of Nairobi and in

southwestern Kenya. The areas overpredicted by the model lie

near the Ethiopian border and in isolated pockets north of

Nakuru.

FAO and LM estimates, each shown in Fig. 4 (A and B) along

with the difference between the two (C), contrast markedly in

geographically distinct areas. Generally, the FAO estimates in (A)

adhere to a more binary distribution—almost presence-absence—

whereas the LM estimates have more mid-range values. The

differences (Fig. 4(C)) point to areas of significant departure

between the two estimates, with LM values underestimating

PAATIS (the Programme Against African Trypanosomiasis

Information System) (brown areas) along major waterways,

national park areas, and the well-documented fly belt along the

Athi River Valley. The LM model does estimate some fly

population in these areas; however, the estimates are muted

compared to the FAO data. In some cases (e.g. Kenya’s coast near

Table 3. Variables considered in the development of the LM.

Variable Time span Source comments

Monthly maximum Temperature (TMAX) Jan–Dec 2000 CRU TS 2.1 Kriged to 6 km

*Monthly minimum Temperature Jan–Dec 2000 CRU TS 2.1 Kriged to 6 km

Precipitation Jan–Dec 2000 CRU TS 2.1 Kriged to 6 km

Wet Days Jan–Dec 2000 CRU TS 3.0 Kriged to 6 km

NDVI 2000–2007 MODIS 16-day imagery

*Cattle density 2005 estimate FAO glbctd1t0503m 0.05u resolution

*Elevation 1996 USGS GTOPO30

Tsetse distribution 2000 PAATIS/FAO Continuous;modeled

Tsetse distribution 1973 PAATIS/FAO Presence/absence

Tsetse distribution 1996 PAATIS/FAO Presence/absence

*FAPAR (Fraction of Available Photosynthetically Active Radiation) 2000–2005 WDCC Hamburg Redundant with NDVI

Land Cover 2000 GLC2000 Binary suitability

*- examined but ultimately omitted from the model.
doi:10.1371/journal.pone.0011809.t003

Logistic Model of Tsetse
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the Somali border) the climate circumstances are suitable for tsetse

survival but FAO estimates show low to no abundance. Agreement

between the two estimates (white areas) is best in the highland

areas, the Rift Valley, Tsavo and the near-coastal areas. A

Mapcurves GOF score [25], a measure of map similarity, was

calculated to be 0.22, which is similar to the Mapcurves GOF

score for the 1973 data. We also calculated a 0.14 Kappa statistic.

Projection under enhanced GHG
We developed a simple estimate of potential tsetse abundance

under a single case of elevated GHG based on the model. We

applied climate perturbations (future minus current conditions) to

the Climatic Research Unit at the University of East Anglia (CRU)

2000 data, which resulted in generally warmer and wetter

conditions. The model response was dramatic; as can be seen in

Fig. 5 (A), the model indicates suitable habitat for tsetse would be

found throughout the heavily populated higher elevations of

Kenya.

The map in Fig. 5 (B) shows the difference in projected minus

current abundance (Fig. 5 (A) – Fig. 4 (B)) to show general areas of

increased and decreased fly abundance. In addition, increased

rainfall in the Lake Turkana region shifts the precipitation/

temperature regime towards much higher abundance values in the

diagram in Fig. 3. The anomalous rise west of Lake Turkana is

likely a consequence of drastic rainfall increases in the region,

which may be due to errors in climate projection. A similar regime

shift occurs along the higher elevation isocline of the eastern

highlands, ranging from Mombasa and Kilimanjaro towards

Tsavo National Park (yellow areas), and in fly belts north and east

of Mt. Kenya up to Marsabit (dark yellow). This shift is towards

much higher temperatures at higher elevations (to the upper right

of Fig. 3, right panel) where fly abundance is currently low. The

Kisumu area on to the Rift Valley and north along the Uganda

border show decreases in tsetse abundance likely due to warmer

temperatures and lower rainfall. Since this is a single projection

into the future, however, the overall trends are more salient than

the specific locations. In Fig. 5 (B), the model shows tsetse changes

following a clear topographic gradient along the eastern scarp

stretching from Marsabit to Mt. Kilimanjaro. A decrease in tsetse

(increase) in abundance at marginally higher elevations suggests an

‘‘uphill migration’’ along most topographic gradients—including

along the Ethiopian border—with only a few areas near the Indian

Ocean coast exhibiting a non-topographically-driven shift in tsetse

abundance.

Discussion

Aspects of building and validating the model
This logistic regression model was used predict tsetse abundance

based on climate and biophysical characteristics. The coefficients

(in Table 2) show some strong positive relationships between tsetse

abundance and land cover, February NDVI and ‘‘short rains’’

precipitation. During February, at the end of the dry season, fly

abundance should be relatively low in dry areas. Thus, a strong

relationship is expected between tsetse abundance and the

remaining wet areas represented by these three variables. Negative

relationships exist between tsetse abundance and dry season wet

days (WJAN and WSEP); this follows from sparse tsetse abundance

Figure 2. Comparison of 1973 fly abundance, modeled and
observed. (A) observed, and (B) modeled tsetse presence for 1973; and
(C) difference (B)-(A) showing over-, within-, and under-estimation. 1996
estimates are also outlined in grey (A) for reference.
doi:10.1371/journal.pone.0011809.g002

Logistic Model of Tsetse
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in areas that receive dry season precipitation, which tend to be

dominated by agriculture or high-elevation cool climates. Some

coefficients in Table 2 show negative relationships with tsetse

abundance that are unexpected, particularly ‘‘long rains’’

precipitation. However, ‘‘long rains’’ precipitation is also highly

correlated with agriculture, and agricultural areas are negatively

correlated with tsetse abundance as described earlier. Some of the

independent variables’ coefficients are easy to explain, while

others, particularly interaction terms, are less transparent to

interpretation.

This type of model is merely predictive, and the coefficients

determined by the LM may or may not reflect actual relationships

between variables and tsetse abundance. As a result, some regions

in the LM results may have errors that can be attributed to a

specific cause while other may not. For this reason, we have not

attempted to explain or evaluate the roles of specific variables for

influencing specific high or low values of tsetse abundance.

However, the general trends in tsetse abundance are broadly

explained by actual relationships between variables that are

known. In some cases— like ‘‘long rains’’ precipitation (PMAM)

being a negative predictor, for example— a variable can ‘‘stand

in’’ for agriculture or another unknown characteristic. Our

selection of model was done by repeatedly examining lots of

models to rule out (where possible) clearly unrealistic or illogical

coefficients, e.g. a negative coefficient for suitable land cover.

Thus, the independent variable coefficients of the final model

appear to reflect real relationships with tsetse abundance. This

study then tested the resulting tsetse abundance maps against other

estimates.

We compared our LM results with the FAO/PAATIS model,

which has not been validated. Comparing our LM model to the

FAO data assumes that the FAO data correctly capture all

instances of fly presence. Thus, our comparisons may be artificially

low or high in some regions. Since the main objective of this study

is to produce a new tsetse abundance map, differences should be

expected. Indeed, by understanding areas of disagreement, we can

infer potential areas for on-the-ground fly presence testing that

would distinguish between the utility of each model for a given

area. In this case, we find some differences and potentially new

tsetse distributions.

Mapcurves GOF [25] scores indicate that the FAO estimates

and the LM estimates have some measure of agreement. These

similarities arise from both models being driven by similar datasets

and from both being constructed in similar ways. However,

important differences exist, and these differences may point the

way towards building an explanatory model. For example, both

models use vegetation (NDVI) as a predictor variable, but the

FAO model also uses infrared reflectance and uses a Fourier

approach, among other differences. Ecological areas in the FAO

model were represented by these remotely sensed data, whereas in

the LM we tested actual land cover as a predictor variable.

Including land cover in future models is sound because tsetse flies

are rarely found in certain types of land cover, e.g. crop-growing

areas where preferred food sources are not available. The FAO

model’s stated goal was ‘‘to produce continent wide predictions of

the probability of presence of twenty three tsetse species’’, whereas

our goal differed in region and in species specificity. The maps

have relatively low GOF scores, but low GOF scores may merely

indicate these different goals.

The disagreement between models means that significant

variability exists in even simple models driven by fairly similar

datasets. Any modeling at the national scale will need validation

data. Our efforts to validate the model against 1973 data yielded a

similar GOF score (0.20). The similarity in the GOF scores for

FAO, 1973 and 2000 data points to overlaps among all three

estimates; we interpret this (along with comparing the map

similarities) as meaning that the LM captures major fly abundance

areas well, but not necessarily lower abundance areas. There are

specific areas in Fig. 5 that the LM captures poorly—mainly river

valleys and cool, wet areas—where lack of a suitable predictor

variable like soil moisture in the LM led to the model’s failure to

develop any predictive power for a specific type of habitat, like

river microclimates in otherwise arid regions. Using a different

data set than the FAO would probably produce a different set of

estimated coefficients, but given the dearth of available data it is

unlikely that the Mapcurves GOF scores would improve greatly.

Year-to-year variation in tsetse populations, food source distribu-

tions, and other sources of variability make a purely logistic model

limited to identifying suitable places for tsetse abundance, but not

necessarily for tsetse presence. In particular, an averaged 8-year

NDVI seasonality (required for use with 1973, prior to remote

sensing) clearly decreases signal-to-noise ratio and is a significant

source of error. The best application of the LM estimates is to aid

in locating potentially suitable areas of tsetse habitation. This

information, in conjunction with estimates of seasonal tsetse

refugia, can help focus control efforts. These areas are identified as

Figure 3. Parameter space diagrams. Year 2000 tsetse presence for observed data (left) and modeled data (right). The color scale is probability of
fly presence.
doi:10.1371/journal.pone.0011809.g003

Logistic Model of Tsetse
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higher-elevation zones adjacent to current fly belts, along with

regions that may experience wetter-than-normal conditions in the

future. Repeated fly surveillance in these areas would aid both in

model improvement and in possible early detection of fly belt

expansion.

The lack of numerous tsetse datasets for modeling is a severe

constraint. Currently, insufficient fly-trap data exist to validate

either model except perhaps in isolated areas. Significant differences

are evident between the FAO data and the 1996 ‘‘fly belt’’ maps.

Both the FAO probabilities and our LM probabilities are not

Figure 4. Comparison of 2000 fly abundance, modeled and
observed. (A) Observed and (B) modeled tsetse presence for 2000.
(1996 estimates are also outlined in grey for (A) for reference); (C)
difference (B-A).
doi:10.1371/journal.pone.0011809.g004

Figure 5. Changes in tsetse abundance due to greenhouse
gases. (A) Projected tsetse presence under 2050 greenhouse gas levels,
and (B) percentage change in tsetse presence for elevated greenhouse
gases.
doi:10.1371/journal.pone.0011809.g005

Logistic Model of Tsetse
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validated against objective data, and the 1996 estimates, though

approximate, are perhaps the closest thing to objective data. Some

areas may have high tsetse fly abundance, but data are lacking in the

1996 fly belt map (e.g. Kenya’s coast near the Somali border) even

though the climate circumstances are suitable and anecdotal reports

supportive. Implementing trapping efforts is warranted in locations

suggested by these model results and other sources.

Potential new tsetse sites
Potential new areas of tsetse abundance suggested by the LM

point to elevation/climate gradients. These gradients may be useful

for helping establish monitoring transects, particularly in areas that

are currently thought to be tsetse-free. Although little early detection

of climate effects can be directly attributed to GHG in Kenya [26],

real-time detection of tsetse habitat shifts due to weather and climate

factors would be identifiable by GIS-based models and carefully

controlling for other factors that could enhance changing habitat,

like land use and changing food source distributions (i.e. cattle and

wildlife). We do not recommend using Fig. 5 as a projection of

future tsetse populations because of three considerations: 1) it is

derived from climate impacts of a single GCM, 2) it does not contain

any projection of future land use or vegetation distribution, and 3) it

lacks explanatory power. However, the model does identify likely

gradients for monitoring fly presence/absence; with deterministic

vector-based modeling as well as additional climate perturbations

from different GCMs, this LM approach may aid in more

statistically robust predictions of tsetse abundance. Our next steps

will include modeling improvements and interpreting the drivers

behind specific changes in tsetse abundance. This leads us to call for

more frequent data collection of time-varying climate and

vegetation conditions that affect tsetse abundance. In addition, we

recommend increasing funding of fly surveillance efforts to assist

managing tsetse populations more effectively.

Materials and Methods

Logistic Regression Model
Our approach to modeling Glossina spp. distributions began with

determining which variables would be best to use in the regression

model. To avoid needless collinearity created by simply using all the

variables available, we followed recommendations from Burnham

and Anderson [27], which include omitting unrealistic relationships,

positing a small set of models first, and avoiding a ‘‘just the numbers

(let the computer figure it out)’’ approach. First we examined simple

one-variable models to construct a set of meaningful variables for

predicting tsetse abundance. Many of these variables were similar to

the FAO model (see below). For rainfall, many months had highly

similar patterns driven by the ‘‘long rains’’ and the ‘‘short rains’’. For

this reason, precipitation was aggregated together for March through

May (PMAM) and for October through December (POND). All

monthly temperatures were heavily correlated with one another.

Since temperature was also highly correlated with elevation, and

because we want to construct a map of tsetse abundance based on

climate parameters, we omitted elevation and included tempera-

tures. We retained months where fly mortality is typically highest:

January and October, immediately prior to rainy season onset. As a

representative of dryness, we included the CRU wet days index for

the driest months: January, February, and September. Fraction of

Available Photosynthetically Active Radiation (FAPAR) was strongly

correlated with NDVI, and was thus omitted at the outset (thus not

included in Table 1 or Table 2) since minimum temperature and

maximum temperature were also very tightly correlated. Similarly,

to avoid multicollinearity as much as possible, we only used

maximum temperature to represent temperature since it is a more

common driver of temperature-related tsetse mortality in Kenya

than cold temperatures, which occurs only in the highlands.

NDVI data allowed for seasonal changes in land cover to be

incorporated into the model. However, since NDVI data for 1973

are unavailable, it would be inappropriate to use 2000 NDVI data

alone. To resolve this, we constructed annual average NDVI data

from 2000–2007 to represent general seasonal patterns. This

averaged NDVI was used for 1973, 2000, and future modeled tsetse

distributions. This necessarily reduces model accuracy but allows for

inclusion of seasonal greening patterns. Elevation/Topography data

(ultimately not used) were from the USGS GTOPO30 digital

elevation model (DEM). The FAO 2005 livestock census of cattle

was ultimately not used. The 2000 FAO fly data are based on a

model, and we are thus using a logistic model to predict another

model; however, the 2000 data are the best available, leaving little

alternative. Unfortunately, no monthly tsetse fly data were available

for any year. Tsetse data for 2000 were gathered and/or estimated

by PAATIS [28] as part of work for the FAO and IAEA. 2000 FAO

data overlap with the remote sensing era. To compare the maps we

used the Mapcurves GOF score [25] by sorting data from both

maps into 10%-increment bins for the GOF procedure.

Variable names are as follows:

*ELEV = elevation (m)

LC = land cover suitability (binary; 1 = suitable, 0 = not suitable)

*COW = cattle density (head/km2)

ND2 = Normalized Differential Vegetation Index for February

(unitless)

ND5 = Normalized Differential Vegetation Index for May

(unitless)

*ND10 = Normalized Differential Vegetation Index for October

(unitless)

*WJAN = CRU wet days index for January (days)

WFEB = CRU wet days index for February (days)

WSEP = CRU wet days index for September (days)

PMAM = sum of precipitation for March, April, and May

POND = sum of precipitation for October, November, and

December

TJAN = average monthly temperature for January

TOCT = average monthly temperature for October

*ultimately removed from the AIC process and the final model

Following the principle of parsimony, we constructed a

correlation matrix to remove highly correlated variables. The

correlation matrix, shown in Table 1, was used to diagnose this

multicollinearity; here we omitted elevation, October NDVI, and

wet days in January. Correlations greater than or equal to 0.5 are

in bold. Next we applied a stepwise algorithm called ‘‘stepAIC’’ in

R to aid in model selection. This procedure iteratively adds and/

or subtracts individual variables or combinations of variables to

seek the lowest AIC score. Lower AIC scores are judged the most

appropriate models. We only considered the 9 first order terms

and several second-order interaction terms, for a total of 35 terms.

Stepwise AIC was applied to this initial model.

The following 24 term final model selected through AIC [27] was:

ln
p

1{p

� �
~b0zb1x1zb2x2zb3x3zb4x4zb5x5zb6x6zb7x7z

b8x8zb9x9zb13x13zb23x23zb24x24zb34x34zb45x45zb16x16z

b46x46zb56x56zb68x68zb29x29zb39x39zb59x59zb69x69zb25x25

where the x1 = LC, x2 = ND2, x3 = ND5, x4 = PMAM, x5 = POND,

x6 = TJAN, x7 = TOCT, x8 = WJAN and x9 = WSEP.
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And the coefficients ßi are given in Table 2. The dependent

variable p is tsetse abundance on a scale from zero to one. This

exploratory approach mainly focuses on developing a new

approach to modeling the tsetse spatial distribution and does not

seek to explain causality, nor predict or diagnose tsetse population.

The resulting coefficients of the final model determined by the

stepwise AIC process are given in Table 2. Descriptions of the

variables considered are outlined in Table 3.

Following the basic structure of Wint and Rogers [22] and Wint

[23], this study used logistic regression modeling rather than

discriminant analytical/maximum likelihood analysis [28,29]. We

depart from the Wint and Rogers [22] approach by omitting

highly correlated variables and removing illogical relationships.

We used the R software and several different potentially useful

datasets were gathered. All data were initially projected to

geographic coordinates. CRU data (TS 3 [30]) originally at 0.5u
resolution, were kriged to 6km following Goovaerts [31,32], thus

213930 data points were utilized from the original 1283580 data

points at 1 km resolution.

Our study considered three time periods and for these, we:

1. Developed a regression model based on 1973 climate data;

2. Assessed the validity of the model based on current (2000) data.

3. Estimated tsetse abundance based on projected climate data

under elevated GHG.

To project distributions of tsetse under elevated GHG

conditions, we extracted climate data from the National Center

for Atmospheric Research’s Community Climate System Model

(CCSM) version 3.0, namely, precipitation and temperature data

for the decades 2000–2009 and 2050–2059. These data were used

to drive the Regional Climate Modeling System (RAMS, version

4.4) [33] at 36 km grid spacing and 32 terrain-following vertical

levels at a 60-second time step. RAMS phenology was constructed

from remotely sensed NDVI, and land cover from the Global

Land Cover 2000 dataset. More details on the climate model

configuration can be found in Moore et al. [34]. These decades

were selected to evaluate effects of elevated GHG on climate

variables versus those at current GHG levels. To determine the

possible extent of tsetse expansion, we used data from the

Intergovernmental Panel on Climate Change A1B scenario [26].

A1B makes no adjustments from ‘‘Business-As-Usual’’ until CO2

concentrations reach 720 ppmv (very aggressive), and as such

provides something like an upper bound to potential tsetse

distribution. These data from the climate models were not
directly used in the LM as inputs; rather, the difference (elevated

minus current) was treated as a perturbation added to the CRU

data for 2000. Since currently, climate models exhibit no skill at

decadal timescales, it is impossible to assert that these data can give

rise to projections of tsetse distribution. Instead, we treat these

results as a testing of a new modeling approach; and, as identifying

areas of sensitivity to tsetse encroachment instead of actual

projections of future tsetse distributions. Indeed, without accurate

sampling data, model artifacts can arise and severely limit the

useful application of model results by agencies and livestock

holders [35]. Anticipating future tsetse distributions may allow for

targeted control efforts.
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