
Exploiting Graphics Processing Units for Computational Biology
and Bioinformatics

Joshua L. Payne*, Nicholas A. Sinnott-Armstrong*, and Jason H. Moore
Computational Genetics Laboratory, Department of Genetics, Dartmouth Medical School,
Lebanon, NH 03756, USA

Abstract
Advances in the video gaming industry have led to the production of low-cost, high-performance
graphics processing units (GPUs) that possess more memory bandwidth and computational
capability than central processing units (CPUs), the standard workhorses of scientific computing.
With the recent release of general-purpose GPUs and Nvidia's GPU programming language,
CUDA, graphics engines are being adopted widely in scientific computing applications,
particularly in the fields of computational biology and bioinformatics. The goal of this article is to
concisely present an introduction to GPU hardware and programming, aimed at the computational
biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and
CPU architecture, introduce the basics of the CUDA programming language, and discuss
important CUDA programming practices, such as the proper use of coalesced reads, data types,
and memory hierarchies. We highlight each of these topics in the context of computing the all-
pairs distance between instances in a dataset, a common procedure in numerous disciplines of
scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations
of the all-pairs distance calculation. We show our final GPU implementation to outperform the
CPU implementation by a factor of 1700.

Keywords
All-Pairs Distance; Bioinformatics; Computational Biology; Compute Unified Device
Architecture (CUDA); Graphics Processing Units (GPU); High Performance Computing;
Parallelism

INTRODUCTION
Market demand for high-resolution, three-dimensional graphics have led to the production
of low-cost, highly parallel, many-core graphics processing units (GPUs). These computing
components have higher memory bandwidth and more computing power than central
processing units (CPUs), and are now regularly included in standard laptop and desktop
computers. Nvidia, a leading GPU vendor, has released a proprietary development platform
known as the compute unified device architecture (CUDA) (Nvidia Corporation, 2009),
which allows for the general purpose programming of their consumer graphics hardware in a
C-like language. This has generated a surge of interest in exploiting GPUs for scientific
computation, particularly in the fields of computational biology and bioinformatics. For
example, GPU adaptations of algorithms for sequence alignment (Manavski and Valle,
2008; Schatz et al., 2007), epistasis analysis (Greene et al., 2010; Sinnott-Armstrong et al.,

*These authors contributed equally to this work

NIH Public Access
Author Manuscript
Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

Published in final edited form as:
Interdiscip Sci. 2010 September ; 2(3): 213–220. doi:10.1007/s12539-010-0002-4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2009), feature detection (Hussong et al., 2009), phylogenetics (Suchard and Rambaut, 2009),
and artificial vision (Pinto et al., 2009) have recently been developed and have been shown
to offer dramatic speedups over their serial counterparts.

The goal of this article is to present the basics of GPU hardware and programming to the
computational biologist or bioinformaticist in a concise form. Our only assumption of the
reader is a basic understanding of the C programming language. After introducing the
essentials of GPUs and the CUDA programming language, we address three fundamental
GPU programming practices: the proper use of (1) coalesced reads, (2) data types, and (3)
memory hierarchies. We highlight these principles with an example: that of computing the
all-pairs distance between instances in a dataset. We conclude with an empirical runtime
analysis of the GPU and CPU implementations of the all-pairs distance calculation.

GPU AND CUDA ESSENTIALS
GPUs dedicate much more hardware per core to data processing than CPUs, but possess far
less hardware per core for data caching and flow control (Figure 1) This makes GPUs ideal
for problems in which the same (small) program is executed on many data elements in
parallel, as is the case in the all-pairs distance calculation (Appendix 1), and numerous other
applications.

CUDA allows the developer to mix CPU and GPU code seamlessly, through an intuitive
extension of the C programming language. The developer can design a program such that
code portions exhibiting little parallelism are executed on the CPU (referred to as the host),
and portions exhibiting high parallelism are executed on the GPU (referred to as the device).
The developer should attempt to minimize the amount of code executed on the host, as the
potential speedups of parallelization are inherently limited by these code portions (Amdahl,
1967). Program execution begins on the host and is executed serially until a GPU-specific
section of the code is encountered, which is then executed on the device in parallel. The data
that is needed by the device is copied from host memory (RAM) to device global memory.
After the GPU code has finished execution, its output is transferred from global memory to
RAM, and control is returned to the CPU. This swapping of control between the CPU and
GPU can occur as many times as needed in an application, though writing between these
memory resources is very slow and should be performed sparingly. This encourages the
developer to send data to the device once and then perform many operations on it, so that the
memory stays on the device and is not transferred between memory types.

Device code is executed by many independent threads, which are hierarchically organized;
groups of threads are organized into thread blocks, and thread blocks are organized into
grids (Figure 2). Threads within a block are organized into groups of 32, referred to as
warps. Each multiprocessor schedules and executes threads at the warp level.

Each thread possesses its own registers (Figure 2). Memory accesses to registers are very
fast, but register file size is extremely small. Each block possesses its own memory, which is
referred to as shared memory (Figure 2). All threads within a block have access to shared
memory, which is also very fast and can be used to efficiently transfer information between
threads. Threads in all blocks have access to global memory (Figure 2), which is the largest
form of memory on the GPU, but extremely slow to access (almost 100 times slower than
registers or shared memory).

The task of the developer is to divide a problem into small, independent subtasks that can be
executed in parallel at the block level. Within each block, these subtasks are further divided,
such that individual threads cooperate to solve the subtask in parallel. This block-level,
coarse-grained parallelism contributes to the scalability of a GPU program, since individual

Payne et al. Page 2

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

subtasks can be sent to any available multiprocessor. The more multiprocessors, the higher
the parallelism. As different Nvidia GPUs have a differing number of multiprocessors, the
number of blocks should be high enough that running on large devices does not lead to the
under-utilization of resources – ideally, at least 250 blocks would be sufficient for current
generation devices.

However, it is important to keep in mind that the degree of parallelism obtained by a
program depends on the amount of resources requested by each thread, and on the specifics
of the underlying GPU. In the GeForce 9600M GT employed in this study, a maximum of 8
blocks can be assigned to each multiprocessor. If a multiprocessor cannot satisfy the
resource needs of those blocks, then the number of blocks is reduced until the resource
demand can be met. For example, the GeForce 9600M GT has 8K registers for each
multiprocessor. If each block requests 2K worth of registers, than only 4 blocks can reside
on each multiprocessor. Thus, maximum parallelization requires the careful use of hardware
resources. A useful tool for measuring the resource utilization of CUDA code on a specific
GPU architecture is provided by the Nvidia Corporation (2009b).

CUDA BASICS
Data is shared between the CPU and GPU by writing from host RAM to global memory.
CUDA provides a very simple syntax to allocate global memory and to perform the data
transfer. For example, if we want to write a 100-element integer array (named outputHost)
from the host to the device, we would do the following.

int *outputDevice;
cudaMalloc((void**)&outputDevice, 100*sizeof(int));
cudaMemcpy(outputDevice, outputHost, 100*sizeof(int),
cudaMemcpyHostToDevice);

First, we allocate global memory using the CUDA version of malloc, which is intuitively
named cudaMalloc. Then we call the CUDA function cudaMemcpy to write the host data to
the global memory space allocated on the GPU, using the cudaMemcpyHostToDevice
option.

Device code, referred to as a kernel, operates on data stored in global memory. Kernel
prototypes in CUDA are very similar to function prototypes in C. For example, the
prototype for a function named foo could be

__global__ void foo(int *input, int *output);

The __global__ qualifier indicates that the function is a kernel, implying that it is called by
the host and can only be executed on the device. Kernel output must be void. The first
operand is the integer array input, upon which some operation will be performed. The output
of this operation will then be written to the second operand, the integer array output. Both
input and output must exist in global memory and therefore must be copied from host to
device using cudaMemcpy. If arguments are not passed by reference (e.g., if they are not
pointers), then they are stored in a fast, cached memory space, which does not suffer the
same read penalties as the very slow global memory.

Kernels are executed in parallel across many threads. The organization of threads into
blocks, and blocks into a grid is specified with the following two commands:

Payne et al. Page 3

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

dim3 dimBlock(2,2);
dim3 dimGrid(1,2);

These commands state that each block will contain a 2×2 matrix of threads, and the grid will
contain a 1×2 array of blocks, as depicted in Figure 2. Once the block and grid
dimensionality are established, the kernel can be invoked as follows:

foo<<<dimGrid,dimBlock>>> (inputDevice, outputDevice);

Note that dimGrid and dimBlock are structures with fields x,y, and z for the first, second,
and third dimensions; they can be modified individually after creation. Following kernel
execution, its output must be read from global memory into host RAM, using the following
command:

cudaMemcpy(outputHost, outputDevice, 100*sizeof(int),
cudaMemcpyDeviceToHost);

With these concepts, we can begin to write CUDA kernels for calculating the all-pairs
distance between instances in a dataset.

A NAÏVE IMPLEMENTATION
In this section, we provide a naïve implementation of the all-pairs distance kernel. The
kernel is designed such that each block calculates the distance between a pair of instances,
and the threads within a block calculate part of this distance by focusing on specific
attributes. The grid is arranged as a square of blocks, where the grid dimensions correspond
to the number of instances. Thus, each block writes a single output value, corresponding to a
unique pairing of instances. For example, block (0, 2) would compare instances 0 and 2
(Figure 3a), with each thread assigned a subset of the attributes. We assume a ternary
alphabet, such as encountered with single nucleotide polymorphism (SNP) data, and
measure distance as the number of attributes that differ between two instances. This
assumption is easily relaxed to alternative alphabets, such as Cartesian coordinates. For
simplicity, we assume that the number of instances, attributes, and threads are held fixed and
stored in the global variables INSTANCES, ATTRIBUTES, and THREADS, respectively.

1. __global__ void GPUnaive(int *data, int *distance) {
2. int idx = threadIdx.x;
3. int gx = blockIdx.x;
4. int gy = blockIdx.y;
5. for (int i = idx; i < ATTRIBUTES; i+=THREADS) {
6. if (data[INSTANCES*i + gx] != data[INSTANCES*i + gy]) {
7. atomicAdd(distance + INSTANCES*gy + gx, 1);
8. }
9. }
10. }

The kernel takes two operands: the input and output data, both as integer arrays (line 1).
Each thread obtains its unique identification number idx (line 2), and the x and y coordinates
of its block in the grid, gx (line 3) and gy (line 4), so it knows what data elements to operate

Payne et al. Page 4

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

on. The kernel then loops over all of the attributes (line 5), such that the individual threads
leapfrog over one another to calculate the distance between the two instances. If the attribute
assigned to a thread differs between the two instances (line 6), then the thread increments
the value corresponding to the respective pair of instances in the output array (line 7). This is
executed atomically, meaning that if two threads attempt to update this array location
simultaneously, their requests will be serialized.

GPU PROGRAMMING PRINCIPLES
We present four programming principles for developing GPU applications. We complement
the presentation of these principles with extensions of the naïve all-pairs distance calculation
presented above. For the sake of clarity, we only provide code for the kernels. However, we
provide the full, compilable, and documented code as supplementary material
(Computational Genetics Laboratory, 2010).

Coalesced reads
The time required to access global memory can be reduced if threads request a single
contiguous segment of global memory. Such a request results in a single memory transaction
for every 32 bytes transferred, assuming that each thread accesses a successive address and
the base address is a multiple of the segment size, 32 bytes. In contrast, if threads request n
non-contiguous global memory addresses, then n memory transactions occur. The following
implementation of the all-pairs kernel includes coalesced reads through a transposition of
the input data and a row-major access pattern. Figure 3c shows how the input data would be
restructured and how block (0, 2) would access the rows corresponding to data instances 0
and 2, as opposed to the column-major order access patterns in the naïve implementation
(Figure 3a).

1. __global__ void GPUcoalesce(int *data, int *distance) {
2. int idx = threadIdx.x;
3. int gx = blockIdx.x;
4. int gy = blockIdx.y;
5. for (int i = idx; i < ATTRIBUTES; i+=THREADS) {
6. if(data[i + ATTRIBUTES*gx] != data[i + ATTRIBUTES*gy]) {
7. atomicAdd(distance + INSTANCES*gy + gx, 1);
8. }
9. }
10. }

The only difference between this kernel and the naïve implementation is that the input data
is transposed (compare Figure 3c with 3a) and the accesses to global memory (line 6) occur
in row-major order. Together, these two changes dramatically reduce the number of global
memory accesses (compare Figure 3d with 3b), since requests to contiguous blocks of
memory are coalesced into a single transaction. As we will later show, this leads to
appreciable speedups.

Data types
In the previous examples, we have represented our input data using integers, a data type that
requires 32 bits of storage. Since our input data uses a ternary encoding (0, 1, and 2), the
majority of these 32 bits are not actually needed. As an alternative, we propose to use a
character representation, which allows four attributes to be packed into 32 bits. This reduces
both the memory footprint of the program and the number of global memory accesses.

Payne et al. Page 5

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

1. __global__ void GPUchar(char *data, int *distance) {
2. int idx = threadIdx.x;
3. int gx = blockIdx.x;
4. int gy = blockIdx.y;
5. for (int i = 4*idx; i < ATTRIBUTES; i+=THREADS*4) {
6. char4 j = *(char4 *)(data + i + ATTRIBUTES*gx);
7. char4 k = *(char4 *)(data + i + ATTRIBUTES*gy);
8. if (j.x ^ k.x)
9. atomicAdd(distance + INSTANCES*gy + gx, 1);
10. if ((j.y ^ k.y) && (i+1 < ATTRIBUTES))
11. atomicAdd(distance + INSTANCES*gy + gx, 1);
12. if ((j.z ^ k.z) && (i+2 < ATTRIBUTES))
13. atomicAdd(distance + INSTANCES*gy + gx, 1);
14. if ((j.w ^ k.w) && (i+3 < ATTRIBUTES))
15. atomicAdd(distance + INSTANCES*gy + gx, 1);
16. }
17. }

This kernel expects the input data to be stored as an array of characters (line 1). As in the
previous examples, the kernel loops over the attributes, with the threads leapfrogging over
one another (line 5). However, the duration of this loop is shortened by a factor of four
because each thread accesses four characters per memory transaction using the char4 data
type (lines 6 and 7). These four attributes are stored as fields (x,y,z,w) of the two instances j
and k, which are compared using an exclusive-or operation in each iteration of the loop
(lines 8–15). Note that the second clause of the if statement in lines 10, 12, and 14 is
required because ATTRIBUTES need not be a multiple of four. Also note that the reduction
in global memory accesses comes at the expense of an increased number of atomic add
instructions. We will later show this to have an undesired effect on program execution
speed.

Memory hierarchy
So far, we have written all of our output directly to global memory, and these writes have
been performed atomically. In this section, we will demonstrate how the memory hierarchy
of the GPU (Figure 2) can be exploited to further improve performance. We start at the
thread level and demonstrate the use of registers, and then move to the block level,
demonstrating the use of shared memory.

Each thread has its own registers, which are small, but writing to them is significantly faster
than writing to global memory. In our example, these registers can be used to store the
intermediate results of the comparisons between the two data instances.

1. __global__ void GPUregister(char *data, int *distance) {
2. int idx = threadIdx.x;
3. int gx = blockIdx.x;
4. int gy = blockIdx.y;
5. for (int i = 4*idx; i < ATTRIBUTES; i+=THREADS*4) {
6. char4 j = *(char4 *)(data + i + ATTRIBUTES*gx);
7. char4 k = *(char4 *)(data + i + ATTRIBUTES*gy);
8. char count = 0;
9. if (j.x ^ k.x)

Payne et al. Page 6

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

10. count++;
11. if ((j.y ^ k.y) && (i+1 < ATTRIBUTES))
12. count++;
13. if ((j.z ^ k.z) && (i+2 < ATTRIBUTES))
14. count++;
15. if ((j.w ^ k.w) && (i+3 < ATTRIBUTES))
16. count++;
17. atomicAdd(distance + INSTANCES*gx + gy, count);
18. }
19. }

Whereas in our previous example we wrote to global memory after each comparison, we
now only write to global memory once (line 17), and this occurs after all four comparisons
have been made. This eliminates the tradeoff between global memory accesses and
increased atomic add instructions encountered in the previous example. The intermediate
results of the four comparisons are stored in the variable count (lines 8, 10, 13, 14, 16),
which is local to each thread and stored in a register. Using registers in this way reduces the
number of global memory writes by three quarters. Since these writes were previously
performed atomically, the use of registers to store intermediate results also reduces much of
the contention overhead that occurs when multiple threads request write permission to the
same global memory location.

This contention can be further reduced using shared memory. In fact, it can be eliminated.
Shared memory is accessible by all threads within a block, allowing for efficient
communication and cooperation between threads. Like registers, writing to shared memory
is significantly faster than writing to global memory. The same is true of reading shared
memory.

1. __global__ void GPUshared(char *data, int *distance) {
2. int idx = threadIdx.x;
3. int gx = blockIdx.x;
4. int gy = blockIdx.y;
5. __shared__ int dist[THREADS];
6. dist[idx] = 0;
7. __syncthreads();
8. for (int i = idx*4; i < ATTRIBUTES; i+=THREADS*4) {
9. char4 j = *(char4 *)(data + i + ATTRIBUTES*gx);
10. char4 k = *(char4 *)(data + i + ATTRIBUTES*gy);
11. char count = 0;
12. if (j.x ^ k.x)
13. count++;
14. if ((j.y ^ k.y) && (i+1 < ATTRIBUTES))
15. count++;
16. if ((j.z ^ k.z) && (i+2 < ATTRIBUTES))
17. count++;
18. if ((j.w ^ k.w) && (i+3 < ATTRIBUTES))
19. count++;
20. dist[idx] += count;
21. }
22. __syncthreads();
23. if (idx == 0) {

Payne et al. Page 7

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

24. for (int i = 1; i < THREADS; i++)
25. dist[0] += dist[i];
26. distance[INSTANCES*gy + gx] = dist[0];
27. }
28. }

Above, we present our final kernel, to which we have made several changes. First, is the
introduction of a shared array (line 5), which is used to store the calculations of each thread.
This array is initialized in parallel, with each thread writing zero to a single element of the
array (line 6). To ensure the array is fully initialized before moving on, the CUDA function
__syncthreads() is called (line 7), which pauses execution until all threads within the block
have reached this instruction. As in the previous example, the kernel loops over the
attributes with the threads leapfrogging over one another, and intermediate results are
written to the local variable count. However, these intermediate results are then written to
shared memory (line 20), instead of performing an atomic write to global memory. Since
each thread is writing to a unique location in the shared array, there is no risk of contention.
The threads are then synchronized again (line 22) and thread zero (line 23) adds the results
from all the other threads in the block to its own value (lines 24–25), which are all stored in
the shared memory array. This sum, which is the total distance between instances j and k, is
then written to the corresponding element of the output array in global memory (line 26).
Note that this write need not be atomic, since only one thread in each block is doing the
writing, and each element of the output array corresponds uniquely to one block.

EMPIRICAL RUNTIME ANALYSIS
In Figure 4, we present an empirical runtime analysis of the CPU and GPU implementations
of the all-pairs distance calculation. For each of the six methods, we consider twenty-five
independent analyses, using randomly generated data sets with a ternary alphabet, 112
instances, and 512 attributes. All experiments used 128 threads per block. The CPU
implementation was executed on a 2.66 GHz Intel Core 2 Duo with 4GB of RAM and the
GPU implementations were executed on an Nvidia GeForce 9600M GT with 512MB of
RAM. Both are standard issue on the current MacBook Pro (MacBookPro5,3). The code
used to perform this analysis is available as supplementary material (Computational
Genetics Laboratory, 2010).

As shown in Figure 4, the CPU implementation required an average of 44,865 mS to
complete the all-pairs distance calculation. The naïve GPU implementation brought this
execution time down to an average of 2,140 mS, improving efficiency by a factor of 20.
Execution time was further reduced to 1,766 mS by coalescing the global memory reads.
This led to a speedup of 25, relative to the CPU implementation. Changing the data type to
characters reduced the memory footprint of the program, but slightly increased execution
time (1,784 mS) due to the increase in atomic add instruction contention. However, this
tradeoff was overcome through the use of registers, resulting in an execution time of 683 mS
and a speedup of 65, relative to the CPU implementation. Finally, using shared memory to
eliminate global writes reduced execution time to 26 mS, which is 1700 times faster than the
CPU implementation.

DISCUSSION AND CONCLUDING REMARKS
The goal of this article was to present GPU hardware and programming practices to
computational biologists and bioinformaticists in a succinct form. We used the example of
computing all-pairs distance between instances in a dataset. After presenting a CPU
implementation of this algorithm, we discussed five GPU implementations, each one

Payne et al. Page 8

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

building upon its predecessor. This allowed for the incremental introduction and discussion
of several important GPU programming concepts within the framework of a concrete
example. In particular, we focused on the incorporation of coalesced reads from global
memory, the implications of using various data types, and the proper usage of GPU memory
hierarchies. Numerous other optimizations are possible with CUDA, as GPUs are designed
to take advantage of a number of graphics optimizations. In particular, the use of constant
memory and texture memory (Nvidia Corporation, 2009) can lead to significant speedups, as
they avoid reading global memory. Another powerful technique is parallel reduction (Harris,
2009). However, as evidenced by our runtime analysis, sufficient speedups can be obtained
using even these less than optimal kernels. In the example presented here, the GPU
implementation outperformed its serial counterpart by a factor of 1700.

Acknowledgments
This work was supported by NIH grants LM009012, LM010098, and A159694.

REFERENCES
Amdahl, G. Validity of the single processor approach to achieving large-scale computing capabilities.

Proceedings of the American Federation of Information Processing Studies Conference; ACM; New
York. 1967. p. 483-485.

Computational Genetics Laboratory. 2010. Supplementary Material.
http://sourceforge.net/projects/all-pairsgpu

Greene CS, Sinnott-Armstrong NA, Himmelstein DS, Park PJ, Moore JH, Harris BT. Multifactor
dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in
sporadic ALS. Bioinformatics 2010;26:694–695. [PubMed: 20081222]

Harris, M. Optimizing parallel reduction in CUDA. Nvidia White Paper. 2009.
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/
reduction.pdf

Hussong R, Gregorius B, Tholey A, Hildebrandt A. Highly accelerated feature detection in proteomics
data sets using modern graphics processing units. Bioinformatics 2009;25:1937–1943. [PubMed:
19447788]

Manavski SA, Valle G. CUDA compatible GPU cards as efficient hardware accelerators for Smith-
Waterman sequence alignment. BMC Bioinformatics 2008;9:S10. [PubMed: 18387198]

Nvidia Corporation. Nvidia CUDA programming guide. Version 2.3.1. 2009.
Nvidia Corporation. CUDA Occupancy Calculator. 2009b http://developer.download.nvidia.com/

compute/cuda/CUDA_Occupancy_calculator.xls.
Pinto N, Doukhan D, DiCarlo JJ, Cox DD. A high-throughput screening approach to discovering good

forms of biologically inspired visual representation. PLoS Computational Biology 2009;5
e1000579.

Schatz MC, Trapnell C, Delcher AL, Varshney A. High-throughput sequence alignment using graphics
processing units. BMC Bioinformatics 2007;8:474. [PubMed: 18070356]

Sinnott-Armstrong NA, Greene CS, Cancare F, Moore JH. Accelerating epistasis analysis in human
genetics with consumer graphics hardware. BMC Research Notes 2009;2:149. [PubMed:
19630950]

Suchard MA, Rambaut A. Many-core algorithms for statistical phylogenetics. Bioinformatics
2009;25:1370–1376. [PubMed: 19369496]

APPENDIX 1
Computing the all-pairs distance between instances in a dataset is a common task in
scientific computing. Here, we provide a simple C function to accomplish this task. We
assume that INSTANCES and ATTRIBUTES are globally defined variables.

Payne et al. Page 9

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://sourceforge.net/projects/all-pairsgpu
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

1. void CPU(int * data, int * distance) {
2. for (int i = 0; i < INSTANCES; i++) {
3. for (int j = 0; j < INSTANCES; j++) {
4. for (int k = 0; k < ATTRIBUTES; k++) {
5. distance[i + INSTANCES * j] +=
6. (data[i * ATTRIBUTES + k] != data[j * ATTRIBUTES + k]);
7. }
8. }
9. }
10.}

This code is used in the runtime analyses performed in the final section of this article.

Payne et al. Page 10

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 1.
Schematic of the architectures of the (a) central processing unit (CPU) and the (b) graphics
processing unit (GPU). The color scheme used in (a) to denote the arithmetic logic units
(ALU), control and cache hardware, and random access memory (RAM) is the same as in
(b). Note that the GPU dedicates much more hardware to processing units and much less to
control and caching

Payne et al. Page 11

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
Schematic of the CUDA memory hierarchy. In this example, the grid is a 1×2 array of
blocks, where each block contains a 2× matrix of threads. Each thread has exclusive access
to its own register file. All threads within a block have access to the same shared memory,
and threads in all blocks have access to global memory

Payne et al. Page 12

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
Data organization and accessing patterns impact program efficiency. In (a), the data are
written such that each row corresponds to the instances of a single attribute and (b) shows
this data stretched into a one-dimensional array, by row-major order. In (c), the data are
written such that each row corresponds to the attributes of a single instance, and (d) shows
the corresponding one-dimensional representation of these data. The data highlighted in gray
depict the memory access patterns of the threads within block (0,2)

Payne et al. Page 13

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
Execution time in milliseconds (mS) for the CPU and GPU implementations of the all-pairs
distance calculation. Data points represent the average execution time on 25 randomly
generated datasets with ternary alphabets, 112 instances, and 512 attributes. Standard errors
are smaller than the symbol size and are therefore not shown. Symbol labels correspond to
the kernel names (see text). Note the break in scale on the y-axis

Payne et al. Page 14

Interdiscip Sci. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

