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Abstract
BACKGROUND—Non-small-cell lung cancer (NSCLC) is the major determinant of overall
cancer mortality worldwide. Despite progress in molecular research current treatments offer
limited benefits. Since NSCLC generates early metastasis and this behavior requires great cell
motility, herein we assessed the potential value of CFL1 gene (main member of the invasion/
metastasis pathway) as a prognostic and predictive NSCLC biomarker.

METHODS—Meta-data analysis of tumor tissue microarray was applied to examine expression
of CFL1 in archival lung cancer samples from 111 patients and investigated its clinicopathologic
significance. The robustness of our finding was validated using another independent data set.
Finally, we assayed in vitro the role of CFL1 levels in tumor invasiveness and drug resistance
using six human NSCLC cell lines with different basal degree of CFL1 gene expression.

RESULTS—CFL1 levels in biopsies discriminate between good and bad prognosis within early
tumor stage (IA, IB and IIA/B), where high CFL1 levels are correlated with lower overall survival
rate (P<0.0001). Biomarker performance was further analyzed by immunohistochemistry, hazard
ratio (P<0.001) and receiver-operating characteristic (ROC) curve (area=0.787; P<0.001). High
CFL1 mRNA levels and protein content are positive correlated with cellular invasiveness
(determined by Matrigel Invasion Chamber System) and resistance (two-fold increase in drug
GI50 value) against a list of 22 alkylating agents. Hierarchical clustering analysis of CFL1 gene
network had the same robustness to stratified NSCLC patients.

CONCLUSIONS—Our study indicates that CFL1 gene and its functional gene network can be
used as prognostic biomarker for NSCLC and could also guide chemotherapeutic interventions.
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Lung cancer accounts for 1.3 million deaths annually (World Health Organization) of which
85% are of non-small-cell lung cancer patients (NSCLC). These patients present an average
survival rate of 10 months and only 15% survive for five years.1 Currently, prognosis of
NSCLC patients is done by considering patient performance status and tumor staging.2,3
However, accumulating data4 have shown that these have unsatisfactory power in predicting
patient outcome or in guiding physicians on the best course of action for each patient. A
novel prognostic method for early-stage NSCLC patients can potentially increase survival
rates by indicating those in need of more aggressive treatment.5

Lung cancers in particular show poor prognosis because of their ability to generate early
metastasis within the lungs and then in distant organs. This behavior requires great cell
motility, which is performed by several proteins that act on the actin cytoskeleton by
regulating cycles of polymerization and depolymerization of actin filaments, which in turn
generates cell motion.

One of the main proteins in charge of cell motility is cofilin (CFL1, cofilin-1; non-muscle
isoform; Gene ID: 1072),6 which is regulated by factors such as phosphorylation, pH,
binding of phosphoinositides, and subcellular compartmentalization. In a recent study we
have found that cofilin mediates apoptosis in response to oxidative stress, which is a novel
regulatory role described for this protein.7 The role of the cofilin pathway in cell mobility
has been shown extensively.8 Its activation occurs locally and in response to EGFR
signaling in chemotaxis.9 High cofilin activity has been correlated with breast cancer
invasion and metastasis,10,11 where it is essential for directional sensing,12 and with
epithelial - mesenchymal transition, a process that is involved in the regulation of cell
migration, adhesion and invasion, suggesting the acquisition of a invasive phenotype.13

Thus, we raised the hypothesis that cofilin amount in NSCLC could provide relevant
information about tumor’s aggressiveness and therefore be used as a prognostic marker.

Herein, we assessed the potential prognostic value of CFL1 as a NSCLC biomarker. To
assay that, we used three different experimental approaches: the first one based on the
correlation of gene expression levels and patient outcome using meta analysis of clinical
data from a large, homogeneous, well-defined collection of samples from NSCLC cohorts; a
second one based on the analysis of in vitro data obtained with six different human NSCLC
cell lines; and a third one in which we constructed a network-based model of CFL1 gene and
analyzed the role of each network component on the cellular resistance profile to different
chemotherapeutic drugs.

MATERIALS & METHODS
Cohort studies and data analysis

Patients, tumor samples and microarray datasets—For NSCLC cohort analysis we
accessed a large well-defined collection of lung cancer samples with expression data and
relevant clinical and pathologic information on 111 patients (testing cohort), from core
biopsies of patients’ tumor. The data was obtained from GEO database
(http://www.ncbi.nlm.nih.gov/projects/geo/; Series GSE3141) and the Duke Institute for
Genome Sciences & Policy website (http://data.cgt.duke.edu/oncogene.php). Gene array
data is available on Affymetrix U133 Plus 2.0 GeneChip.14 To test the reproducibility of the
data we assessed a second, independent microarray data set (validation cohort), which is
available on different microarray platform (Affymetrix HG_U95Av2 GeneChip).15 The
validation cohort comprises microarray data from 86 tumor biopsies obtained from
sequential patients seen at the University of Michigan Hospital for stage I or stage III lung
adenocarcinomas. All gene array data of the validation cohort are available at
http://dot.ped.med.umich.edu:2000/ourimage/pub/Lung/index.html.
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Survival data analysis—Standard Kaplan–Meier mortality curves and their significance
levels were generated for clusters of patients using SPSS software (SPSS for Windows,
release 14.0.0. SPSS Inc., Chicago, IL). The survival curves are compared using the log-
rank test and patients are clustered according to either biomarker expression level or NCSLC
stage grouping.4,16

Cox multivariable regression analysis—Multivariate Cox proportional hazards
regression models were used to test the independent contribution of each variable on
mortality. Graphical assessment was used to assess the Cox model’s proportional hazard
assumption. Results of multivariate analysis were summarized by calculating hazard ratios
(HR) and corresponding 95% confidence intervals (CI).

Biomarker accuracy—The area under the receiver-operating characteristic (ROC) curve
was used to evaluate the biomarker’s ability in discriminating patients who survived and
those who died. An optimal cut-off value was obtained considering the combination of
highest sensitivity and specificity.

In vitro assays
Immunohistochemical staining—Paraffin-embedded sections of lung samples from 20
patients with NSCLC (classified according to World Health Organization criteria) were
obtained as archival specimens from the Department of Pathology at the São João Batista
Hospital in Criciúma, SC, Brazil. Hematoxylin–eosin (H&E)–stained slides of lung tissue
were examined by a national board–certified pathologist. Selected areas of lung cancer and
corresponding benign samples were sectioned into 3 µm slices, and immunohistochemical
staining was performed according to the standard avidin-biotin immunoperoxidase complex
technique. Rabbit polyclonal anti-human cofilin-1 antibody (Abcam®) (1 µg/mL) was used
as the primary antibody. The brownish-color was considered to be evidence of a positive
expression of cofilin-1 in the tumor cells. Unstained red blood cells and labeled
macrophages were considered, respectively, as negative and positive internal controls. The
Helsinki Declaration of Human Rights was strictly observed when performing these
experiments.

Cell culture and western blot immunoassay—The human NSCLC cell lines were
obtained from NCI-Frederick Cancer DCTD tumor/cell line repository, and grown in RPMI
1640 medium containing 10% heat-inactivated fetal bovine serum, 2 mM L-Glutamine at
37°C in 5% CO2 in air. Exponentially growing cells were washed twice with PBS and
resuspended in lysis buffer containing 20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EGTA,
1% Triton, 1 mM Na3VO4 and protease inhibitors. After sonication, 30 µg of protein was
electrophoresed on 4–12% Bis-Tris NuPage gels (Invitrogen), transferred to PVDF
membranes (Immobilon P, Millipore) and blocked with 5% milk. The following antibodies
were used for Western blot immunoassay: rabbit polyclonal anti-cofilin (1:1,000), rabbit
polyclonal anti-actin (1:2,000) (Cytoskeleton, Denver, CO. USA). Horseradish peroxidase-
linked secondary antibody (1:10,000) was from DakoCytomation®. Bands were visualized
by chemiluminescence using the ECL Detection kit from Amersham Biosciences and
exposure of X-ray film. Quantification of band was done with ImageJ 1.36b software (NIH,
USA).

Drug citotoxicity—Drugs GI50 was determined as described elsewhere. Briefly,
exponential growing NSCLC cell lines were treated with different concentrations of drugs
(cisplatin, carboplatin, 5-fluorouracil, hydroxyurea and taxol) (Sigma®). After 72 h, the
medium was removed and cells were fixed with cold 10% TCA for 1 h at 4°C. Plates were
washed five times with distilled water and left to dry at room temperature. Cells were
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stained with 0.4% of sulforhodamine B (SRB) (Sigma®) (w/v) in 1% acetic acid (v/v) at
room temperature for 20 min. SRB was removed and the plates washed five times with 1%
acetic acid before air-drying. Bound dye was solubilized with 10 mM unbuffered Tris-base
solution and plates were left on a plate shaker for at least 10 min. Absorbance was measured
in a 96-well plate reader (VERSAmax, Molecular Devices) at 492 nm. The growth inhibition
(GI50) was calculated according to the concentration-response curve. The mean of three
independent experiments for each condition run in triplicates is plotted.

Cell Migration and Invasion Assays—In vitro migration and invasion assays were
performed using the BioCoat™ Matrigel™ Invasion Chamber System (BD Bioscience®).
Briefly, Matrigel inserts were rehydrate in RPMI medium and cells (2.5 × 104 cells) were
seeded at each 24 well chamber. The chemoattractant (medium RPMI with 10% of SFB)
were added to the lower wells and the movement of cells through the 8.0 µm pore size Tran-
swell cell culture inserts (Falcon), either un-coated (migration) or Matrigel coated
(invasion), were determined after 22 h of incubation at 37°C in a humidified incubator with
5% CO2 atmosphere. At the end of the assay, cells were removed from the top side of the
insert using a cotton swab. Cells that penetrated to the underside surfaces of the inserts were
fixed and stained with HEMA 3 staining kit (Fisher Scientific) and counted under the
microscope. Data is expressed as the percent invasion through the Matrigel relative to the
migration though the un-coated membrane, and expressed as invasion index. The mean of
three high power fields for each condition run in triplicates is plotted.

Bioinformatics analysis
Microarray data from NCI-60 cancer cell panel—Transcript expression profiles of
the six human NSCLC cell lines were obtained from the NCI-60 human tumor cell line
anticancer drug screen (http://discover.nci.nih.gov/datasetsNature2000.jsp). To test the
reproducibility of the data we assessed a second, independent microarray data set available
at http://discover.nci.nih.gov/cellminer/home.do (RMA normalized Affymetrix HG-U133A/
B data set). This second microarray platform comprises the human transcriptome and
consistently identifies gene probes (e.g. it follows approved gene IDs from the HGNC
nomenclature committee – http://www.genenames.org/), allowing the proper identification
of CFL1 partners in the biological network analysis.

The drug database—For drug panel activity analysis we considered those compounds
listed in the “mechanism of action” drug activity database, NCI Developmental Therapeutics
Program (http://discover.nci.nih.gov/datasetsNature2000.jsp) This panel consists of 118
compounds whose mechanisms of action are putatively classified: i) alkylating agents; ii)
topoisomerase I inhibitor; iii) topoisomerase II inhibitor; iv) DNA/RNA antimetabolites
(DNA binder, DNA incorporation, antifols, ribonucleotide reductase inhibitor, DNA
synthesis inhibitor, RNA synthesis inhibitor); v) antimitotics; and vi) others (protein
synthesis inhibitor; HSP90 binder or unknown). Drug activity against the NCSLC cell lines
is expressed by 50% growth inhibition doses (GI50; also known as IC50) and the entire GI50
dataset is available at http://dtp.nci.nih.gov/dtpstandard/cancerscreeningdata/index.jsp.

CFL1 chemotherapeutic drug resistance/sensitivity data analysis—The relation
between the activity of the drug dataset (i.e. 118 standard chemotherapy agents) and CFL1
expression levels was estimated by Spearman correlation analysis in SPSS software (SPSS
for Windows, release 14.0.0. SPSS Inc., Chicago, IL). Positive correlations occurred when
relatively high levels of gene expression were found in relatively sensitive cell lines.
Negative correlations occurred when relatively high levels of gene expression were found in
resistant cell lines. Therefore, P values < 0.05 indicate a significant negative correlation
(resistance) and P > 0.95 indicate a significant positive correlation (sensitivity). Due to
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multiple comparisons, only drug categories showing reproducible results were considered
for further analysis (i.e. consistent results among the drugs of a given class).

Construction of the network-based model of CFL1 interaction partners—
Experimental evidences of protein-protein interactions were obtained from STRING
database (http://string.embl.de/).17 STRING integrates different curated, public databases
containing information on direct and indirect functional protein-protein associations. We
retrieved all proteins described in that database inferred by experimental evidences and that
directly interact with CFL1 (cofilin-1; non-muscle isoform; Ensembl Peptide ID:
ENSP00000309629). The final network was drawn using spring model algorithm and then
handled in Medusa software.18

CFL1 gene partner analysis—Microarray data of NSCLC cell lines were crossed
against GI50 values of 118 standard chemotherapy agents in order to estimate drug
sensitivity/resistance profile according to the expression levels of CFL1 gene partners (i.e.
all genes identified in the network-based model of CFL1 interaction partners). The statistical
analysis follows the original method described in the National Cancer Institute’s drug
discovery program.19

Clustering analysis and expression profile of CFL1 gene network—The strategy
to assess the functional status of tumor samples based on gene expression network profiles
have been previously described.20,21 Two-way hierarchical clustering analysis was
performed with CLUSTER 3.0 software package using the complete linkage clustering
option.22 For visualization purposes, the gene expression values were median-centered and
normalized. The results were processed and visualized in TREEVIEW software23. The color
intensity was set to the log2 ratio of the microarray signal. Probes of all genes listed in the
CFL1 gene network could be retrieved from the microarray platform (i.e. the cohort study –
its corresponding gene expression database – is provided on Human Genome U133-Plus 2.0
Array).

RESULTS
Kaplan-Meier estimates of patient cumulative survival by time (months) according to the
expression level of CFL1 showed that when patients are grouped by CFL1 gene expression
(upper fifth vs. lower fifth of transcript abundance levels), the expression levels can be used
to discriminate patients in early disease stages (IA, IB, IIA, and IIB) between good or bad
outcome (Fig. 1A; based on meta-data analysis). Data on microarray gene expression and
patient information such as age, sex, cancer histological type, and NSCLC staging were
considered (cohort description can be found in Table 1). Cox multivariate regression
revealed that lower CFL1 expression was significantly associated with a high overall
survival (hazard ratio for high risk vs. low risk, 2.7; 95% C.I., 1.5 to 4.7, P = 0.001) (Fig.
1B).

Analysis of 85 patients with disease stages I or II (the testing cohort), revealed that patients
with high CFL1 expression (n=42) had an overall survival rate shorter than those with low
CFL1 expression (n=43) (Fig. 2A). To test the robustness of this finding, we analyzed a
second, independent data set of 67 patients in early stages (the validation cohort) (Fig. 2B).
Our meta-analysis showed that high CFL1 levels are associated with shorter overall survival
in both cohorts. ROC curve analysis showed that CFL1 sensitivity/specificity is high enough
to indicate patient’s outcome of those with early disease stages (area under ROC curve =
0.787) (Fig. 2C). Immunohistochemical stains revealed an increased cofilin immunocontent
within the neoplasic tissue (Fig. 2E). The data presented in Figure 2 suggests that CFL1
levels can be used to indicate patient outcome.
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We also asked whether CFL1 levels could provide additional insights into the
pathophysiology of NSCLC, predicting tumor aggressiveness and/or chemotherapy
response. To do that, we used NSCLC data from the US National Cancer Institute in vitro
anticancer drug screen (NCI60 cancer panel).19 Six human cell lines of the three major
histological types of NSCLC, namely adenocarcinomas cells (H-23, A549, EKVX),
squamous cells carcinomas (H-226), and large cells carcinomas (H-460, HOP-92) were
analyzed. Relative levels of CFL1 gene expression obtained by microarray are presented in
Figure 3A (symbols) and match the amount of cofilin protein evaluated here (Fig. 3A; bars).
Then, using the BD BioCoat™ Matrigel™ Invasion System (to assess the tumor’s metastatic
potential), we found that different histological types expressing higher CFL1 levels
presented higher invasion indexes, which indicates a more aggressive invasiveness behavior
(Fig. 3B) (*P < 0.02, Mann Whitney test; **P < 0.0001, One-way ANOVA).

In addition to this higher invasiveness potential, analysis of microarray data of the six cell
lines and respective GI50 values of 118 standard chemotherapy agents (from the NCI60 drug
discovery pipeline) revealed that high levels of CFL1 mRNA is also correlated with
resistance against different anticancer drugs – mainly alkylating agents (Fig. 4A; meta-
analysis) (for a list of all correlated alkylating drugs see Table 2). Exposure of the cell lines
to different concentrations of selected chemotherapy drugs (namely cisplatin, carboplatin, 5-
fluorouracil, hydroxyurea, and taxol) revealed significant correlations between cofilin
immunocontent and resistance to cisplatin and carboplatin, the two alkylating agents tested
(Fig. 4B; in vitro analysis).

Using the same approach on drug resistance, we evaluated the resistance profile against
alkylating agents of each gene product that interacts directly with CFL1. Four cofilin’s
partners (CAP1, ACTB, SSH3, YWHAZ genes) show a resistance profile similar to cofilin,
suggesting that a functional network is correlated with this tumor phenotype. These results
are presented as network-based model of the cofilin biological pathway (Fig. 5A, red nodes),
where nodes represent gene products and connecting lines indicate physical and/or
functional associations according to experimental data (http://string.embl.de/).

To further explore the role of this gene network in NCSLC patient outcome, a cluster
analysis was carried out using the data-bank from testing cohort. As the microarray dataset
from this cohort study was produced on Affymetrix U133 Plus 2.0 platform, all genes listed
in our network could be retrieved. Complete linkage clustering of tumor samples is shown in
TREEVIEW format (Fig.5B). From the Heat Map, we identified three large tumor clusters,
which were then used to re-stratify the NSCLC patients according to the gene expression
profile. Kaplan-Meier estimates based on this new stratification showed that the CFL1 gene
network can also be used to discriminate patient’s outcomes (Fig.5C).

DISCUSSION
Although much progress has been made in reducing overall mortality rates, cancer is a major
public health problem worldwide, accounting for more deaths than heart disease. Most
recent epidemiological data show a notable trend in stabilization of incidence rates for all
cancer and a continued decrease in the cancer death rate.1 While the decrease in death rates
for colorectal, breast, and prostate cancer largely reflects improvements in early detection
and treatment, the decrease in lung cancer death rates reflects manly the reduction in tobacco
use.24,25

In this scenario, non-small-cell lung cancer (NSCLC) is the leading cause of deaths
annually. Currently, prognosis of NSCLC patients is still based almost exclusively on the
anatomical extent of disease and may have reached their limit of usefulness for predicting
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outcomes.4 Advances in molecular pathology underwent to the development of many
candidate biomarkers with potential clinical value. However, according to the TNM tumor
staging system, only few tumors are formally staged with the addition of molecular
biomarker information (e.g. TNM+S; where S= serum levels of selected biomarker), which
does not include lung cancers.3

Herein we are proposing the use of CFL1 gene expression levels as a prognostic and
predictive NSCLC biomarker based on the following findings: i) CFL1 mRNA levels are
highly sensitive and specific to discriminate between good and bad patient outcome in two
independent cohort – specially in early-stage disease – where tumor with low expression of
CFL1 gene are associated with high overall survival; ii) an association exists between cofilin
immunocontent and tumor invasion; iii) cells with high cofilin mRNA and protein levels are
resistant to alkylating drug treatment, and iv) four other genes that interact in the CFL1
pathway (named SSH3, YWHZ, CAP1 and ACTB) also demonstrate the same resistance
profile.

As previously shown, to be able to generate early metastasis, tumor cells require the activity
of cofilin to modulate actin cytoskeleton, generating cell mobility.9,10 Therefore, as cofilin
is associated with epithelial-mesenchymal transition and tumor invasion, it stands to reason
that NSCLC patients with high tumor CFL1 expression levels present low overall survival
rates, even in early-stage disease. Our data obtained by in vitro experiments suggest that
cofilin levels also could be used to predict tumor resistance to alkylating agents. The
correlation between high levels of cofilin and alkylating drug resistance probably is the most
important finding of this study, since this class of drugs is among the most effective
cytotoxic agents for advanced cancer treatments and has long been the cornerstone of
NSCLC management.26,27 Even though this treatment improves patient survival, the benefit
is stage-dependent. Unfortunately, intrinsic or acquired resistance to alkylating agents is
frequently encountered and severely limits its therapeutic potential.28 Our findings may have
great impact on survival rates, as currently there is no way to predict and identify potential
responders.

Although we focused our analysis on the role of CFL1 gene in alkylating drugs resistance,
we also expanded the potential biological relevance of our findings by testing the role of
other cofilin’s partners on tumor resistance. Doing so, we obtained a signature based on five
biological related genes (members of the cofilin pathway). These genes can be used in
combination to characterize the tumor resistance phenotype. This approach is consistent
with other studies that have been proposing the use of gene combination to enhance
biomarker robustness, which may potentially deal better with intrinsic intra and inter-sample
heterogeneity29–31. For instance, Chen & cols32 have described a biomarker cluster
comprising the combination of DUSP6, MMD, STAT1, ERBB3 and LCK gene expression to
predict clinical outcome of NSCLC patient. This signature was obtained based on the
statistical (not biological) combination of high-throughput screening of cDNA microarray
probes. Likewise, other authors used the same strategy to identify low/high NSCLC risk
phenotypes.14,15

In this sense, our five-gene signature emerges from a functional gene network comprising all
described cofilin partners. To further explore this finding using the NSCLC cohort data, we
assigned subsets of tumors (clusters) based on related expression patterns, represented in the
tree structure, or dendrograms. Using all CFL1 gene network components, the hierarchical
clustering analysis put together the similar network datasets, stratifying NSCLC patients in
three large subgroups, whose outcomes differ in the same extent as observed for CFL1 gene
alone. The effect of this strategy of assessing tumors is the distribution of biomarker task
among related genes, not focused on one or several non-related ones, which can potentially
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reduce the effect of random fluctuations on biomarker performance. Further investigation of
the molecular properties of this network should be helpful to validate these genes as
prognostic and predictive markers in NSCLC, or even in other cancer types, given that
CFL1 gene is widely expressed34 and more specifically in some subtypes (e.g. colorectal
adenocarcinomas34,35).

Our findings have clear implications for NSCLC management and therapy, as CFL1
expression levels can be used to indicate which patients should receive a more aggressive
therapy in an attempt to reverse the poor prognosis. Because CFL1 expression levels also
correlate with drug resistance, our findings can also be used to decide the best course of
action for each patient, representing a contribution into translational medicine for treating
NSCLC. In the adjuvant setting, for example, cisplatin-based chemotherapy constitutes the
standard first-line treatment for patients with early stage and good performance status.33

Since CFL1 expression appears to be a marker of resistance to platinum agents, patients
whose tumors harbor high levels of CFL1 would benefit from a different treatment modality.
In these cases, possible trials to test alternative adjuvant regimens would be based on the
combination of other drugs commonly used in NSCLC (e.g. gencitabine, docetaxel and
vinorelbine) or EGFR-targeted monoclonal antibodies. The combination of EGFR inhibitors
with first-line chemotherapy is currently under evaluation and efforts have been made to
identify subgroups of NSCLC patients that respond to these agents.36–38 The refinement of
patient stratification with the use of CFL1 gene signature provides the opportunity to design
a prospective, large-scale, randomized clinical trial that would evaluate these ideas.
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FIGURE 1. Prognostic value of CFL1 mRNA levels in NSCLC patients
(A) Meta-analysis of cohort data grouped according to the International Staging System for
Lung Cancer and CFL1 gene expression level (i.e. upper-fifth vs. lower-fifth), and plotted as
survival probabilities using Kaplan-Meier method. Black lines represent patients with low
CFL1 expression; red lines with high CFL1 expression. Differences in survival rates were
assessed with the log-rank test. Gray lines represent all patients according to tumor staging.
P values lower than 0.05 were considered significant. (B) Cox multivariable regression
analysis to estimate hazard ratios for cohort clinical covariates and CFL1 expression. Hazard
ratios indicate that patients with high CFL1 expression level presented poor outcome.

Alves Castro et al. Page 11

Cancer. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 2. Biomarker performance in early stage NSCLC patients
(A) Kaplan Meier plot are shown for patients in stages I and II (n=85) in the original cohort
(testing cohort) stratified by CFL1 expression level and (B) in an independent cohort
(validation cohort) obtained from a different set of published NSCLC microarray data
(n=67). (C) Biomarker performance estimated by Receiver Operating Characteristic (ROC)
analysis. (D) Representative immunohistochemical (IHC) analysis of cofilin immunocontent
in tumor biopsies. Healthy human alveolar tissue obtained from tumor margins is mostly
negative to cofilin IHC staining (upper left). High staining for cofilin is found within the
neoplasic lung cells (asterisks). Original magnification ×200; scale bar = 100 µM.
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FIGURE 3. Cofilin immunocontent correlates with tumor invasiveness and resistance against
alkylating drugs
Six human NSCLC cell lines composed of adenocarcinomas (H-23, A549, EKVX), large
cells (H-460, HOP-92) and squamous-cells carcinomas (H-226) from the NCI-60 panel were
selected based on different levels of CFL1 gene expression
(http://discover.nci.nih.gov/datasetsNature2000.jsp) to establish the role of CFL1 in tumor
aggressiveness, evaluated by assays of cell invasion and drug resistance. (A) Western blot
analysis shows that the pattern of CFL1 mRNA (symbols) matches with the level of cofilin
immunocontent (bars). (B) Invasion index was obtained by determining the movement of
cells through an 8.0 µm pore size, either uncoated (migration) or matrigel-coated (invasion),
attracted by a chemotactic gradient of serum. The mean of four fields for each condition in
quadruplicates is plotted. *P < 0.02 (Mann Whitney test); **P < 0.0001 (One-way
ANOVA).
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FIGURE 4. CFL1 mRNA and protein levels vs. drug sensitivity/resistance profile
(A) Microarray meta-data of the cell lines are crossed against GI50 values of 118 standard
chemotherapy agents (from NCI-60 drug discovery pipeline). P values have been color
coded according to the scale shown; P < 0.05 indicates a significant negative correlation
(resistance) while P > 0.95 indicates a significant positive correlation (sensitivity). The
major mechanism of drug action is shown (the term “alkylating agents” is used broadly to
include platinating agents; Uk: unknown; P90: hsp90 binder; Pi: protein synthesis inhibitor).
Each column within the matrix represents the Spearman correlation between gene
expression and toxicity of an individual drug. (B) In vitro validation of the citotoxicity for
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selected drugs assayed by the sulforhodamine B (SRB) method (upper plots). The obtained
drug GI50 values were correlated with cofilin immunocontent (lower plots).
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FIGURE 5. Prognostic and drug resistance marker of CFL1 functional gene network
(A) Graph model of CFL1 functional gene network vs. alkylating drug sensitivity/resistance
profile. Nodes represent gene products; connecting lines indicate physical and/or functional
associations according to experimental data (http://string.embl.de/). Gene expression data
(http://discover.nci.nih.gov/cellminer/home.do) were crossed against GI50 values of all
alkylating agents identified in the resistance panel at Figure 4A. Four CFL1 network partners
follow the same resistance profile (red nodes; n = number of drugs for which gene
expression showed correlation). Network drawn was built using a spring model algorithm.
Further detains in Methods. (B) Two-way hierarchical clustering analysis of NCSLC tumors.
This panel presents the NSCLC cohort data (referred to as Testing Cohort in Table 1)
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arranged according to the gene expression profile of all CFL1 network components.
Complete linkage clustering of tumor samples is shown in TREEVIEW format. The color
intensity is relative to the log2 ratio of the microarray signal (red: positive values; green:
negative values). For visualization purposes, the gene expression values were median
centered and normalized using CLUSTER 3.0 software. (c) Kaplan Meier plot of the entire
NSCLC cohort data (n=111), where patients are stratified according to the hierarchical
clustering analysis of CFL1 functional gene network.
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Table 1

Clinical Characteristics of the Original and Validation Cohorts.

Characteristic CFL-1 Expression P value

High Low

Testing Cohort (n = 111) 55 (49%) 56 (51%)

Age (years) 64.6 ± 9.6 64.9 ± 9.7 0.842

Gender

    Male 30 (54%) 33 (59%) 0.784

    Female 25 (46%) 23 (41%)

Tumor type

    Adenocarcinoma 28 (51%) 30 (54%) 0.928

    Squamous-cell 27 (49%) 26 (46%)

Tumor TNM Stage

    Ia 20 (36%) 20 (36%) 0.999

    Ib 13 (24%) 14 (25%)

    II 9 (16%) 9 (16%)

    III–IV 13 (24%) 13 (23%)

Validation Cohort (n = 86) 43 (50%) 43 (50%)

Age (years) 62.3 ± 8.8 65.1 ± 10.7 0.187

Gender

    Male 21 (49%) 14 (33%) 0.198

    Female 22 (51%) 29 (67%)

Tumor type/differentiation

    Adenocarcinoma/well 12 (28%) 12 (28%) 0.964

    Adenocarcinoma/ moderate 21 (49%) 20 (47%)

    Adenocarcinoma/ poor 10 (23%) 11 (26%)

Tumor TNM Stage

    I 34 (79%) 33 (77%) 0.999

    III 9 (21%) 10 (23%)
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Table 2

List of alkylating agents for which CFL1 mRNA levels are biomarker1 for drug resistance.

Class2 Drugs Rs P-value

A2 Porfiromycin 0.771 0.036

A6 Carmustine (BCNU) 1.000 0.000

A6 Chlorozotocin 0.943 0.002

A6 Clomesone 0.943 0.002

A6 Lomustine (CCNU) 0.771 0.036

A6 Mitozolamide 0.943 0.002

A6 PCNU 0.943 0.002

A6 Semustine (MeCCNU) 0.886 0.009

A7 Asaley 0.771 0.036

A7 Carboplatin 0.829 0.021

A7 Chlorambucil 0.829 0.021

A7 Cisplatin 0.829 0.021

A7 Cyclodisone 0.943 0.002

A7 Hepsulfam 0.771 0.036

A7 Iproplatin 1.000 0.000

A7 Mechlorethamine 0.943 0.002

A7 Melphalan 0.771 0.036

A7 Piperazine mustard 0.943 0.002

A7 Piperazinedione 0.771 0.036

A7 Spiromustine 0.886 0.009

A7 Uracil mustard 0.829 0.021

A7 Yoshi-864 0.771 0.036

1
Meta-analysis data of chemotherapeutic drugs from a panel of 33 alkylating agents (from Fig.4A) tested for positive correlation (resistance)

between drug GI50 (µM) and the pattern of CFL1 gene expression in six human NSCLC cell lines (A549, EKVX, HOP-92, NCI-H226, NCI-H23,
NCI-H460) obtained from the NCI-60 cell panel.

2
Mechanism of action codes: A2= alkylating at N-2 position of guanine; A6= alkylating at O-6 position of guanine; A7= alkylating at N-7 position

of guanine.
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